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Massless fields with integer spin

Christian Fronsdal
Physics Department, University of California, Los Angeles, California 90024

(Received 5 July 1978)

The Fierz-Pauli Lagrangian for massive particles with arbitrary integral spin s, first obtained by Hagen
and Singh, is examined in the limit of vanishing mass. Unexpectedly, a considerable simplification occurs.
The potential Ii is a symmetric tensor of rank s; the "trace" h; obtained by contraction of a pair of indices
against the flat-space metric, does not vanish but the trace h" of h' does. The wave equation admits a
gauge group, and this implies conditions on the source. The divergence of the source need not vanish, only.
the traceless projection of the divergence must be zero; this is a major departure from the usual assumption
and may bear on the question of the existence of a physically interesting source for fields with spin 2 3. This
weaker condition on the source is sufBcient to guarantee that only helicities+ s are transmitted between
sources. A generalized Gupta program is proposed, that is, a search for a scheme for generating a theory of
interacting, massless particles, consistent to all orders in the coupling constant.

I. INTRODUCTION

There are at least two reasons for a revival of
interest in massless fields with higher spin. Until
recently, the only known examples of coherent the-
ories of interacting, massless fields were those of
spin 0, &, I, and 2. Of these, all but the first are
of relevance to physics and the last two embody
most of modern theoretical physics. Recently, it
was discovered' that a consistent theory of inter-
acting, massless fields of spin —,

' could be set up
with the help of supersymmetry. Generalized su-
pergravity' is currently hampered by the taboo
against spins higher than 2, created by the lack of
any consistent theory; this is one justification for
our interest. Another is a haunting preoccupation
with the idea that the massless nature of the neu-
trino should somehow be a strong clue to the
structure of the weak interactions, just as the
masslessness of the photon and the graviton are
crucial to electrodynamics and to Einstein's theo-
ry of gravitation. Nobody has associated the neu-
trino with gauge principles, ' and this may be due
to the fact that our understanding of gauge theories
is too limited. Perhaps improved understanding
can come from a study of the gauge groups asso-
ciated with higher spins. 4

The theory of massive particles of higher spin
was developed by Fierz and Pauli' in 1939. Their
approach was, of course, field theoretical, and it
focused on the imperative physical requirements
of Lorentz invariance and positivity of the energy
(after quantization). Since the paper by Wigner'
on the unitary representations of the Poincare
group and the work of Bargmann and Wigner' on
relativistic wave equations, it became clear that
the last (positivity of energy) could be replaced by
the requirement that the one-particle states carry
an irreducible, unitary representation of the Poin-

care group. In the case of integral spin s, the
field is a symmetric tensor field P' of rank s,
traceless in the sense that &'"P„„...=0, divergence
free,

8"Q„...=0,

and satisfying the wave equation

(8' ~ms)Q' = 0. (1.2)

Here 8""are the components of the flat (Minkow-
ski) metric tensor, 8„=—8/8x", and 8'=-8o"8o8„
=—8'8„.So much for the free fields.

Attempts to introduce interactions by direct
modification of (1.1) and/or (1.2) lead, according
to Fierz and Pauli, ' almost inevitably to an abrupt
change in the number of degrees of freedom of the
field, and hence to difficulties. To avoid such
troubles they suggested that one begin by combin-
ing Eqs. (1.1) and (1.2) into an action principle. In
order to have enough field components to vary, it
is necessary to introduce certain auxiliary fields.
Fierz and Pauli suggested a set of tracelsss, sym-
metric tensor fields of rank s-2, s-3, . . . , but
they did not determine how many were actually re-
quired. Later it was shown that one needs a min-
imum of s traceless, symmetric tensor fields in
toto. When s =2 it is convenient to combine Q' and
P' into a symmetric tensor field' h„„=Q„„+c8»Q',
with c real and w 0.' When s = 3 it is not possible to
combine tits, Q', and Qo into a symmetric tensor
field of rank 3. It would be possible to use an aux-
iliary field of rank s —1,"but this is an unneces-
sary complication, and irrelevant for our study of
the massless case —for it would become decoupled
in the limit of vanishing mass. The choice of a
singlet set of traceless, symmetric tensor fields of
rank s, s —2, s —3, . . . , 0 (one of each), proposed
by Singh and Hagen, " is certainly the simplest
viable one.
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H. LAGRANGIAN FOR THE MASSIVE CASE

