
PHYSICAL REVIE% D VOLUME 18, NUMBER 10 15 NOVEMBER 1978

Quantum field theory in anti —'de Sitter space-time
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%e consider the problem of quantizing scalar fields propagating in anti-de Sitter space-time. This space-
time is static but not globally hyperbolic and hence the usual quantization procedures are inapplicable.
Nevertheless, we show that a consistent quantization scheme can be devised by carefully controlling
information entering and leaving the space-time through its timelike spatial infinity.

I. INTRODUCTION

The problem of quantizing a field propagating in
a fixed, but curved, space-time has been studied
at length during the last few years/ The subject
is clearly relevant to a study of quantum gravity
proper and in addition possesses substantial in-

trinsicc

interest as epitomized by Hawking's' famous
black-hole quantum radiation. Attention ha, s in
general been focused on linear field theories but,
even in these restricted cases, there is (at least
for most space-times) no unique quantization
scheme. Various approaches have been suggested,
but in this paper we will mainly employ the "cov-
ariant quantization" method in which the Heisen-
berg quantum fields manifest themselves in the
traditional way as operators defined on a single
Hilbert space. This method has its origins in
the work of Segal on quantizing arbitrary linear
systems. Segal's methods relied heavily on the
existence and structure of classical solutions of
the fieM equations. In the present context this
implies that the space-time manifold must be
globally hyperbolic in the sense of possessing a
spatial hypersurface on which Cauchy data can be
freely specified. However, many space-times do
not possess this property; indeed globally hyper-
bolic manifoMs are necessarily of the form R & Z,
where Z is a three-space, and are thus in many
respects rather uninteresting.

It was the desire to understand quantum field
theory in non-globally hyperbolic manifolds that
motivated the present paper. Anti-de Sitt;er space-
time (or "AdS" for brevity) is a famous example
of such a manifold. It possesses both closed time-
like curves and a timelike boundary at spatial in-
finity through which data can propagate. The latter
property is also possessed by the universal cover-
ing space ("CAdS") and is the prime cause of the
lack of hyperbolicity. Anti-de Sitter space is an
especially interesting example as it has arisen in
two other contexts recently, namely as the natural
background in certain supergravity models' and as
a rather unexpected solution to the f gtheory of-

II. PROBLEMS ASSOCIATED WITH ANTI-DE SITTER
SPACE-TIME

Although some problems of physical interpre-
taUon still remain, the formalism, at least, of
linear scalar field quantization in a static, globally
hyperbolic space-time~ is now well understood.

The aim of the covariant approach is to construct
a quantum field g(x) satisfying both the classical
fie J.d equation

[ +u(x)] $(x) =0

and the covariant commutation relation

[$(x),y(x')] =-isa(x, x').

(2 ~ &)

(2.2)

gravity. Indeed, it has even been suggested that
solutions of wave equations in AdS may be of re-
levance to the problem of quark confinement. ~

Since AdS is a homogeneous space of the group
O(3, 2), it might perhaps seem natural to adopt a
group-oriented approach to quantization. Such a
study has in fact been made by Fronsdal et al. in
a series of comprehensive papers.""However,
from our point of view the emphasis is not ideally
placed. Indeed the iole played by the timelike in-
finity is not readily discussed in this approach.
Note that even in the well-understood case of
de Sitter space-time, the group-theoretic SO(4, l)
treatment misses thermal radiation associated
with the event horizon of an inertial observer. 9

Thus we have concentrated our efforts on finding
an analog of the covariant quantization scheme by
coming directly to grips with the problem of con-
trolling information entering the space-time
through timelike infinity. In Secs. III and lv we
do this for massless scalar fields by conformally
mapping AdS into a genuine globally hyperbolic
manifold (the Einstein static universe) and show
that this leads to just three natural quantizatiog
schemes. Armed with this information we tackle
the massive field in Sec. V and develop an essen-
tially unique quantization. The results thus ob-
tained may be regarded as complementary to those-
found using group theory.
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()(x) = f 0(x, x')R„((x')dip(x'), (2 3)

and it is here that global hyperbolicity is seen to
be an' essential prerequisite.

One begins by finding a complete orthonormal
(in the sense defined below) set of positive-fre-
quency cia,ssieal solutions of the field equation
(2.1) of the form

f, (x) =exp(-i~, f)hl(x), 0)z )0. (2.4)

Here i is a time coordinate such that 3/gf is a
hypersurface orthogonal, strictly timelike Killing
vector field, and h&(x) are a complete set of func-
tions of the spatial coordinates only. The f& fOrm
an orthonormal basis of a Hilbert space X having
the positive'-definite Klein-Gordon inner product

In (2.1), is the d'Alembertian operator assoc-
iated with the background space-time, and a(x) is
a smooth q-number function which, if constant,
may be very loosely interpreted as the "mass
squared" of the field. The unique classical com-
mutator function G(x, x'), defined as the difference
of the advanced and retarded Green's functions,
evolves classical Cauchy data specified on a
Cauchy hypersurface p according to

((0)2 (gl)2 (t2)2 (g3)2+ {g»)2 K 1

in a five-dimensional space with metric

ds'=q~„'~id) dgs

(d(0)2 (d~l)2 (dg2)2 (d)3)2+ (d~»)2

(2.9)

(2.10)

AdS is a pseudo-Riemannian space of constant
curvature K, related to the Rieci scalar curvature
by

The B~ and 8& are interpreted as annihilation and
creation operators on the Pock space, constructed
in the usual way as an infinite tensor product of
simple-harmonic-oscillator Hilbert spaces. The
Fock representation is almost inevitably used in
these circumstances, since when it exists it pro-
vides the unique quantization for which the spec-
trum of the Hamiltonian operator (the generator of
time translations) is positive definite.

