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We study dissipative test electromagnetic fields in a black-hole background. Quantities such as surface
velocity, tangential electric field, normal magnetic induction, total surface current, and conduction surface
current are introduced and are shown to satisfy Ohm’s law with a surface’ resistivity of 4w ~377 ohms.
Associated with these currents there exists a “Joule heating”. These currents can exist when the black hole
is inserted in an external electric circuit, but they can exist even in the absence of external currents. In
particular, we study the eddy currents induced by the rotation of a black hole in an oblique uniform
magnetic field, and we show how the computation of the ohmic losses allows a very simple derivation of the

torque exerted on the hole.

1. INTRODUCTION

Considerable interest has recently arisen in
making models using black holes as energy
sources.'”? These models could be relevant both
for galactic (y-ray bursts, x-ray bursters) and ex-
tragalactic sources (extended radiosources,
quasars). The basic motivation for believing that
black holes could provide the energy supply needed
in many astrophysical objects comes from the
Christodoulou-Ruffini mass formula® which implies
that up to 29% (50%) of the total energy of a bare
black hole can be stored as rotational (electro-
magnetic), and therefore extractable, energy.

The first realistic model exhibiting a process by
which energy could be extracted from a rotating
black hole was proposed by Ruffini and Wilson*

and studied by Damour.? The ingredients needed
in that model to perform the energy extraction are
the rotation of the hole and a magnetized plasma.
A formally related mechanism using the same in-
gredients though in a somewhat physically different
way was proposed by Blandford and Znajek.* Much
work is still needed in analyzing the possible mag-
netospheric structures around black holes.® It was
shown by Znajek” that the extraction of rotational
energy from the hole by means of axisymmetric
magnetospheric currents gives rise to an increase
of the irreducible mass. This was described as a
Joule heating inside the hole as if the black hole
had an effective internal resistance of order unity
(i.e., 30 ohms). We shall show here more pre-
cisely how one can define, in the general non-
axisymmetric case, surface currents on the hole
so that a formal vectorial Ohm’s law is valid as
well as the scalar Joule’s law. Moreover we shall
pay special attention to the case where there are
no external currents and where therefore the sur-
face currents on the hole must be considered as
pure eddy currents induced by the motion of the
hole in an external magnetic field. Using the solu-
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tion of King and Lasota® describing a black hole
rotating in a misaligned uniform magnetic field
we shall study how the eddy currents can dissipate
energy and angular momentum. This will provide
a new interpretation as well as a very simple
derivation of the vectorial torque exerted by the
magnetic field on the hole.

This paper is organized as follows: Section I
describes the geometrical and kinematical struc-
ture of a Kerr black hole and introduces the notion
of surface velocity of a black hole. Section II
studies the intrinsic electromagnetic structure of
the horizon, consisting of a tangential electric
field and a normal magnetic induction. Section IV
introduces the concept of a vector surface current
which is defined in order to satisfy the conserva-
tion of charge and current. The link between these
quantities is given in Sec. V (vector Ohm’s law) and
VI (Joule’s law). A simple explicit example of such
externally fed currents is given in Sec. VII while
Sec. VIO studies the eddy currents generated by
the rotation of the hole in an external magnetic
field and their dissipative effects.

II. GEOMETRY AND KINEMATICS OF THE HORIZON
OF A ROTATING BLACK HOLE

We use ingoing Kerr coordinates (v, 7, 6,‘&)) to
study the future horizon H of a Kerr black hole.
The metric can be written as

ds?=2a%" + afal + a%al | 2.1)

where we have introduced the quasiorthonormal
basis of forms:

&P =(r2+ a2 (dv - asin®0d@) ,
o =Z(r2+ a®) Y dr - A3 Y(dv - asin?0dg)] ,
af=x*2q0, (2.2)
a®=2"1/2ging[ (v 2+ a®)dG - adv]

with Z =%2+a?cos%9 and A=7%+a%- 2Mr

3598 © 1978 The American Physical Society



18 BLACK-HOLE EDDY CURRENTS 3599

=(r=7,)(r-7.) where r,=M  (M? - a®}/2.
The dual basis of vectors is
b;=9,+a(r2+a®) '8 s+ 30(r%+a%)'s, ,
b;=(r%+a?)z"'s,,
by =31%, | 2.3)
b, =Z"*/?[(sin)"'9; +asin6d,] .

