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Recent work establishing a violation of the so-called "no-interaction theorem" for interacting relativistic

particles was directed primarily toward the development of the quantum theory of such systems. In that work

the classical trajectories for two-particle systems span a two-dimensional region in phase space. The present

paper addresses itself more directly to the intended classical content of the "no-interaction" theorem,

namely, the determination of orbits in space-time for the pair of particles under consideration. The problem

is nontrivial in the sense that its treatment requires the recognition of the conceptual distinction between

syntactically defined observables and semantically defined observables. The latter betray Machian features in

so far as they make reference to the open character of the sytem vis-a-vis the other matter of the universe.

It is noteworthy and curious that such considerations were not required for the proper treatment of the

quantized system. A critique of the essential features of the "no-interaction" theorem, including certain

unstated (and hard to justify) assumptions, is presented.

I. INTRODUCTION

The so-called "no-interaction theorem'" asserts
that the only relativistically covariant Hamiltonian
systems such that the coordinate variables of the
individual particles transform correctly under Lo-
rentz transformations are collections of free par-
ticles. In a recent paper2 we demonstrated that
this theorem can be violated provided we are pre-
pared to consider Hamiltonian systems of a more
complex sort than those envisaged in the proof of
the theorem. In particular, we showed that, for
a system of two interacting relativistic particles,
a manifestly covariant Hamiltonian description of
the dynamics can be obtained in a 16-dimensional
phase space. The new feature is that the trajecto-
ries of the system are generated by two commuting
Hamiltonian constraints rather than by a single
Hamiltonian. As a consequence, the points in
phase space which describe trajectories span a
two-dimensional region. Although this causes no
conceptual difficulties when we quantize the sys-
tem, the question remains as to how, should
we choose- to confine ourselves to the classical
theory, can we recover the covariant space-time
particle orbits which the "no-interaction theorem"
claims cannot exist'? It is the intention of this
paper to demonstrate how this is accomplished. In
the process we shall find that the concept of an
observable has to be sharpened; that the usual
rather loose employment of this term obscures
the fact that there are two distinct conceptual us-
ages, one syntactic and the other semantic; and
most surprisingly, not only is there no unique
relationship between syntactic and semantic ob-
servables, but differing identifications will in
general produce physically distinct particle orbits.

A1though the need for such careful considerations

becomes most acute when we treat interacting sys-
tems, the problem of the identification of the two
modes of observables and the effect it has upon
the description of the space-time orbits occurs for
free particles as well, although the linear nature
of the orbits of the individual particles has tended
to obscure this fact. Since, for free particles,
the (two-dimensional) phase-space trajectories as
well as the space-time orbits can be readily ex-
hibited in closed form, it will be particularly
clarifying if we first analyze this simple system.

II. ONE FREE PARTICLE

Let us first review how one can treat the dynam-
ics of a single free particle in a manifestly covar-
iant manner. As per usual, we begin at the most
primitive level by the introduction of the Lorentz
four-vector q", by which we intend to describe the
location of the particle in space and time. In order
to entertain dynamical considerations, we shall
next introduce the canonically conjugate four-vec-
tor P, . That is, we are choosing to describe the
kinematics of the system in an eight-dimensional
phase space with a simplectic structure given by
the fundamental Poisson bracket relations

The intended (i.e., "semantic" or "physical" )
meaning of the kinematical variables P„ is that it
will represent the energy-momentum four-vector
of the particle. Poisson brackets between more
general functions of the q" and P„are defined in
the usual manner; namely,

eB 8A.
[&(q,P), &(e,P))=s . s
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Employing this Poisson bracket algebra arid in-
troducing the Minkowski metric of signature (1, -1,
-1, -1) to raise and lower indices, it easily is
seen that the infinitesimal algebra of the Poincare
group is realized by the ten quantities p", I.""
-=q"p" -q"p~ and that q" and p„ transform correctly
as Lorentz vectors in this realization

Dynamics is introduced by imposing the con-
straint which asserts that our system is to be a
free particle with (rest) mass m; namely,

Z=p' m'=O. (2.3)

Equation (2.3) defines a seven-dimensional con-
straint hypersurface of two sheets in the eight-
dimensional phase space. Since our considerations
in this paper are entirely classical we shall con-
fine our considerations exclusively to the sheet of
positive energy and regard that sheet as the entire
constraint hypersurface. Employing the Poisson
bracket structure, the constraint E may be used
to generate trajectories. More specifically, if we
iterate the relations