The Hilbert space 3C automatically carries a
unitary representation of the time-translation
group. One might further require that any other
isometrics of the background space-time be placed
on the same footing in this respect.

Anti-de Sitter space-time" (AdS) may be real-
ised as the four-dimensional hyperboloid

B(a)p) —= 2 a+ 8- 33do'2
7 p K =R/12 (2.11)

=i a*8 P v'-g d x, . ~, HX
g= const

(2,5)

We use the conventions
I

z=g~'a „.„, (2.12)

which is independent of Z by virtue of the field
equations. For convenience Z is often chosen to
be a surface of constant t .

The f& are also required to satisfy

[fg (x)fj*(x') fj (x)fq (x')] =—iG(x, x-') . (2.6)

If now the real classical field is expanded as

(i)(x) =Q [a, f, (x) + ap fl4(x. )], a~ ~ e (2.7)

and the a~ are promoted to the rank of operators
c& satisfying

[az, a2] = [ag, a42] =0, [a&, a2»'] = h6», (2.8)

then the resulting Hermitian field operator, (t)(x),
will necessarily satisfy (2.2).

0 0~
t re =~pv~) —'" (2.13)

and signature (+, —,—,-), with the result that K
is positive.

The isometry group of AdS is O(3, 2) which is
simply the "Lorentz" group of the five-dimensional
embedding space. In addition, the conformal group
is O(4, 2), as for Minkowski space, which is of
relevance when considering conformally invariant
field equations.

AdS has the topology S' (time)x R (space) and
hence contains closed timelike curves. "Unwrap-
ping" the 8' gives the universal covering space
(CAdS), which has the topology of R» and contains
no closed timelike curves.

For our purposes the metric of AdS, or t-AdS,
is most usefully written using the following para-
metrization:

$0=K ' 2cosv seep, $' K 'i2tanpcosg, t'=K 'i2tanpsingcos(((),

$3=K ' t )2p asi)gsninps, $»=K ')2 sins seep,

ds2 =K ' sec'p[dT' —dp' —sin'p(dg2+ sin2gd)2)], 0&p&v/2, 0&8&v, 0& (|)&2v.

(2.14)

(2.15)
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FIG. 1. Penrose diagrams for (a) anti-de Sitter
space-time (top and bottom surfaces identified) and

g)) its universal covering space-time. See text for
discussion.

For AdS -m &v &m with ~= -m and 7 =w identified.
For CAdS -~ & y & ~.

These dimensionless coordinates cover the whole
of AdS and CAdS, except for the usual polar-type
coordinate singularities.

In this coordinate system, spatial infinity has
finite coordinate values (p = v/2) and AdS and CAdS
are conveniently represented using Penrose dia-
grams, '0" as in Fig. 1. The coordinates 8 and p
are suppressed. The null lines at +45' are drawn
to clarify the conformal structure; a light ray
crosses AdS within half the natural period. Some
timelike geodesics (y,y') are also indicated, show-
ing that in CAdS there is a residual effect of the
time periodicity in AdS. In fact timelike geodesics
emanating from any point in CAdS, which may be
taken to be 7. =p = 0 since CAdS is a homogeneous
space reeonverge at p =0 for ~=m, 271, 3m, ete.

These Penrose diagrams show clearly the two
striking features of the AdS causal structure
which preclude global hyperbolicity.

Firstly, AdS contains closed timelike curves,
a feature lost in CAdS as already discussed.

Secondly, the surface at p = m/2 (i.e., at spatial
infinity) is timelike, a feature shared with CAdS.
The effect of this is that information may be lost
to, or gained from, spatial infinity in finite coor-
dinate time. A change of coordinates is of no
avail here, since any time coordinate for which
this is not so will not be globally defined (and will
not give a manifestly static metric). It is this loss
and gain of information which has the most dis-
ruptive effect on the Cauchy problem, and the
closed timelike curves are in many ways a lesser
evil.

There is another related possible source of
trouble in this context, which is of a more tech-
nical nature. Rigorous quantization schemes in a
globally hyperbolic space-time attach considerable
importance to Cauchy data of compact support. As
a consequence of global hyperbolicity, the Cauchy
data on any Cauchy hypersurface will then possess
this property. However, it is easily seen that in
our case initial value data with compact support
on one spacelike hypersurface will in general
evolve in such a way that it becomes noncompact
on many other spacelike hypersurfaces.

Some of the difficulties mentioned above are
similar to those encountered when considering
quantization in a box in Minkowski space-time.
If the box is "transparent", information may es-
cape or be thrown in from outside, and the Cauchy
data within the box at a given time obviously does
not uniquely determine that at other times. In
fact one needs to additionally specify boundary
data on the surface of the box, leading to a com-
plicated, overdetermined system.