It is such that adb)="5% or b =g **gsab, hence,
for instance

b?} =g “bai . . (2 ’4)
The intrinsic geometry of a section v =const of
the future horizon »=v, is given by
dsy?=w®w® 4 (OI) (2.5)
with
w(8)=2*1/2de ,
wl®=3% 1%y 2+ 0*) sinfdg ,

where T, =7,%+a”®cos®0. Here and in the following
the index + means replacing 7 by 7, .
The area element is therefore

dA=w®a w(“”=(1',2+a2)sin9d61\d¢7 . (2.6)
We introduce the corresponding intrinsic vectors,
e =2,"1"%, ,
e n=2,"%r,2+a% " (sinf)'a; . @7

We note the following: When » -, , b; becomes
the usual null vector normal to the horizon Z,

1%, =b;=9,+a(r, 2+ a’rtey
or in covariant form [see Eq. (2.4) above],
ldx*=a"=3% (r,2+a%)tdr .

Therefore b and b;, become tangential to the
horizon and we have

b; =€, ,

(2.8)
bs=e)* Vi »
of = @ ,

(2.9)

au::w(w) -V .
In these formulas we have introduced the quantity
Viey=V'® =asinfz -1/2 (2.10)

which can be interpreted as the rotational velocity
of the horizon.

Indeed the null generators of the horizon I =dx/
dv=9,+ Q8 [ where @ is the angular velocity of
the horizon which is a/(7, %+ a?) for the Kerr®
geometry and - g,z/255 in general'®] are tilted with
respect to the time-translation Killing vector 8,
and V¢®) is a direct measure of the tilting of I in

the following sense: During the time dv (as mea-
sured at infinity) the displacement dx =1dv acquires
a transverse component d¢ =Qdv whose corre- _
sponding length (as measured locally) is gw” 2d¢
=Qgy3'/2dv and the ratio (local length)/(global
time) is Qgz;*/? which is precisely V¢?’. (We can
also notice that V(¢ =g, 1/2)

Another phrasing would consist in saying that the
four-vector V=1 - 8, represents the three velocity
of the horizon (with respect to 8,), and the space-
time length of V' =Q8y is precisely V¥,

It is interesting to note that the maximum value
of V¥ is reached when =47 and a=M (i.e , at
the equator of a maximally rotating Kerr hole)
and is equal to one. It is tempting to conjecture
that this property may hold for a general black
hole.

In the following we are going to make projec-
tions of tensorial quantities on the forms « and
vectors b for four-dimensional entities and on the
forms w and vectors e for two-dimensional en-
tities. (For instance V{? is just the geometrical
component of the two-dimensional Ve =Q.)

III. TANGENTIAL ELECTRIC FIELD
AND NORMAL MAGNETIC INDUCTION

Given an electromagnetic test field F,, regular
on the future horizon H we define the tangential
electric field and the normal magnetic induction
by the restriction of the form F =3 F ,dx°Adx® to
the horizon »=7,. Namely,

F=(Fy,d0+Fydp)adv+Fy;doa dg |

which canbe written after projection on the basis w,
e

F= (E(o)w(‘”-l-E( 0 )w(w Na dv +B, W@ 0 ,

(3.1)
where
B4 =F,=Z,""/Fy, ,
E ,y=F (4y,=Z, 7,2+ a®) }(sind) 'Fy, , (3.2)

B, =F 4y o) =(7,2+0a%)}(sinb) 'F; .