5q" = r[q"-,K] =27'p~, (2.4a)

5p, =~[p„,K] =O (2.4b)

(where v is a constant infinitesimal parameter) we
obtain a unique (one dimensional) path through each
point in the phase space. If we now confine our-
selves to the consideration of initial points lying
on the constraint hypersurface given by Eq. (2.3),
it is clear from Eq. (2.4b) that the entire path so
generated lies on the constraint hypersurface. We
shall call such a path a dynamical trajectory. We
note that the factor space obtained by considering
the points of the constraint hypersurface modulo
the trajectories forms the reduced phase space of
six dimensions which it is more customary to em-
ploy when treating the dynamics of a simple parti-
cle. (The induced coordinates of this reduced
phase are in effect the independent Cauchy data for
the trajectories as determined by Hamilton's
equations of motion. )

Observables are defined purely syntactically as
those functions over the phase space which com-
mute with the constraints on the constraint hyper-
surface. Such syntactic observables are thereby
constant along each-trajectory and generate map-
pings which preserve the constraint hypersurface.
If we have a sufficient number of observables we
can uniquely define a trajectory by assigning val-
ues to those observables. For our example of a
single free particle, in view of the fact that the
reduced phase space is six dimensional, we see
that in order to define a trajectory it is necessary
and sufficient to specify six independent observ-
ables. One particularly simple choice is

p =a

I OS qOpS qSp0 bS

(2.5a)

(2.5b)

Using thi. s choice of constants a' and b', and em-
ploying the constraint equation (2.3), we may solve
Eq. (2.5) for q', thus

q'- (a'+ m') (astro bs) (2.5)

This equation, taken together with equation (2.5a),
explicitly exhibi. ts the one-parameter trajectory
on the constraint hypersurface in phase space,
where the variable q' is employed to label the
points on the trajectory.

If we now wish to relate this trajectory with an
orbit which one can observe in space-time, we
must relate at least some of the phase-space vari-
ables with semantic observables, that is, with
distances, times, and velocities as measured by
rulers and clocks in the frame of reference of
some observer. If we call the space-time coordi-
nates of the observer x~, the natural and intended
relationship implicit in the notation we have em-
ployed is

q' =x', (2.7)

III. TWO FREE PARTICLES

The discussion of the previous section must at
first sight seem unnecessarily involved. The need
for proceeding in such detail will become clear
once we consider the much more complex system
of two free particles. Let us now consider a 16-
dimensional phase space coordinatized by the
canonical pairs of Lorentz vectors q~1, P,„(i=1,2),
which satisfy the standard Poisson bracket rela-
tions

[4"„e",] =[p;„,p,„l =o,

[e1,P,.] = -[P...e1]=5,"&1,
(3.1)

This identification of the semantic observables
x" with the phase-space variables q' has the virtue
that it is Lorentz covariant, but it is important to
note that the q" are not syntactic observables. If
we now substitute Eq. (2,7) into Eq. (2.6) we obtain
the usual space-time orbit for a free particle, the
experimental observation of which physically iden-
tifies the system. It is evident that all the syntac-
tic observables can be expressed as functions of
semantic observables provided, in addition to
Eq. (2.7), that we establish the standard intended
relationship between the (syntactic observable)
canonical momenta p and the semantic observable
velocities v=—dz/dx; namely,

mv
P (1 +2)1/ 2 (2.S)
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Poisson brackets of more general functions are
defined, as in Eq. (2.2), merely by extending the
implied summation on the right-hand side over in-
dex i as well. The algebra of the Poincare group
is now realized by the Poisson bracket relations
among the ten infinitesimal generators

Eq. (3.2), are syntactic observables. ] Such ob-
servames are constant throughout a trajectory and
by assigning fixed values to a complete set of them
(12 in the present case) a specific trajectory is
uniquely determined. Analogous to Eq. (2.5) a
particularly simple choice is

+P =pl& +pP (3.2a)

(8.2b) «&& -q~p~=~~ ~

(3.5a)

(8.5b)

K, ~p, '-m, '=0 (i=1,2). (8.3}

These two constraints define a 14-dimensional
hypersux'face of 4 sheets in the phase space. As
in the previous section, we shall only consider the
sheet corresponding to the positive roots of Eq.
(3.3) as the constraint hypersurface.