Of course when dealing with boxes one usually
ascribes special physical properties to the walls.
Typically the field, or perhaps its normal deriva-
tive, ' is required to vanish there, so that informa-
tion is reflected and not lost. The time evolution
of the Cauchy data is then unique. However, in
less simple examples great care must be taken
regarding the self-consistency of such mixed
boundary conditions. In any case, the "walls" of
AdS are at infinity and so the concept of reflecting
boundary conditions is somewhat obscure. This
will be clarified in Secs. IV and V.

Returning to the transparent box, one way of es-
tablishing a well-defined Cauchy problem is sim-
ply to accept that the box constitutes an incomplete
manifold, and require that Cauchy data be speci-
fied on a Cauchy surface of the surrounding space-
time, not just within the box. But unlike the box,
AdS is complete and there is no such surrounding
space-time. Nevertheless, an analog can be con-
structed, as explained in the next section.
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III. CONFORMALLY COUPLED MASSLESS FIELD-
"TRANSPARENT" BOUNDARY CONDITIONS

To clarify the analogy between AdS and a box in
Minkowski space, it i.s convenient to begin by
considering a massless scalar field, conformally
coupled to the background metric. The approp-

. riate wave equation is

(Cl-~6 B)g=(C3 —2K)/ =0.

The O'Alembertian operator, 0, is given by

Ug =g""V &B„g= — &(~g g"" „g)
1

in general, and

(3.1)

(3,2)

ff ~Clg=cos p, —cot'p cos'p —~tan'p —g + .
B
—~»ng& +Bq' Bp l Bp,sing Bg g B8 sin'8 B

(3.3)

in particular, for the AdS metric (2.15).
Now it so happens that CAdS may be conformally

mapped into half of the Einstein static universe~ '

(ESU), as depicted in Fig. 2. ESU may be realized

1

as the four-dimensional cylinder

(n')'+(n')'+ (n')'+ (n')' = & '

in a five-dimensional space with metric

ds2 = (d~o)2 (d7I1)2 (d~2)2 (d~3)2 (d~4)2

(3.4)

(3.5)

I

I X r
~Kg r~

r
I

„r' j

I

I
I r

r
I r 1

-x=O

- K=-2TK

I=~T(;

2

(e =Tt:) (e =o)

(b)

B = -6K. (3.6)

The ESU metric may be written in the globally
defined form

(dss)' =K ~[dr~ —dp2 —sin2p(dg2+ sin'8 dP~)],

0 & p &m, 0 &8 &s, 0-Q& 2m (3.7)

[compare (2.15)].
Our coordinate systems have been chosen to

make the conformal mapping as simple as possi-
ble. In fact

where 9, the conformal factor, is given by

(3.8}

0 = cosp. (3.9)

The field equation (3.1) is invariant under con-
form@, mappings provided the field is assigned a
conformal weight of -1, i.e.,

(3.10)

So if g is a solution of (3.1) in CAdS then g is a
solution of

and hence it has the topology R (time) & Ss (space).
(In Fig. 2, two spatial dimensions are suppressed
so that ESU appears as R && S'.) The scalar cur-
vature is

FIG. 2. (a) The Einstein static universe with two
spatial dimensions suppressed is the cylinder R, (time)

(space). (b) As above, cut along p= n and flattened
out, showing the images under conformal mapping of
CAdS (shaded) and AdS (double shaded, Z& and Z2' iden-
tified). The null lines at +45' are the support of G (g, o).
When restricted to the image of AdS they are the image
of the support of G +, 0)„. Note that identification «Z2
with Z2 is commensurate with the periodicity of G+(x,
0) (and all other nonsingular finite-norm solutions in
ESU).

(CF --', Z )ys =(a'+Z)q~ =0

in the appropriate half of ESU, where

eg sin p Pp ep

Bqz
sin8 ~6} 86}

(3.11}



18 QUANTUM FIELD THEORY IN ANTI-DK SITTER SPACE-TIME 3569

Now ESU is a globally hyperbolic static space-
time, and quantization therein is well known and
follows the pattern of Sec. II. A summary will
presently be given. %'e propose to use this quan-
tization, mapped back, to give an acceptable quan-
tum field theory in AdS (thus sidestepping the pro-
blem of how to fix the information passing into the
space-time).

Separation of variables yields the following col-
lection of positive frequency, finite 8-norm [Eq.
(2.5)] solutions of (3.11) defined on the whole of
ESU:

g~~~=N»e ~~~(sinp)'C" ~, (cosp)I'", {8,p) (3.1,3)

where e, l, m are integers such that co —1 & l & leI.
Here C~ (z) are Gegenbauer polynomials, ~' I'P(8, Q}
are the usual spherical harmonics and N» are
normalization constants.