If the field is stationary we shall have the result
that the tangential electric field E, is the gradient
of the potential 4,

E =E@gw®+E 0w =dA, . (3.3)

IV. SURFACE CURRENTS

From a phenomenological point of view it is
convenient to introduce a surface charge density
and a surface current on the horizon. The
heuristic justification for such definitions is the
following: There exists a four-current
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J%v, 7,0, @) which is defined and conserved all

over space-time. However we want not fo consider

what happens inside the black hole (» <7,). Yet
some charge and current can go down the hole and
disappear from the region »>7,. Therefore if we
wish to keep the charge and current conserved in
the region »>7,, we have to endow the surface

v =7, with charge and current densities. Mathe-
matically the problem is the following: Given

J%w, 7, 8, ) such that J% =0 find a complementary -

current j° with support ony =7, suchthat J°Y (r - 7,)
+4j® is conserved, where Y is the Heaviside func-
tion. This problem is very easily solved by noting
that the conservation of J is ensured by Maxwell
equations J° = (47)"'F®,,. Replacing F* by

F®Y (v —»,) we get the conserved current

JY (v — 7,) +j* where j° = (47)'F*"6(r —7,). It is
convenient to use a Dirac distribution 5, on the
horizon normalized with respect to the time at
infinity » and the local proper area dA such that,

ff(’l),’i’,G, @)GH G(v_yo)gllzd«;x

= fH Fwy,7, ,0,P)dA .
One easily finds
8y =(r3+a®)z8(r-7,) . (4.1)

Hence we can write the complementary current
7%, with support on the horizon, as

j*=K%y, , (4.2)
with
K'=(4m)"'3, (v,2+a®)'F¥ . (4.3)

We have thus defined a surface four-current
density K* which can be decomposed into a surface
charge density o (such that f”odA yields the
total charge on the hole) and the geometrical com-
ponents of a surface current density 'IE,

0=K?,
K® =3 1/2g8 (4.4)
K9 =%, -1/2(r, 2+ a?) sin K° .
These quantities satisfy the following conserva-
tion law on the horizon:

g%dA+dK*=Jf dA (4.5)

with
K* =K(0)w( 0) _K(wz)w(é)
=(7,%+a® sind(K®dp - K *d6) ,
I =(J%a)), =2, (r,?+a®)"J7 ,

and the symbol d denotes exterior differentiation.

V. OHM’S LAW

We are now in position to exhibit a relation be-
tween the fields and the currents introduced above
which can be thoughtof as Ohm’s law for a rotating
black hole. It is sufficient to consider the compo-
nents F% =Fj; and F%* =F4; of the electromagnetic
field in the basis (a,b). Using Egs. (2.8) and (2.9)
connecting @ and b to w,e, and I =3 ,+a(r, >+ a?)" :h
and taking into account the definitions of the veloc-
ity, fields, and currents on the black hole we
easily get

E,+V, B, =41K®
E,y=41[ K — V()] |

(5.1)

This can be written in a self-explanatory two-
dimensional vectorial form, which is valid in-
trinsically on the horizon

E+VxB, =41® - 0V) . (5.2)

- Equation (5.2) has precisely the form of the non-
relativistic Ohm’s law for a moving charged con-
ductor of surface resistivity 4m =377 ohms. This
result constitutes a clear confirmation of Carter’s
assertion' that a “black hole is analogous to an
ordinary body (with finite viscosity and electrical
conductivity).” This was conjectured starting from
the equilibrium properties of black holes. The
analog of the viscous dissipation was described by
Hawking and Hartle' in terms of the increase of
the area of the hole due to the surface shear of

the null generators of the horizon (tidal friction).
The dimensionless coefficient of viscosity was then
a number of order unity. '

More recently Znajek” has interpreted the con-
tribution to the increase of the area of a hole
arising from an external electric circuit as a
Joule dissipation, the internal resistance of the
hole so introduced being of order unity.

We have shown here how it is possible to define
a conserved surface current on the hole so that the
vectorial Ohm’s law is satisfied.’? In the following
it will be found useful to introduce the notions of
the surface conduction current ¢ (the total current
K minus the convection current oV) and of the
“dragged-along” electric field E*,

C=K-oV, E*x=E+VxB, . (5.3)

We are going to show that this conduction current
not only enters naturally Ohm’s law, Eq. (5.2), but
allows one to express very simply the analog. of
Joule’s law.