The total field is

{Qs Pg 2 Qs 3 $0] (2.1)

The equation for Q»' is

p2(~ yg l r ill» 2, l r ltd»+2tl)

ip(8 y»-g l 8 lt»sl, l) 42lso ltl»p l (2 7)

where Q» is a traceless, symmetric tensor field
of rank k. The most general Lagrangian for the
free field is

~ = g [-'~.(8@'}~ (84').-'S,(8 ~ 0') ~ (8 ~ e')

r y»-2 ~ (88, y») 8 lp»-2 ~ (8, y»)

4& ~2y», y»] (2.2)

8e'[ .p'e"~, p(p e').r, (pp e'").r,pp0' '.'8,.-(p ~ e"')
—i6»P4P ' —mso'»Q"] = 0. (2.3)

Here we have written p for —i8, that is, p =- i8/-
sx". The variations 6Q» are symmetric and trace-
less, and the equations are not weakened if we
specialize

(5Q»)" l"'"» y" l. . .y"»,

where the variables y" satisfy y'=—y"y„=O. Define

(2.4)4'(y}=-y"" y"'0 ...
then Eq. (2.3) becomes

~»p'0'(y)+(P»/k)(y. p}(p 8}e'(y}+r»(p.y}'0' '(y)

+[r.../(k+1)(k+2)](p 8)'0"'(y)

-i8»(p y}4' '(y)

[8.../(k, 1)](p 8)y' (y) — ' „y'(y}=O.

(2.5)

Here 8 stands for derivation with respect to y, 8„
=8/8y". We look for plane wave solutions with p
=0 and p, =p&0. The expansion of Q»(y) by spin
content is of the form

0'(y) =g [(y')' '-ay'(y')' ' '
7-"0

All indices will be suppressed; here they are con-
tracted in a unique and self-evident manner. ' The
constant parameters o.», P», r„,8», o'» must be
chosen so that the Euler-Lagrange equations yield
(1.1), (1.2) and $»=0 for ksss.

The Euler-Lagrange equations are, for A; =s,
s 2y ~ ~ ~ y Oy

with

o, ,= o', ,(s - 1)/s,

r ' = &. ,(s —1)'/(-2s —1) .
(2.10)

When l =s —3 and s —4 one encounters similar
problems with matrices of dimension 3 and 4. The
result is

(s —1}'(s—2}'
s(2s —1)

(s -2)(2s -3)
s 3 3 3 3(s 1)2

s(s —2)'
s 2/ s-2 s 3 3(s 1)2(2s 1}

from l =s —3, and, from l =s -4,
(s —2)(s —3)'

Ps 3 s 3 3(s - 1)2

(s —3)(2s —5)
4 ' 4 2(s —2)(2s —3} '

(2.11)
I

o'», l = cl»+8»(k -l)(k+1 +1)/2k',

r, , =r, (k —l)(k —l —1)(k+l)(k+l +1)/4k'(k 1)2,

8...=8,(k l)(k+l, 1)/2k2. (2.3)

'Zhe problem is to choose the coefficients so that
(2.7) is equivalent to the set (P'-m2)lP" =0, all
other Q»'=0

We start with l =s, the only contributing value of
k is k =s and (2.V) (Ref. 13}reduces to (olsps

m'o, )Q"' = 0. We normalize by taking o.', = os = 1.
When l =s —1 the only contributing value of k is
again k =s and we get p'(1+p /s)p~s '=m Q"' '
This must yield Q" 4 ' =0 for any value of P2, so it
is necessary to put ll, =-s. When l =s —2, we ob-
tain two equations by taking k = s, s = l. Abbreviat-
ing p'/m2—= z we have

0(-.,„,. 1

y. ..z n, P-0
(2.9)

This must imply Qs's 2=/~~~2=0, for every value
of z; therefore the determinant of the matrix must
be independent of s and e O, which gives o~, t 0 and

b(y2)2(yO)» l-4 ]y», iP)

with

a = (k —l)(k —l —1)/4k,

b = (k —l). . .(k —l —3)/32k(k —1).