The (~~ form an orthonormal basis for the Hil-
bert space X of all finite-norm, positive-fre-
quency solutions of (3.11), with inner product de-
fined by

B (aP)=( f , +"BPV g*d'x, -a, flER,
' T=eesii

(3.14)

[cf. (2.5) and noteg ~=1]. Hence all such solu-
tions are periodic in v with period 2m. This is
related to the fact that, in the absence of interac-
tions, a classical massless particle passing
through the point (v, p, 8, (t() will also pass through
the points (r 2+v np, 8, $) for n=+1, +2, etc. So
the spatial "periodicity" of ESU has induced an
effective temporal periodicity. Moreover, upon
restricting the solutions to-the image of CAdS,
and mapping back using (3.10), this periodity is
seen to be precisely that which allows the func-
tions to be defined on AdS.

In addition to the periodicity discussed above,
we a1so have

really is C". On the other hand if distributional
solutions are considered there is no such restric-
tion, but it is now necessary to include the bound-
ary at p = v/2 on one of the partial Cauchy surfaces
in order to obtain a complete specification of the
solution in terms of this partial data.

The quantization schemes in AdS that we are
developing employ only those solutions in AdS
whose ESU counterparts are everywhere C" solu-
tions of the wave equation (3.11). In the sense
defined above they are specified by their initial
value" data on the pair of surfaces f r = 0, p & v/2]
and fr =n, p& 'v/2] in AdS, denoted Z~ and Z, res-
pectively (see Fig. 2). (Note that with respect to
the AdS metric these are complete surfaces. } The
set of all such solutions generates a Hilbert space
SC~ with inner product

1

B~(nP)=i f, a*8 Pg ~@de
ZgM Z~

Of course by construction X 'is identical to X,
the Hilbert space of solutions in ESU equipped
with the gs-norm of (3.14). Indeed this norm
maps conformally into (3.16) with the integration
region being transferable from the single Cauchy
surface in ESU to the pair of surfaces in AdS
by virtue of (3.15).

To actually reconstruct the AdS solution from
its "Cauchy data" we require the analog C (x, x')
of the classical commutator function. Just as for
the basis functions this is obtained from the ESU
commutator function, Gs(x, x'), by restriction and
mapping back, using (3.10). Since AdS and ESU
are both homogeneous spaces, G~(x, x') and Gr(x,
x') are characterized by their behavior as func-
tions of a single variable g, with g' chosen to be
the coordinate origin for convenience. The com-
mutator function G~(x, o) is readily constructed
from the well-known Feynman function'3 (pro-
pagator) and may be written in the form

p(r, p, 8, p) =- gs{v +(2n+ l)v, v-p, v-8, @+v),

n = 0, + 1, + 2, .. .. (3.15)
K

Gs(xq 0) = ——5(cosp —cosy )e (y), (3.1V)

[A classical massless particle passing through
(z, p, 8, p) mustnotonly pass through (v+2', p, 8, (((()

but also through {v+ (2n + I)v, v p, n—8,—y + v' ). It
is more difficult tofind an intuitive classical explana
tionof the minus sign. ] Itfollows that the specifica-
gion of Cauchy data on the complete surface v = 0 is
equivalent to its specification on the pair of incom
piete surfacesfv =0, p& n/2] and/ ='v, p& v/2) inthe
following sense. If the solution is C"then so is Uje in-
jiueed data on these partial surfaces. However, the
converse is not strictly true since there is a eonpis-
tency condition on the boundary values of the par-
tial data to ensure that the induced solution in ESU

where

g'(v) —= sgn (sing-) .
Hence (noting cosp~ 0 in AdS}

(3.18)

Gr (x, 0) = —
4
—5(I —cosy- seep)c'( )7 (3.19)

The supports of Gs(x, 0) and Gr(x, 0) are concen-
trated on the light cones through the origin in ESU
and AdS respectively (see Fig. 2). This "Huygens
principle" is in fact a major reason for referring
to the field as "massless". "

The classical solution may now be constructed
from the "effective Cauchy data" on Z, and E2
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using

d(x) f ('d"(d, d')r, d(x')d"d gd x-'
E,uZ,

(3.20)

~
o(2 -«) .+4(1 -Ko) —-2K

I G(o) =o,
dg do' j

2
Oeo, —. (3.25)

0=+ (())~r~rr~r +)}'~r „rr~ )
(die

(3.21)

and so Z,UZ, will be called an "effective Cauchy
surface" for Ad8.

Now that the classical Cauchy problem is under
control, quantization is fairly straightforward and
follows the pattern outlined in Sec. II based on the
field operator.

The most general analytic solution of (3.25) is an
arbitrary linear combination of (Ko) ' and (Ko
-2) '. In Minkowski space the correct function
is uniquely determined by demanding that the real
part be causal. Although causality is an obscure
notion in Ad8 it is nevertheless reasonable to
require that the prospective Feynman function
must at least look locally like the Minkomski one.
With this in mind we take

where g r are given by

= Ager„=N, exP(-i(dry) cosP(sinP)'

XC"r' r(cosp}FP(8, P) (3.22)

(3.23)

and are regarded now as functions on Ad8. It may
be checked explicitly that the relation (2.6) sur-
vives the restriction and mapping back. This
completes the quantization since we have con-
structed a quantum field on AdS satisfying both
the field equation and our analog of the covariant
commutation relation.

An alternative way of completely specifying a
quantum field theory is to construct a Feynman
function. Hence it is of interest to try to do so
for Ad8, and in particular to see if any meaning
can be attached to the term "time order-ed pro-
duct" in a space containing closed timelike curves.