VI. JOULE’S LAW

We can as usual'® define the heat @ dissipated
in the hole as
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2Q =(87) *kdA =dM- QdS, , (6.1)

where k is the surface gravity,!® Q is the angular
velocity, and dA, dM, and dS, are the increases
in, respectively, area, mass, and angular mo-
mentum of the hole. The total energy flux into the
hole is given by an integral on the horizon'*:

M=dM/dv=+ f T,rg'/%d0 dG
‘H

= f Tl,dA (6.2)
H

- where T, is the test energy-momentum tensor at
the horizon.
The angular momentum flux is

§,=ds,/dv=- fT;”g”zded(;)
H

=— f T3,dA . (6.3)
H
Hence we get the heat production as

¢=01-95,= [ (T,,+0T;,)1dA

H
= [Tyl . (6.4)
H
In the case of an electromagnetic field we have
on the horizon,
T, 1= (4T 'F  F,Cl°0° . (6.5)

Projecting onto the tetrad (a,b) only the 6, ¢
components contribute. Hence we find easily the
Joule’s law,

§= [ 4n@yaa . (6.6)
H
The integrand in Eq. (6.6) canbe written in different
forms,
4n(C)*=(4m)- (E*?2=E*.C
=(E+VxB,) - K-0V) . (6.7)
Developing the last expression we find
o= [ B-Raa- [ (GE+KxB,)-Vaa,
H H
(6.8)

\yhich corresponds to the above splitting of é in
M and - .Qé,. In other words this means that we
can express directly the torque S‘z on the black
hole as due to a Laplace-Lorentz force on the
surface charge and current densities:

3.= [ (E+RxB,)-(V/0)a4, (6.9)
H .

with a “lever arm”
|R|= lV1/Q=Z:1/2('r+2+a2)sin9 .

VII. A SIMPLE EXAMPLE

As an illustration of the preceding concepts let
us consider the solution describing the insertion of
a rotating black hole in a linear current flowing
along the z axis (the axis of rotation of the hole)
from +e to —«. In fact, because of the idealiza-
tion of infinitely thin electrodes the hole will op-
pose an infinite resistance to the current, there-
fore we are going to consider the case of a total
current I flowing from spatial infinity along the
conical surface 6 =6, to the “northern” polar
circle 6 =6, of the hole and then flowing out to
spatial infinity along the “southern” conical sur-
face 6 =60,. In the limit 6, -0 and 6,- 7 we get the
linear current alluded to above. Anyway the solu-
tion here presented is valid whatever the values of
0, and 0, are. Evidently we mean by positive cur-
rent flowing out of the hole a stream of negative
charges physically flowing into the hole. Such
currents are needed to get a stationary solution
without any charge accumulation onto the hole.

Mathematically the solution is a Robinson null
field'® which can be written as

F,+%F =@ (I my—lym,) , (7.1)
where 7 is the ingoing principal null congruence,

%, =9, , (7.2)
and where

r;z“aa =2"1/2(y+{acosf) !
x [0+ i(sind) *9; +iasinfd 3] . (7.3)
Following Fackerell and Ipser'® we define
®,=- (v - iacosh)sinb ¢, . (7.4)

An evident solution to the equations obtained in
Ref. 16 is

&,=const=2%/7I | (7.5)

which yields our solution for a total current I
flowing along the z axis. Using the covariant com-
ponents of 7 and (easily obtained from the expres-
sions of the forms a) we get explicitly

F =2I(sing)"'d0 A (dv — asin®0 do) ,
*F =2Idgadv .

(7.6)

This solution is singular when sinf =0 but we get
a regular solution if we define the four potential,

A=2I[(Intan8,)dv + acos,dp], if 0<0<6,
A=2I[ (Intani6)dv + a cosbdg], if 6,<0<84,
A=2I[(Intan36,)dv +acosb,dp], if <6< .
(7.7
Hence the field F =dA will be given by Eq. (7.6)
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when 6, <0< 6, and will be zero otherwise. As
announced this solution describes the insertion of a.
rotating black hole between two conical electrodes
through which a total current I is flowing. It is
very easy to work out in detail the tangential fields
and the current flowing on the hole and we shall
content ourselves by noticing that the total poten-
tial decrease between 6, and 6, is

A 6,)-A6,)=RI, : (7.8)
where the total resistance R of the hole is given by
=21n[ (tan36,)/(tan36,)] (7.9)

in units of 30 ohms.
The energy delivered to the black hole is easily
computed as