Dynamical trajectories are obtained by employ-
ing the constraints E, as infinitesimal generators
of canonical mappi. ngs and restrictin. g out attention
to initial points on. the constraint hypersurface.
More specifically, for points q~~, p", of the con-
straint hypersurface we iterate the infinitesimal
mapping

&q~q = [q~), v'~K, +r~K~],

5p~( —[.p~), v~K~+v'~K~j,
(3.4}

where v', are arbitrary infinitestimal constants.
Since the constraints K, commute, there is no
ambiguity in exponentiating this procedure and it
is evident that the resulting paths are confined in
their entirety to the, constraint hypersurface.
Thus through each point on the constraint hyper-
surface a two-parametric family of paths is ob-
tained. We now define a dynamical trajectory to
b6 an equivalence class of points which can be
connected piecewise by paths so generated. Each
trajectory so defined clearly spans a two-dimen-
sional region on the 14-dimensional constraint
hypersurface, and through each point of the hyper-
surface there is a unique trajectory. If we now
consider the equivalence class of points on the
constraint hypersurface modulo traj ectories we
recover the 12-dimensional reduced phase space
which is customarily employed in treating the two-
particle system.

As in the previous section, we define syntactic
observables as those functions of the canonical
coordinates which commute with the constraints.
[Clearly all the generators of the Poincare group,

and it is again easily seen that q", and P,„ tran-
form as Lorentz vectors under the associated map-
pings in phase space.

The dynamics of two free particles of respective
rest mass m, is most naturally introduced by im-
posing the two mutually commuting Lorentz-invari-
ant constraints

Similarly we employ the constraints, Eqs. (3.3),
and solve Eqs. (8.5b) for q&, thus

q'=(a +m ') "'(a'q'-5') (s.6)

We see explicitly from these expressions that the
trajectory inyhase space is two dimensional, being
parametrized by q, and q2. Owing to the particu-
larly simple nature of this system it would appear
that we really have two independent linear trajec-
tories, one for each particle, each parametrized
independently by i.ts own parameter. But this is
decidedly. misleading. One must remember that
the path being described by Eqs. (3.5a) and (3.6)
is a two-parametric sequence of points on a 14-
dimensional surface in a le-dimensional phase
space. In order to relate this system to orbits in
space-time we must determine the relationship
between the canonical dynamical variables q", ,p",
and the semantic observables of space-time.

As i.n the previous section, the semantic observ-
ables are the quantities which can be measured in
effect by clocks and rulers in some Lorentz frame
of reference. That is, we now have as semantic
observables the coordinates of the first particle
xj the coordinates of the second particle x', , the
time t as measured by a standard clock, as well
as derived quantities such as the velocities v,'

dxf/dt and @2=—dx2/dt. The intended meaning of
our phase-space variables is established by the
relations

(3.7a)

(8.7b)

and

mb)
(] ~ 2)1/2 (3.6)

The substitution of Eqs. (3.7) into Eqs. (3.6) will
indeed give two independent linear orbits in space-
time. The difficulty is that, unlike the analogous
situation of Eq. (2.7), Eqs. (3.7) are not Lorentz-
covariant statements. This is most easily seen by
noting that the Lorentz vector q =—

q& -q~ is re-
quired by Eq. (3.7b) to have q0=0, a property
which is not preserved under Lorentz transforma-
tions. It follows that the pair of orbits in space-
time which are associated with a given phase-
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space trajectory depend critically on the frame of
reference in which the semantic observables are
related to phase-space variables, and through
them to the syntactic observables. We see in fact
that the phase-space trajectories form a two-di-
mensional domain precisely due to the extra free-
dom required to permit different pairings of linear
space-time orbits to be associated with a given
trajectory. The differing pairings result from the
exploitation of the frame-dependent nature of the
relationship between the semantic observables and
and the syntactic observables.