(2.6) y, 2=0,

(s —3}'(2s —1)
s 3/ } s 3 s 4 6(s 1)(s 2)(2s 3)

When l ~ s —1 the dimension of the matrix is s —l,



3626 CHRISTIAN FROGS DAL 18

but matrix elements more than 2 steps away from
the diagonal vanish, and it is probably not too hard
to obtain general expressions for 0.~, . . .

, , &~. The
calculation was completed by Hagen and Singh" by
a different method, and the above formulas are in
agreement with their results. '

The vanishing of y, is an unexpected boon, it
produces a great simplification in the massless
case and obviates the need to solve the equations
for l &s —4. In fact, when m=0, we have &~=0 and
the fields Q', Q' ' become decoupled from all the
rest. Now, for l ~s —2, only two values of k con-
tribute and (2.7) reduces to

r.
p'

s-2, 1

(for I ~ s —2) . (2.12)

simple form

h„,...„,=g,P„,(„,...„(traceg = 0) . (3.3)

The sums P~, in (3.2) and Q, in (3.3) symmetrize
the tensors that follow by summing over all dif-
ferent permutations. Since g, h', and g are all
symmetric there are s terms in Q, and s(s —1)/2
terms in Q, .

Now we can write the Lagrangian (2.2) in terms
of h, taking ni =0, &~=0, and tx~, P~, y from the
preceding section. The result is, with p„=i8/ex,

-~=-,'(») (»)-(s/2)(f ~ h) (u h)

—(s/2)(s —1)h' (PP h)

—(s/4) (s —1)(ph '}~ (ph ')

—(s/8)(s —1)(s—2)(p ~ h') ~ (p h') . (3.4)

Of course, this does not imply that Q"' and Q' "
vanish, the Fierz-Pauli program must fail when
m=0, but it is significant that the determinant of
this two-dimensional matrix vanishes for all l."
This guarantees the existence of a large gauge
group.

We write the corresponding Euler-Lagrange
equations, using the notation P„Q,as defined
above, and include a source term, "

vw ''' Z pQ&~wpl43'''j. 2

III. MASSLESS FIELDS WITH INTEGER SPIN

When m = 0 the fields P' ', P' ', . . . , decouple
and may be ignored henceforth. The equation for
Q' ~ ' is p'P'" = 0, the equation for @"' ' reduces to
0=0, while the lower spin projections satisfy Eq.
(2.12). A solution for which Q"'=0 is subjected to
no wave equation and will be called a gauge field.
Let g', 7f&' '].be a gauge field. The vanishing of
$' ~ ' is expressed by the possibility of represent-
ing P' as a gradient [compare Eq. (2.6)],

Q'(y) =s(p ~ y)$(y) —a(s —l)y'(P ~ ()(y), (3.1)

where $ is a symmetric, traceless tensor of rank
s —1. To find the corresponding $' ' we must
solve (2.12), or what is the same, apply the Euler-
Lagrange equation (2.5) with k=s. The result is

0*'(y) =[( -1}/~,]P 8$(y)

It is now convenient to combine the two traceless
tensors P', Q' ' into a tensor h of rank s that is
not traceless, h'—= trace h w0, but whose double
trace vanishes, trace h '= 0. At this point we must
abandon the notation (2.4) and reintroduce the in-
dices. We define

Q, ...„,=h, ...„—(I/2s) g
(3.2)

P~ ~ ~ ~ it ~g g j ~ ~ ~ P++

and choose the coefficient g to suit our conve-
nience. Our convenience is suited by c =(s —1)'/
2y„for then a gauge field is represented by the

~ f jf~ «-~XV3 ~ ~ ~ "f3~ ~ ~

1 p„,p"h„'„,...
i
=t., (3.5)

(t ' —= trace t) . (3.7)

In addition, trace t'=0." Equations (3.5) and (3.7)
were obtained by Schwinger" for the case s =3,
but like others" who worked on this problem, he
required that t be divergenceless. Our next task
is to show that the weaker condition (3.7) is suffi-
cient.