M=RI?. (7.10)

This energy differs from the heat generated be-
cause of the presence of a positive torque,
8, =+2a(cosh, — cos6,)I? . (7.11)
This torque is easily interpreted as coming from
the impulsion which is delivered when one dissi-
pates some energy in a moving system, and in fact
although §,>0 one finds <0 and §<0.
Finally it is curious to note that the current dis-
tribution and the resistance given in Eq. (7.9)
would have been the same if the black hole had
been replaced by a metallic shell endowed with
a surface resistivity equal to 47. This condition
on the surface resistivity is well known in en-
gineering electromagnetism!” as ensuring perfect
absorption (because it realizes a perfect 1mpedance
matching with the vacuum).

VIII. EDDY CURRENTS

After having discussed the dissipative effects
associated with the insertion of a black hole in an
external electric circuit (internal resistance) we
shall describe the dissipative effects that arise
when a black hole is moving in an external mag-
netic field (eddy currents). Let us consider the
surface eddy currents generated by the rotation
of a black hole in an oblique uniform magnetic
field. The exact test solution has been given by
King and Lasota® using the components of the elec-
tromagnetic field on the outgoing Kinnersley tetrad
which is linked to our initial tetrad by

le=2(r2+a®Aa-tb; ,
Ny =— 3A(r2+a?)"1b; , (8.1)
Mmy=(2Z)*/¥(r - iacosd)(b;+ib;) ,
so that we can write the ¢X component as
@5 =F g lgmy
=2Y/25-1/2A%1 (2 + a®)(v - ia cosO)(Fyz+iFy;) -
(8.2)

Hence the “dragged along” tangential field T*
=4nC is computed from ¢¥ as

E¥) +iE¥, == 2""2(r?+ a?) 12" }(r +ia cosb)Apf ,

(8.3)
in the limit -7, , and the heat generated is given
very simply by

é= [ @n-@naa
H
=(8w)"! f l('rz+a2)'1Acp{f|sz . (8.4)
H

In our problem ¢¥.is given by®

+1
pX=-i(3mB2t/2 3~ Y5(v,0)R,,(r)][ 8, +i(sin6)*85]Y,,(6,9) , (8.5)

Mmael

where B is the strength of the field at infinity, y is the tilt angle of the field with the rotation axis (z axis),
the Y,,, are the usual spherical harmonics, R,,, is a hypergeometric function whose behavior near » =7, is

very simple, and where

@o=¢—3aM? - a®); 2 In[(r-7,)/(r-».)] . (8.8)
Hence, we get without computational effort,
E¥y,+iE¥,,=(r,?+0a%) 'BaM siny[ Z,~*/%(r, +iacos6)][ cos(@ + a) - i cosf sin(p + a)] , \ (8.7)
where « is defined by sina=a/M.
Now it is trivial to compute the heat:
Q=[(r,?+a? 'BaM siny] zf[ cos?(@ + a)+ cos?0 8in* (@ + a)] (7, 2+ a®) sind do dp /47 ,
‘ (8.8)

Q=2(BaM siny)?/(r, %+ a?) .
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Here the dissipation is entirely due to the braking
torque S, because the energy flux in absence of ex-
ternal currents is given by

M:fﬁede=f(VAv) ‘Rda
= f_A,,(Voi)dA=o.

Therefore,
Q =- Qsz ’
which means that the z component of the torque is
(8.9)

From this result we can recover the complete
vectorial torque. Indeed, following Press,'® we
know that § is zero by symmetry arguments (the
9 direction bemg defined as normal to the plane
defined by € and B). Finally the last component
S is obtained by noting that we can create a uni-
form magnetic field near the hole by putting a
magnetic charge —Bv? at the point 7, 8 =y, ¢ =0
and letting » —«.'° The torque on the hole will be
opposite to the torque exerted on the magnetic
charge in the limit » —«.'® But the latter torque
can have no components along the direction 6 =y,
hence

§,=— 2 M(B siny)(aM) .

siny S'x+ cosy§,=0 ,
which implies from Eq. (8.9),

$,=+2M(B?siny cosy)(aM) (8.10)
so that we recover the result,®
=2M(ESxB)xB . (8.11)