IV. INTERACTING PARTICLES

When the system under consideration consists
of several free particles the orbits of the individ-
ual particles are evidently linear in space and
time. The multidimensional character of the tra-
jectories appears to be an irrelevant artifice of
the phase-space formalism which insists on treat-
ing the several particles as a single system. Once
we introduce an interaction between the particles,
it becomes clear that we are no longer dealing
with an artifice, but rather that, depending upon
the choice of the frame of reference in which the
connection is made between the semantic and the
syntactic observables, the associated pairs of
space-time orbits corresponding to a given phase-
space trajectory will have 'materially different
configurations. Of course, having identified the
orbit pair in some one reference frame, we are
free to transform it to any other Lorentz frame
and it will remain a legitimate orbit pair.

The kinematics of the system of two interacting
relativistic particles is identical to that of the
free particles treated in the previous section, in-
cluding the realization of the Poincare algebra
given by Eqs. (3.2). The dynamics of the interac-
tion is most conveniently expressed if we first
perform a linear canonical transformation to the
new set of canonical momenta

pQ +pP

pl p2

and their canonically conjugate coordinates

1x' = 2(q,' -q,"),

(4.1a)

(4.1b)

(4.2a)

(4.2b)

E =P'+p' —2m, ' ——2m, ' —8pV(r) =0, ,

Eg ——p P —m~2+m2 =0,
(4.3a)

(4.3b)

where V is an arbitrary function, and r is the Lo-
rentz scalar given by

respectively. In terms of these variables the mod-
ified constraint equations are2

2 [(P x)*
P2 (4.4)

The coefficient 8p. , where

1 2 (4.6)
Ply+ m2

is introduced in order that, in the nonrelativisitic
limit, the function V reduces to the usual potential
energy. It is easily seen that for vanishing V, the
constraints of Eqs. (4.3) are completely equivalent
to those of Eq. (3.3) for two free particles. Our
preference for the present form of the constraints
is due in part to the fact that they permit us to
exhibit in closed form their canonical conjugates
even in the presence of an interaction; namely, if
we define the two functions

T
P2X'P -P 'Px 'P

P'-(p P)'
P X 'P -p 'PX'P

Tp P —(p 'P)'
one may check by direct computation that

[r., r,] = [T., SCJ =[T „Z.] =0,

[T., SC.] =[r„SC,] =1.

(4.6a)

(4.6b)

(4.Va)

(4.Vb)

We note that whether or not we have an interac-
tion potential the quantities & and &~ are linear
in the configuration-space variables. It is evident
from Eqs. (4.7b) that they are not observables,
but rather they act as times in the sense that the
numerical values which they assume serve to pa-
rametrize the points in phase space which com-
prise a trajectory.

For an arbitrary potential we ~cannot hope to
exhibit a complete set of syntactic observables in
closed form, for that would be equivalent to ob-
taining a closed-solution-form solution to the
equations of motion. We can employ T, however,
as we normally would the time in order to exhibit
observables as initial data for the determination
of a trajectory. As in the previous section, we re-
quire 12 functionally independent syntatic observ-
ables to determine a trajectory; then, with assigned
values for T„and T z, and employing the two con-
straint relations, Eqs. (4.3), we see that we shall have
exactly 16 relations to determine the coordinates
of a unique point on the trajectory. In view of the
fact that the generators of the Poincare group,
Eqs. (3.2), commute with the present constraint
equations (4.3), we immediately have ten indepen-
dent syntactic observables P' and I-'". We need
two more such observables and must make explicit
reference to the specific form of the constraints in
order to obtain them. A convenient procedure is to
observe that the two Lorentz scalars, r of Eq. (4.4)
and
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s =-X p -Pt, (4.8)

S=—er ~r&" s=s+T [K,s]

, [K., [K., s]]+ ~ ~ ~,
T'

(4.9b)

where T is simply the expression given by Eq.
(4.6a), are syntactic observables which are func-
tionally independent of P~ and L~". We note that,
if we regard the values T and T~ as parameters
which describe the evolution of the system point
along a trajectory, our complete set of observ-
ables is independent of T~. The observables A and
S are the "initial" values of r and s, respectively,
in the sense of coinciding in values at points where
T =0. In this intrinsic sense we have a nontrivial
evolution in only one dimension despite the fact
that the trajectory spans a two-dimensional region
of phase space.