In Minkowski space the commutator function is
simply related to the real part of the Feynman
function, which in turn is the boundary value of a
unique analytic function of the Minkowskian invar-
iant distance, satisfying the wave equation with
a single 5-function source. To look for an analo-
gous function in Ad8 it is advantageous to intro-
duce the invariant distance o(x, x'). This is the
analog of —,'[(t —t')' —(x -x')'] in Minkowski space
and in fact is half the distance from s to x' in the
embedding space:

(3.26)

as the Feynman function for "transparent" bound-
ary conditions, which in fact solves the inhomo-
geneous equation (o real)

( -2K)&r((x) =-6'(x, x'). (3.27)

With this choice the commutator function G~ is
related to G~ by

C'(», 0) =2 ~'(~) ae C'(x, 0) (3.26)

[N.B. (3.18)] in close analogy with the relationship
in Minkowski space.

The way in which G~ can be related to a suitably
defined "time-ordered product" will be explained
in Sec. V, since our remarks will also apply to
the Feynman functions constructed in Secs. IV
and V.

Likewise, discussion of the extent to which the
Hilbert space 3C~ carries a representation of the
AdS isometry group will be postponed until then.
However, it is convenient to discuss the related
topic of conservation laws at this stage. In view
of the loss of energy, angular momentum, etc.
to infinity, as discussed in Sec. II, this mill be of
particular interest in Ad8. To begin with, some
remarks on the definitions of energy-momentum
tensors are in order.

The Lagrangian density for a "conformally"
coupled scalar field is

[cf. (2.10)]. In particular & =-'&-g [g""&r 488 —(p'--.'R)4'1. (3.29)

Ko(x, 0) =1 —cosa seep. (s.24)

The points x satisfying o (x, x') = 0 lie on the "light
cone" through x' = (w', p', 8', p'), while those
satisfying o(x, x') =2K ' lie on the "light cone"
through the antipodal point x~ =(7'+rr, p', rr —8', p'
+rr}.

Expressed in terms of o, (3.1) becomes gs = g z d4x = —,'T»~-I,.og""d4~. (3.30)

(A mass p, has been included for later use. ) There
are two distinct energy-momentum tensors asso-
ciated with this Lagrangian density.

(1) The variational (new improved'4) energy-
momentum tensor, obtained by varying the action
$o
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From (3.29),

T .=& 4&.4 l-g .[g"& 0&.4 -(V' .'-R-)0']

+R„„—+ —(g„„-v„s„)y .y2
"6 6

(s.sl)

&or p. =0, T„„has conformal weight -2 and is
traceless.

(2) The canonical energy-momentum tensor

t(d =s(dgs(t ~A~[& s~ksat (P 6R)k ] ~

(3.82)

This may also be obtained-by variation of S but
in this case 8 is treated as though it mere inde-
pendent of g"". Thus t» is just the same as for
a minimally coupled theory with mass (p2-R/6)'~2
(which may be imaginary in our case).

Let g, a =0, 1, . . . , 9 betheglobalKillingvector
fields on AdS such that E", corresponds to time
translation, $",-, t'2", and $," to spatial rotations,
and the other six to "Lorentz boosts" in the five-
dimensional embedding space. Define

is independent of y. Indeed these are the usual
conserved quantities for a globally hyperbolic
manifold. But now (8.15), along with the sym-
metry properties of the (~", allows P, to be de-
composed as

(8.38)

In other words, although in general the one hyper-
surface quantities Q, (r) are not v independent,
the sums Q, (r) +Q, (v +w) are v independent and
equal P„a conserved quantity corresponding to
a global conformal motion of ESU.

Thus the effect of the "transparent" boundary.
conditions obtained by conformally mapping into
EBU is to reccirculate the energy, angular mo-
mentum, etc. , lost to timelike infinity, resulting
in a well-defined, if rather unusual, conserva-
tion law.

In Sec. IV we wish to consider the possibility of
a "closed" quantization, analogous to a box in
Minkowski space with reflecting walls. This is
achieved in practice by demanding conservation
of the Q„ i.e., conservation of quantities inte-
grated over a single hypersurface.

To, ,"g 4'-g dP d&d
&= coast

(s.ss)
IV. CONFORMALLY COUPLED MASSLESS FIELDS-

"REFLECTIVE" BOUNDARY CONDITIONS

Q, (v'( f T,„(=,*"d.-d dPdddd .
&=comet.

(3.34)

P& «/2

The gs" are the vector fields induced on half of
ESU by the action of the conformal mapping on
the g,". When their explicit form is computed it
becomes clear that they can be extended to the
whole of ESU. While Po", . . . , P~" still generate
isometrics, the other six do not, but rather cor-
respond to proper conformal motions of ESU,
l.e. )

The Q, (g) will not be independent of y in general.
Since T&, has conformal weight -2 for a mass-

less field the integrand of (3.33) is conformally
invariant, and so (8.33) is equivalent to

In Sec. III a quantization was discussed which
involved the specification ef effective Cauchy
data on a-suitable pair of spacelike hypersurfaces,
and it was shown that most field-configurations
did not have conserved ener gy etc. as calculated by
integrating the appropriate density over one sur-
face.