Moreover in the limit of small a/M we can give
a very simple heuristic interpretation of the vec-
torial torque (8.11). Indeed the eddy currents are
given by

4m(Cp,+1iC,, y) =7 ~2aBM siny (cos¢ — i cosf sing)

which can be written as
41 =@ xB)xT , (8.12)

if we formally consider the horizon »=2M as a
sphere embedded in a Euclidean three-space T
=(x,y,2) where 7,0,¢ are polar coordinates. The
expression (8.12) describes precisely, as one can
easily check, the current that would flow on a
metallic shell (of surface resistivity 47) slowly
rotating in an oblique uniform magnetic field.

Then, not only can the vectorial torque (8.11) be
interpreted as due to the Laplace force on the eddy
currents E but it can be simply calculated by
introducing the “magnetic moment” D owing to the
currents 6,

B- [1txCaa . (8.13)

As the currents C are making loops around the
vector & X B, we find easily

D=1r'0xB. (8.14)

Thus we recover the well-known expression for the
vectorial torque,
S=DxB . (8.15)

Finally we can note that the magnetic moment
(8.14) leaves an imprint at infinity. This can be
explicitly seen using Pollock’s solution®: The
magnetic field at infinity contains a curl (»3D x¥%)
contribution which is not plagued with the same
ambiguity as the dipolar fields directed along the
preﬁexistent uniform field because D is orthogonal
to

We can conclude that we have shown the heuristic
value of considering the horizon of a black hole as
analogous to a thin shell of a good electric con-
ductor having a finite surface restivity equal to
4m =377 ohms.
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IR. Ruffini and J. R. Wilson, Phys. Rev. D 12, 2959
(1975). See also the contributions by R. Ruffini and by
J. R. Wilson, in Proceedings of the Fivst Marcel Gross-
mann Meeting on General Relativity, edited by R. Ruff-
ini (North-Holland, Amsterdam, 1977).

2T Damour, Ann. N. Y. Acad. Sci. 262, 113 (1975).

T, Damour and R. Ruffini, Phys. Rev. Lett. 35, 463
(1975).

‘R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron. Soc.
179, 433 (1977).

5D. Christodoulou and R. Ruffini, Phys. Rev. D 4, 3552
(1971).

T, Damour, R. S. Hanni, R. Ruffini, and J. R. Wilson,
Phys. Rev. D 17, 1518 (1978). .

R. L. Znajek, Ph.D. dissertation, (Institute of Astronomy,
Cambridge 1976) (unpublished).

8A. R. King and J. P. Lasota, Astron. Astrophys. 58, 175
(1977)

®D. Christodoulou and R. Ruffini, in Black Holes, edited
by B. DeWitt and C. DeWitt (Gordon and Breach, New
York 1973).
tog, Carter, in Black Holes, edited by B. DeWitt and
C DeWitt (Gordon and Breach, New York, 1973).
g, w. Hawking and J. B. Hartle, Commun. Math. Phys.
217, 283 (1972).

2As this paper was being prepared for publication our
attention was drawn to a work of Znajek [Cambridge
report, 1977 (unpublished)] where some of the results



3604 THIBAUT DAMOUR 18

here discussed were obtained using a different approach. by G. Goudet (Masson, Paris, 1959), pp. 702—~705.

133, D. Bekenstein, Phys. Rev. D 7, 2333 (1973). 8w. H. Press, Astrophys. J. 175, 243 (1972).

143, W. Hawking, in Black Holes, edited by B. DeWitt 9This has been explicitly checked when y=0 by R. M.
and C. DeWitt (Gordon and Breach, New York, 1973). Misra, Prog. Theor. Phys. 57, 694 (1977).

15y, ‘Robinson, J. Math. Phys. 2, 290 (1961). N This result was obtained in Ref. 8 and, independently,

18g, D. Fackerell and J. R. Ipser, Phys. Rev. D 5, 2455 in the slow-rotation limit, by M. D. Pollock, Proc. R.
(1972). Soc. London A350, 239 (1976).

1%See, e.g., G. Bruhat, Electricité, Tth edition revised