In order to obtain the space-time orbits associ-
ated with a given trajectory we proceed precisely
as we did in the previous section, introducing the
semantic observables and relating them to the
phase-space coordinates via Eqs. (8.7) and (3.8).
The fact that our trajectory is again a two-dimen-
sional object is a consequence of the fact that this
identification is frame dependent. There is clearly
a preferred frame in which one can make the se-
mantic identification, namely, the center-of-mass
rest frame given by the condition

both commute mith the constraint K~. It is there-
fore sufficient to exponeniate the action of E upon
these scalars, employing its canonical conjugate
T as an effective parameter. More explicitly, it
is easily confirmed that the tmo quantities R and

S, given by

R= er '-r 'r=r+T [K,r]
T [K,[K,r]]+ ' ', (4.9a)

Eq. (4.11).
In the formal structure of the theory X 'P does

not commute with the constraints K and Kz, but
only with the linear combination

p oP
%=X —

2 Eg. (4.12)

Thus only the one-dimensional subset of the tra-
jectory generated by K can be identified with the
orbits of the two particles which interact instan-
taneously in the center-of-mass frame via the
potential V(r) (where r is the Euclidean distance
of separation). Should we choose to identify the
coordinates q, and q', with the semantic time of an
observer moving relative to the center of mass of
the system, it is still true that the particles in-
teract via the same potential V(r), where r again
is interpreted as a Euclidean distance of separation
in the rest frame Wh.at has changed is that the
Euclidean separation employed is no longer that
of Points of the two orbits simultaneous in the
center-of-mass frame, but rather they are simul
taneous in the observer's frame. It is therefore
not surprising that mith this alternative identifi-
cation of semantic observables, the pair of space-
time orbits associated with the given trajectory
changes. It is in this fashion that action at a dis-
tance can be made consistent with relativity—
namely, we have action at a distance in phase
space, but the precise significance of the distance
between the particles or of the times when the par-
ticles are to be regarded in interaction in space-
time is ambiguous. The trajectory is the equiva-
lence class of all such identifications. Even more
surprising is that, despite the fact that we appar-
ently have a plethora of inequivalent pairs of or-
bits in space-time corresponding to a given phase-
space trajectory, the corresponding quantum the-
ory is insensitive to these classical considerations,
yielding a unique energy spectrum and state vec-
tor. ' The nonobservable classical parameters are
absorbed into the arbitrary phase.

P'=0. (4.10)
V. CONCLUSION

The Lorentz-invariant statement of the identifica-
tion of our phase-space variables q', and q,' with
the semantic time in the rest frame is evidently
the auxiliary condition

p 'PTN+P2T~=-X 'P =0. (4.11)

With this additional condition we obtain a unique
Lorentz-covariant pair of orbits in space-time
associated with each phase-space trajectory. How-
ever, me would loose considerable insight into the
nature of relativistic action at a distance 'if we
were to discard the other pairs of orbits obtained
by alternative semantic identifications which alter

We have seen that, contrary to the strictures of
the "no-interaction" theorem, ' not only is it pos-
sible to obtain Hamiltonian space-time orbits for
interacting classical particles, we have an embar-
ras des richesses. In order to reduce this wealth
to familiar proportions we can choose to confine
ourselves to the orbits associated with the sub-
trajectory generated by the Hamiltonian constraint
K of Eq. (4.12). It is a particularly natural and
simple choice. However, to do so would obscure
the essential relativistic features of our system.

In nonrelativistic physics one could also have
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introduced the conceptual distinction between syn-
tactic and semantic observables. It would, how-
ever, have been, for most purposes, forced and
inconsequential. The reason for this is that there
is indeed an intended meaning to the symbols q~

and P~ which we employ to specify our physical
system, and this intended meaning is readily pre-
served under the Galilean group which relates the
laboratory frames of equivalent classical observ-
ers. In relativistic physics we have seen that such
a unique identification of our symbols with their
intended standard interpretation is only possible
for a single particle. Once we introduce two or
more particles, we see that classical construc-
tions, such as configuration space or phase space,
become ambiguous, loosing their categoric rela-
tionship to the properties of particles in space-
time. In order to give semantic content to the
abstract symbols of the relativistic many-body
theory we have been forced to make explicit refer-
ence to the coordinate frame of a particular ob-
server. Stated differently, we cannot have an un-
ambiguous interpretation of a closed relativisti. c
classical many-particle system. In order to in-
terpret the system physically we are compelled
to open the system in a Mach-type fashion, making
explicit reference to structures definable in, and
to inertial properties of, the laboratory of a given
observer. We emphasize that in relativistic theo-
ry this last step is no longer benign.