In this section two alternative quantization
schemes will be obtained by finding those maxi-
mal subsets of the positive-frequency solutions
(3.22) which have the property that all finite
linear combinations

y(x) =Q [c„g y, (x)+c*g„g*,„(s)],

(4 1)
pddP]dd(P +pS(P)B(d —y g((& (s.s5)

where A,, =0 for a =0, 1,2, 3, A, g 0 for a =4, . . . , 9.
Nom

~dd(d (TE gs&) —0

by virtue of (3.35) and the fact that T» is trace-
less and divergence-free. Thus, integrating (3.36)
over the compact region between two constant q.

hypersurfaces of ESU and applying Gauss's theo-
rem, it follows that

(3.8 7)

give Q, (r) [defined in (8.38)] independent of r,
i.e., conservation laws based on a single hyper-
surface.

First note that from (3.36), (8.34) and Gauss's
theorem

(4 2)

where
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x, = T~, "4-g&ded
p= ~12

(4.3)

The requirement that Q, (r, ) =Q, (w, ) for all v,
and g, is equivalent to X, =0 (i.e., no net flux
across p =v/2). The minimal conditions imposed
on tbe c» by setting Xo= 0 (energy conservation)
is that for each l independently either all the

c f with cy odd must vanish or all the c, with
co even must vanish. No further restriction is
imposed by demanding X, =X, =X, =0 (angular
momentum conservation). Finally, on requiring
X = ~ ~ =X =0 the complete restriction is- that
either all the c, with w-l odd mush vanish or
all the c, with ~-l even must vanish.

Thus the requirement that all the Q, (g) be inde-
pendent of 7. decomposes the basis functions

g»„ into two disjoint classes which are listed
below together with their principal properties:

(1) p'»„=M2N» exp( i&or-) cosp(sinp)'

«p

FIG. 3. The "reflective" conformal massless case.
Single spacelike hypersurfaces, e.g. , Z&, form effec-
tive Cauchy surfaces. The null lines (at +45') are the
support of the commutation functions G (x, 0) and

(x, 0).

x C',+' (cosp) YP (0, P), (4.4)

—(seep g', „)-0 as p- x/2 .a (4.8)

(2) g» =M2N» exp(- ico7)cosp(sinp)'

xC2~', (cosp) F,"(8, p), (4.7)

where w =l+2n+2 and n is a non-negative integer,

0».(x~) t».(x)-
seep P'»„- 0 as p- n/2 .

(4.8)

(4.9)

Each class corresponds to a definite "parity"
under the point to antipodal point transformation
and a well-defined behavior at spatial infinity.

Let+' and $C' denote the Hilbert spaces formed
from tbe functions (1) and (2), respectively. It
is clear that all elements of ' or-+' have the
same definite parity in the above sense, and it
follows that a solution in one of these Hilbert
spaces is completely determined by its initial
value data on one spatial section, Z, say. Indeed
in view of this parity it is clear that the classical
commutator functions to be used for evolving data
on Z, uniquely forward in time are

G~(x, O) =G (x, O) -(-1) Gr(x„, O),

where w =l +2n+1 and n is a non-negative inte-
ger,

(4.5)

where G'(x, x') is the commutator function asso-
ciated with% . The support of G~(x, o) is indi-
cated in Fig. 3.

The 3e' norm may be defined in a natural way
as in (2.5) but now integrated over Z, only (hence
the extra normalization factor M2 in the P„, ).

Just as for Sec. III the quantization is imple-
mented without difficulty now that the Cauchy
problem has been taken care of. The relation-
ship (2.6) follows easily from its "transparent"
quantization counterpart, using the symmetries of
the commutator functions and basis functions.
The field operator

tI' —Z (~&or mn~im+ f4mn~im) (4.12)

1E
—0 as p- v/2

Bp

in one case and

(4.13)

satisfies both the field equation and covariant
commutation relation as required.

To make clear the analogy-with the box in Min-
kowski space it is only necessary to point out
that the image of CAdS (and hence AdS under iden-
tification) is effectively the interior of a box in
ESU with a "wall" at p =n/2. For the two schemes
of this section the ESU counterparts of the field
satisfy

(4.10)
g~-0 as p-n/2 (4.14)

= ——e'(7)[5(Ko) —(- I)'5(Kx —2)],
(4.11)

in the other. These are precisely the conditions
usually imposed on the boundary of a box with re-
flecting walls in Minkowski space, hence our des-
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G'(x, 0) =2e'(7) ReG'(x, 0), (4.15}

cription of the boundary conditions as "reflective".
Of course the boundary conditions on the AdS
fields themselves, (4.6) and (4.9), are more com-
plicated, and their meaning would be much less
clear in any naive approach to the problem not
involving ESU.

As in the transparent case, each of the two
commutator functions 6~ can be related to the
real part of its corresponding "Feynman" function
via

( —2K)G~(x, 0) = —5'(x) —(- 1)~5'(xg . (4.17)

The appearance of two sources in (4.17) is an-
other manifestation of the fact that in the "reflec-
tive" schemes effective Cauchy data can only be
consistently imposed on one constant v hypersur-
face.