IV. THE PROPAGATOR

Let us abbreviate the wave equation (3.5} by

Lh =t [Eq. (3.5)]. (4.1)

The fact that the gauge field (3.3) satisfies the
free field equations is expressed by the (true)
statement that (3.5) is invariant under the gauge
transformation

h„,... -h„,...+P,P~,(„,... (trace $ =0) . (3.6)

Because (3.5) was deduced by variation of a sym-
metric Lagrangian, this is equivalent to the state-
ment that the traceless part of the divergence of
the left-hand side of (3.5) vanishes; therefore,
self-consistency of (3.5) requires that the traceless
part of the divergence of t variish, that is,
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The solution is determined up to a gauge fieM; thus
there exists an operator G such that the general
solution of (4.1) is given by"

k =Gt+h . (4.2)

Of course, G is not unique. The dimension of G is
the same as 1/p', therefore the only acceptable
form of G is

G =(1/p )A, (4.3)

(I oh)~, .=p..h„,...-Q,p„,p"h„„,...

where 1/p' is the usual Green's function for scalar
fields and A is a constant matrix. From (4.1)-
(4.3) it is seen that the operator A must satisfy
(LA —p')f =0 for every source f that satisfies the
condition (3.7); this is the same as the require-
ment that (AL —p')h be a gauge field for every h,
and this determines A uniquely.

Equation (3.5) may be rewritten as follows:

BLJt =t,
where B and L,, are defined by

of this expression is concerned, the choice of G is
irrelevant" and we may as well adopt (4.3) to ob-
tain (1/p')f A t. The residue t A ~ t of the pole at
p'=0 gives us the amplitude for the transmission
of a massless quantum between different parts of
the source. By examining this residue we can de-
termine the helicities of these quanta.

Theorem If .f satisfies Eq. (3.7), and trace t'
= 0, and A is defined by (4.6), and p' = 0, then
t A ~ t is the sum of the squares of the helicity
components + s of t.

The proof will be presented below. Of course, it
it would be a trivial matter to prove this result if
t were divergence free. The fact that the weaker
condition (3.V) is sufficient is remarkable. It is
possible to imagine that this relaxation of the con-
dition on the divergence will facilitate the dis-
covery of an interesting physical candidate for the
source of massless fietds with higher spins.

Proof of the theorem "Le.t f be any traceless,
symmetric tensor of rank s —1, then f Q, p$) = 0
(all indices contracted). Consequently,

f A f=f (A ~ f+g pt. )

P2 Pp j P+2' p, 3 ~ (4 4) =f IAe (f+BQ p()=feAof

where f = 5+A, p) and—

(Bh)„...=h, ... ——, ,&„„,h„,... . (4.5)

Note that Bh is not the traceless part of h, com-
pare Eq. (3.2), therefore B has an inverse A,
namely

(Ah)„,...=h„,...—[1/2(s —l)]g,&„,„,h„',... . (4.6)

Now we verify that (AL —p')h is a gauge field,

P f= [1/2(e —l)]g,&t'-+, 5(PP $)+P'$.

Choose $ to be any traceless solution of pp $=t'/
2(s —1), then p ~ t=p'(, and when p'=0:

tAt=tAt

[(AL-P')h]„,...= [(L.-P')h]„,...

ip, ,$„...
g„...=-(p h)„... + & Q,p„h,... .

(4.7)

Choose the coordinate axes so that p, =p, =0, then
the index summations in t A ~ t range over the in-
dex values 1,2 only. Since trace t'=0
=gt""'"&~&»(i, . . . , l =1,2), it follows that

~ ~ ~'t &&~ ~ ~t- [I/2(s- I)]+,5t
~

To conclude, Eq. (4.1) is solved by (4.2), with Q
defined by (4.3) and (4.6); this operator will be
called the propagator for the field h.

Vfe are now in a position to determine the pre-
cise dynamical content of the theory. It wil. l be
shown that the anly massless quanta transmitted
between sources are those of helicity +s.

=0=trace A ~ t

so that only the traceless part of t contributes;
that is, only the highest and lowest helicities con-
tribute to t A ~ t.