Ofe should note at this point that the existence of
conceptual difficulties in relating covariant quan-
tities to laboratory (read "semantic") observables
was noted in a somewhat more rudimentary form
in an early exchange between Eddington' and Dirac,
Peierls, and Pryce. 4 It was recognized in that
discussion that an unambiguous Lorentz-invariant
identification of four vectors with laboratory co-
ordinates and time only becomes available for the
isolated free particle. The new feature which we
have observed is that for several particles, dif-
fering identifications give differing permissible
space-time orbits, and that the phase-space tra-
jectory is no longer one dimensional. Our obser-
vation that different Lorentz observers would have
the particles interact at different points of their
space-time orbit, was noted earlier by Thomas'
and led him to abandon hope of a description of
such systems by means of invariant space-time
orbits. We have shown how such orbits may be
recovered, but we are in agreement with Thomas
to the extent that the orbits are not unique without
the imposition of an additional condition, such as
Eq. (4.11).

One last question may still puzzle the reader,
namely, how we succeeded in evading the "no-
interaction" theorem. For, if we simply choose

x=f(t). (5.2)

This function is obtained by integrating the syn-
tactic differential relation for q' as a function of
q0,

„,=[q', P']
dg'

(5.8)

(we have assumed for simplicity [qm, PO] =[q', Po]
=0) and then, in this frame making the semantic
identification

(5.4)

We next consider an infinitesimal Xorentz trans-
formation to a new frame, moving relative to the
original frame with velocity v («1) in the x direc-
tion, and inquire how the functional form of f(t)
is altered by such a transformation. Thus, to or-
der e, we have

X~X+5t
p

(5.5)
t=t +ex,

and Eq. (5.2) becomes

x+vt =f(t +vx) =f(t)+f(t)vx,
or equivalently

x=f(t)+vf(t)f(t) vt =f (t). -—
(5.5)

(5.V)

Thus the change in the functional form of f(t) as a
function of its argument is given by

&f=f(t) -f(t) =v(f-(t)f(t) t)—(5.8)

to confine our Hamiltonian to the linear combina-
tion given by K of Eq. (4.12), we do obtain a
uniquely defined, Lorentz-invariant pair of orbits
in space-time. Returning to the original deriva-
tion of the theorem we find that the critical, and
suspect, condition, is the so-called world-line
condition, ' which in our present notation may be
written

[qs f ot] qf [qa Po] q $08t

fs, t=1, 2, 3, t=1, 2). (5.1)

(We note that the last term does not occur in the
literature since the authors prefer to work in a
frame where qo =q', =t =0.) This equation is im-
mediately suspect since it is not Lorentz covariant.
Should one Lorentz observer find it satisfied and
thereby claim that his trajectory is world-line
forming, a transformed observer would disagree.
We must therefore carefully review the derivation
of this relation.

For simplicity let us consider one particle mov-
ing in the x direction in a given Lorentz frame.
The equation of its trajectory in this frame is
given by some function of time f(t), thus
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Thus far the argument is unexceptionable. In order
to proceed, we must at this point make a question-
able assumption. It is true that the infinitesimal
Lorehtz transformation of Eq. (5.5) is realized on
the syntactic variables via the relation

5q1 g[q1 I 01]

It is also true that in the original frame of refer-
erice we have identified q~ semantically with x,
and that at each instant of time t the trajectory of
the particle is given by Eq. (5.2). It does not fol-
low. from these facts that the functional form of
f(t) as a function of its argument induces a realiza-
tion of the homogeneous Lorentz transformation
by means of canonical mappings in phase space, as

implied by Eq. (5.9). However, if we loosely treat
the phase-space variables q' and q as synonymous
with the semantic observables x and t, respe tive-
ly, and even more loosely equate the observable
x with the functional form f(t), we obtain by sub-
stituting Eqs. (5.2), (5.4), and (5.9) into equation
(5.8) the world-line condition Eq. (5;I). The lack
of covariance of this condition is now seen to stem
from the frame-dependent nature of the semantic
identifications. The fact that in this paper we can
exhibit Lorentz-invariant world lines which do not
satisfy the world-line condition merely serves to
show that it is not reasonable to require that the
functional form of the equation for the world line
in a given reference frame induce a canonical
realization of the Lorentz group.
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