The relationship between the three quantizations
for the massless scalar field in AdS is essen-
tially summarized by the decomposition of the
"transparent" one-particle Hilbert space in terms
of those of the reflective cages:

where
3C =3C'SX (4.18)

Consequently, the Fock spaces are related by

(4.16)

with o as in (3.24). The G~ satisfy the inhomo-
geneous equation

(4.18)

thus an n-particle "transparent" state may be
written, rather symbolically, as

ln&'=&. In&' I0&'+&, ln —»'. I»'" &. I»' ln&' (4.20)

where

(4.21)

From the point of view of either "reflective"
scheme this will in general appear as a mixture
of n, n —1, . . . , 0-particle states. In particular the
"transparent" vacuum corresponds only to pure
"reflective" vacuum states:

Io&'= I0&' lo&' (4.22)

while a typical one-particIe "transparent" state
would be interpreted in the K' scheme as a mix-
ture of one-particle and vacuum states.

V. MASSIVE SCALAR FIELDS

The equation of motion for a "conformally"
coupled massive spin-zero field in AdS is

[Cl+ (p' —2K)]g = 0, . (5.1)

Most of this section also applies to a minimal, ly
coupled field with mass p' =+ (p, '-2K)'~' for p,

'
~ 2Ã. The only significant difference is that for
the-minimal theory the canonical and variational
energy-momentum tensors are identical.

It should be noted however that for p, W 0 the
field equation (5.1) is no longer conformally in-
variant. Thus the method of conformal mapping
into ESU employed in Sec. III and IV is less ap-
propriate here (the corresponding ESU field equa-
tion will have a.position-dependent "mass ").
Nevertheless it still proves useful in providing a
concrete realization of spatial infinity and simpli-

fying calculations related to conservation laws,
as demonstrated for the massless case.

Vfe will begin by considering separable positive-
frequency solutions of (5.1) in AdS itself, which
will be of the form exp(-i&7)h(p, 8, P). To en-
sure that these are single valued in AdS, & is
required to be an integer. It is convenient to
write

p,
' ~K(M —1)(M —2), M &2 . (5.2)

(5.3)

where ~, l, m are integers such that l - Im I
and

+, (a, b; c;z} are hypergeometric functions, "
(ii) P~ =N~ exp(- ia&r)(cosp)"(sinp)'

x P""~"" '~" (cos2p)F, (8, @),

where w=M+l+2n and L, m, n are integers such
that l ~ Im I, n~ 0. The normalization constants
in this case are

n! I'(n+l +M)
r(n+1+ 3)r(n+M —,')

Then it is found that nonsingular, finite B-norm,
separable solutions can only exist if M satisfies
either (i) 2&M&2 or (ii) M=3, 4, 5. . . . So we
have something resembling a "mass spectrum"
consisting of a small continuum and an unbounded
discrete part. The corresponding solutions are

(i) g~~ =N~" exp(- i&@7}(cosp)"(sinp)'

x p', (—,'(l +M —&o), —,'(l +M+(u); —,'+l; sin'p}l™(8,Q),
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and the P„' '8'(N) are Jacobi polynomials. "
If, as in Sec. III we were to require that the

ESU counterparts of these functions be C" then
(i) would be lost. Nor would (i) occur if only the
minimally coupled case is considered. In any
event, our attention will be focused mainly on the
solutions (ii).

For each M=3, 4, 5, . . . all the solutions have
the same definite "parity" under the point to
antipodal point transformation, and hence so do
their linear combinations. In particular,

- E=O

yN(& ) ( I)NyN(&) (5.8)

%hen restricted to a single spacelike hypersur-
face the gN, form a complete set and it is found

that energy, angular momentum, etc. , are con-
served when integrated over such a surface.

It is clear then that for 3f odd these cases are
analogous to the massless reflective case (1)
[cf. (4.5)] while for M even they are analogous to
the massless reflective case (2) [cf. (4.8)]. Hence
the quantization of these massive fields may be
modeled on the quantizations of Sec. IV. The

form an orthonormal basis for the Hilbert
space KN with 8-norm (2.5) (integration over Z,
say). They also satisfy (2.6) where the classical
commutator function, which evolves "effective
Cauchy data" specified on a single hypersurface,
is given by

GN(N, O) = —~o(r) p(Ko) —( 1)N5(Ko 2)

+[8(-Ko) —8(2 -Ko)]PN', (1-Ko)j,
(5.7)

where P„'(z) denotes the derivative of the Legendre
polynomial of degree N.

The support of GN(x, 0) is shown in Fig. 4 and
reflects in a striking way the behavior of classical
massive particles in AdS, all timelike geodesics
through v'=p=O lying entirely within the shaded
regions. The fact that such geodesics reconverge
and do not reach spatial infinity also offers a
heuristic classical explanation for the lack of a
"transparent" quantization scheme for massive
fields.

In fact the massless reflective cases fit into

FIG. 4. The support of 6 ~Q, O} for a massive field.
It is regular within the shaded regions, singular on
their boundary, and zero elsewhere.

the present scheme in a very natural way. Com-
paring (4.4) with (5.4) and using Eq. 10.9 (21) of
Ref. 12 it is seen that the K' basis functions of
Sec. nr' correspond to I=1. Likewise, com-
paring (4.7) with (5.4) and using Eq. 10.9 (22) of
Ref. 12, the X' basis functions correspond to
M=2. This identification is clear cut, despite
the fact that M=1 and I=2 are indistinguishable
from the point of view of the wave equation (5.1).