VI. NONLINEAR THEORY

V. MASSLESS PARTICLES

The elementary interaction between field and
source is h ~ t. If h is radiated by the source, then
h is represented by (4.2) and the effective interac-
tion between sources is t ~ G ~ t. As far as the value

We propose a generalized Gupta program, for
arbitrary spin. " I.et us suppose that a soure t can
be found, constructed in terms of matter fields,
that satisfies the condition (3.V) by virtue of the
field equations for these fields, and such that trace
t'=0. The new interaction term h ~ t will change
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the field equations and (3.7) will cease to hold. To
compensate, extra terms must be added to the
source and a very nonlinear theory will result,
just as in the case of spin 2." This must lead to
a deformation" of the gauge group defined by (3.6),
and we may ask whether such deformations exist.

Recall that, when s =2, the deformed gauge
group is the group of general coordinate transfor-
mations. ' The infinitesimal generators form the
Lie algebra of differentiable vector fields. If we
write the deformed gauge transformations as

couple without the cooperation of gravity. (See
Grisaru and Pendleton, Ref. 21.) Perhaps mass-
less fields of spin 3 can couple only with the help
of other massless fields of integer spin. The
analogy with supergravity suggests a higher sym-
metry that unites massless particles of all spins.
In fact, it is possible to deform the 'direct product
of the gauge groups for spins 1,2, . . . and obtain a
simple, non-Abelian gauge group that includes the
gauge groups of electrodynamics and of Einstein's
theory of gravitation.

h~" -k""+p~ P +p"$" + nonlinear terms (6.1) APPENDIX

(Ref. 24) then we can write the structure relations
exactly as

(6.2)

In the case of spin 3 it is also possible to associate
the set of gauge fields with a noncommutative Lie
algebra, for example,

where ~ is an antisymmetric tensor field. There-
fore deformations of the gauge group do exist. The
next question is whether the deformed gauge group
admits an affine representation of the form

h,~-h, ~++,p„g„~+nonlinear terms

(Ref. 24). Finally, it would still remain to be seen
whether a theory of interacting fields exists that is
invariant under the deformed gauge group.

Some work has been done on a more conventional
approach to the problem. Consider matter de-
scribed by initially free, scalar fields, satisfying
the Klein-Gordon equation (8'+m')cp=o. It turns
out to be possible to construct a source t that sa-
tisfies t"=0 and, by virtue of the Klein-Gordon
equation, condition (3.7). This ensures consisten-
cy to zeroth order in the coupling. The simplest
test of consistency to first order in the coupling
was devised by Weinberg, " in S-matrix terms.
Weinberg concluded, on the basis of such an anal-
ysis, that the coupling of scalar particles to mass-
less particles of spin higher than 2 must vanish at
zero energy. We have repeated this calculation
and we have found that the less severe conserva-
tion law (3.7) leads to the same conclusion.

It is possible to envisage several alternative
possibilities. (1) Massless particles of spin high-
er than 2 couple to matter, but the coupling van-
ishes at zero energy. (2) Couplings exist that do
not vanish at zero energy, but these are of a very
special kind and probably involve fields of high
spin. (3) The problem of consistency is resolved
cooperatively by massless fields of all spins.

The third possibility is suggested by supergravi-
ty; it seems that massless fields of spin & cannot

Here we shall show that the Fierz-Pauli pro-
gram for integer spin s needs at least s traceless,
symmetric tensor fields. Let the wave equation
for the total field be written as

(PP'A+P B—1)4 =0, (A1)

where A and B are constant tensors of rank 2 and
1, respectively. Linearize by introducing +„
=P, @'~

or

(A2)

! =M
(PA pBj (A3)

since d—= d, is the largest among the d, . Now let
8 be the projection operator defined by 64 = P"',
the spin-s component of the tensor field P'. Then

M =~'». e
(p o~

(pp 0)

Now (A2) and (A3) show that (p')~e is a polynomial
in p„,which implies that d -s. But d is precisely
the number of traceless, symmetric tensor fields,
so the stated result has been proved. '

Helpful conversations with J. Fang are gratefully
acknowledged. This work was supported in part by
the National Science Foundation.

Project this equation into the subspace with spin l,
with dimension 5d„then there must be no non-
trivial solution for l &s; therefore the projected
matrix M, must be nilpotent for /&s. This implies
that the 2d, power of M, must vanish for / &s, so
that
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