Thus the quantization of these "special mass"
fields is completed and it is convenient to briefly
mention the relationship with the group-theory
approach at this stage. Fronsdal' has shown, by
group-theoretic arguments, that there exists a
collection of irreducible representations of the
universal covering group of SO(3, 2}, labelled by
a positive number M (E, in his terminology),
which correspond to solutions of the wave equa-
tion (5.1) in CAdS. Those which may be defined
on AdS correspond to I integral and reduce to
ours, but the representation is now only faithful
for SO(3, 2) itself. Thus KN does carry the desired
representation of the AdS isometry group.

The Feynman function generalizing those of
Sec. IV is found by solving (3.25) with a suitable
mass term included:

GN(N, O)=, q„,(1 Ko+fo) (5.8)

iK " 1 1 P„,(l —Ko }+ [ln(Ko' —f0) —ln(Ko' —2 —i0)]PN, (1 —Ko) y 2WN', (1 —Ko)Bw' Kv —iO Ko —2 —iO
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—iÃG"(x, x') =(0 (
T'Q"(x)P"(x')}(0)

where

T'Q"(x)g"(x')}= 8'(r, r'-) g"(x)P(x')

(5.11)

and

+[1 80(r, r)]P(x')j"(x)

8'(r, r') =- 8(sin(r —r')) .

(5.12)

(5.13)

In effect the time ordering is carried out using
the smaller angle between v' and v'.

VI. DISCUSSION

%e have constructed three quantizations for a
conformally coupled massless scalar field by
considering CAdS as being "part of" ESU. One
scheme is associated with "transparent" boundary
conditions, while the other two correspond to
"reflective "boundary conditions. It should be
stressed that these latter conditions are those
associated with a "box" only when referring to
fields propagating on ESU. This remark will be
important when attempting to quantize massless
conformally coupled fields on other more com-
ylex, static, non-globally hyperbolic manifolds.
The two reflective schemes generalize to include
a sequence of massive fields for each of which
there is a unique natural quantization.

In this paper the Feynman functions for these
schemes were all constructed from first princi-
ples. An alternative procedure would be to start
with the Feynman function for de Sitter space"
(we have converted this to the conformally coupled
field)

G (x, x') =
2 F(3 —M')F(M')

xg', (3 —M', M', 2; 1 —~K((7 +i0) (6.1)
where

M =-,' [3+(1+4','/K)'~']

where Q„(z) is a Legendre function of the second
kind and W~(z) is a polynomial of degree N given
by Christoffel's formula. " G "(x,0) satisfies the
inhomogeneous wave equation

[0+(p' —2K)] G "(x,0) = —5'(x) —(- 1)"6'(xg

(5.10)

and is related to the commutator function by
(4.15), where M and j are now interchangeable.

Despite the existence of closed timelike curves,
G "(x,x') can be related to the vacuum expectation
value of a "time-ordered product" in the following
sense:

and p,
' & 0 for de Sitter space. [(- p, ') is the de

Sitter (mass)'. ] Then try to analytically continue
in o and p' to their anti-de Sitter values. This
is straightforward for p,

~ =0, and yields precisely
the "transparent" AdS Feynman function (3.26).
The "reflective" massless AdS Feynman func-
tions are obtained as ana'ytic continuations of a
de Sitter Green function which solves the de Sitter
inhomogeneous wave equation with two sources,
one at x' and the other at the de Sitter antipodal
point to x'. The function (6.1) develops simple
poles in M' at the points 3, 4, 5, . . . , and so the
AdS Feynman functions, (5.8), for the allowed
masses of Sec. V are not related by analytic con-
tinuation to (6.1). Indeed, these masses are pre-
cisely those for which the hypergeometric equa-
tion (3.25) (with the appropriate mass term in-
cluded) has degenerate solutions. " Furthermore,
solving (3.25) for the AdS masses corresponding
to those nonintegral M' greater than 2, yields
Qreen's functions which might be interpreted as
belonging to a massive field propagating in CAdS.
However, demanding that such a function be a
solution of the inhomogeneous CAdS wave equa-
tion having the support of its real part entirely
contained within and on the light cone of x' [cf.
(3.26)], forces it to correspond to two sources,
one at x' and the other at x„'. This resulting func-
tion cannot be obtained by analytic continuation
from a de Sitter Green function enjoying similar
properties.

A further point of interest is that both the Min-
kowski and de Sitter space-times may be confor-
mally mapped into ESU in a similar manner to
AdS. Moreover the four-volumes of the images of
all three space-times in ESU are the same. The
solutions of the conformal massless wave equation
in ESU are periodic in such a way that they are
uniquely determined by their behavior in any of
the above images. Thus a basis for such functions
in ESU may be mapped back to form a basis in
anti-de Sitter, de Sitter, or Minkowski space.
Indeed, mapping back the basis (3.13) to Minkowski
space results in the "elementary states" of
twistor theory.
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