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Effect of the self-induced torsion of the Dirac sources on gravitational singuisrities
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The effect of the torsion induced by the Dirac field on gravitational singularities is investigated. An exactly
soluble example of the Dirac source is presented, which satisfies the energy condition for singularity
theorems in the Einstein-Cartan theory. The self-induced Dirac torsion appears to enhance rather than avert
singularity formation. The zero-mass limit and the neutrino limit of the energy condition for the Dirac
sources are also discussed.

I

I. INTRODUCTION

Recently, interest in- the Einstein-Cartan theory
has been revived With an expectation that the intro-
duction of intrinsic spin effects into general rela-
tivity via the torsion term may possibly avert the
singularity formation in gravitational collapse and
cosmology. " As is well known, the singularity
theorems' show under very general assumptions
that singularities cannot be prevented in general
relativity insofar as a certain energy condition is
met. In a recent paper, ~ Hehl, von der Heyde, and
Kerlick obtained an energy condition for singular-
ity theorems in the Einstein-Cartan theory

W= (0'~v —eg~„o'g )u u ~0
~

where o„„is the torsion-modified source tensor
in the Einstein-Cartan equation,

G„„=R~„—eg„„R= (8w G/c )(r„„,
and they have shown that all known cosmological
models which are free from singularities due to
the torsion effect violate the energy condition(1).
In a subsequent paper, ' Kerlick derived 8' for
the torsion-inducing Dirac field in the form

W= Z„„u"u"——,'mc'Py,

by using the modified stress-energy tensor for the
Dirac Field,

Kerlick's observation. The vanishing-mass limit
and the neutrino limit of the energy condition will
also be discussed. Because of the classical nature
of the theory, we confine ourselves to e-number
fields. As for the notations we basically follow
Ref. 5. The metric tensor g,„when expressed on
the tetrad basis takes the form q e

= diag(-l, 1,1, 1)
and the spin matrices satisfy y,y„+y„y„=2g„„;
the Pauli adjoint of a spinor field P is defined by
g= /~A with a matrix A such that At =A, (Ay, )t
=Ay„(Ay, )~ = -Ay„, and (Ay„y, )~ =Ay„y„where
y, =(v' g/4! }e-„„„yy"y'y' with ec», =l. Note that
our y"V„p is identical to y Viip of Ref. 5.

II. SPECIAL CLASS OF DIRAC SOURCES

The Dirac field P in the self-induced curvature
and torsion is known to obey the modified Dirac
equation~

y"v.g+ '~' (gr.r,p)r"r.p+ (mc/k)( =0, (8)

where I' = 8&Gh/c'. lt is not an easy matter to
solve this equation exactly, but one can talk about
the energy condition for a certain class of c-num-
ber solutions without knowing their explicit forms.

Consider a field P such that

v „g=A(pg)r„&+B(gr.g)r.r,g

+c(gr g)p+D(Ttr„r. g)r. tI+&r g,
&,.= ~„+Pc~'g,„(prier, g) (er"r.y),

where

(4) where A, B, C, D, and E are all real constants.
This field satisfies the Dirac equation (6} if

(5)Z „„= —Kc(V „gy„P—Py„V„g),
I

V~ being the covariant differential operator with
respect to the Christoffel connection. Analyzing
a position-independent solution of the torsion-mod-
ified Dirac equation, he made an observation that
the formation of singularities will be enhanced
rather than averted when the Dirac field is taken
as the source for the metric and torsion.

The purpose of this paper is to present a soluble
example of the Dirac source which does support

4B+ C+D=-3P/8,

(A. —B) (yq)+ E= -mc/(4k),

(8)

(8)

as is easily checked with the aid of'the identities

(10)

(11)

which are proven in the Appendix. The adjoint
relation of (I) is

v .0 = A(44}Vy.+BPy-.P)tr.y.
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C-P~.t)0+D(4&.&.4}A'
The constraint ( I) substantially simplifies the

problem. Substituting (7) and (12) into (14) readily
leads to

+ 2('~'+ C+ D) (4r, l'5e) (qY "r5$)]

+ ~c[C(V~&.4}Q~.4)+D(k.r.g) (gr.~.g) ] '~".
(14)

o..=@c[AQO}'+B(7».4)'+@%

+,~'(4&i&SH 9&"&.I)]g"
+ Sc[C(yr„g) (gr„P)+D(er.r.Ã (e~,~.4)] (13)

It is also easy to assess the integrability of (I).
Since the commutator of the covariant differential
operators when acting on g takes the form'

(V V„—V„V„)g= 4R»—~~y (15)

with y„=-,'(y,y, —y,y,), we see by computing the
left-hand side of (15) for (7) that the field in ques-
tion can exist in a space-time of curvature

R„„,.= 4(AB -BD+DA) [(qy„y,q) (qr p, g) g„. (gr—„r.g) (Pr,r.P)g..+ (gr„y.P) (7.r.l)g., (4r.r—.4) Q~.~.0)g.,]

+ 4[A'Ql}'+ B'(O'8)'+ 2A@N}+&'](g.,g, g..-g.,}, (16)

G„„=(12[A'(qq)' +B'(yy, y)' +2AZ(qy)+ Z']

—8(AB —BD+DA) (Py),y, y) (gy "y,P)]g„„
+ 8(AB —BD+DA) (gy„y, g) (gy„y~g) . (18)

The Dirac field under the constraint ( I) is there-
fore meaningful only when (13) and (18) are con-
sistently linked by the Einstein-Cartan equation
(2). This imposes further restrictions on the
choice of the parameters.

Now we take an example belonging to this class
in order to study the energy condition (1). In the
case where A =B= -D = —8 l and C = E= 0, the con-
ditions (8) and (IV) are satisfied, and (9} is met
only if m =0. Accordingly, (I}becomes

V,0= ~ [(44)W, +(7r g)r, X. (fr,W P)r,-]g .
(19)

It is obvious that the field of this type is a solution
of the Dirac equation (6) without a mass. The mod-
ified stress-energy tensor for this field, as fol-
lows from (13), is

o..= ~+«'(Pr, r.e) (g~"y.g) g..
+ 8+«'(yx„w, y) (yr„r,y), (2o)

provided that

C =0, 2(A —B)D(gg) —(B-D)E=O.

The condition (16) together with (1 I) in turn as-
sures that the constraint (7) is integrable. The
modified stress-energy tensor found in (13) is to
serve as a source to the Einstein-Cartan equation

(2), whereas the Einstein tensor resulting from the
integrability condition (16) is of the form

and the Einstein tensor (18) resulting from the in-
tegrability condition (16) becomes

(21)

which apparently equals the stress-energy tensor
(20) multiplied by P/Ic = 8w G/c'. Thus the field

P of the present choice (19), being integrable,
satisfies the Einstein-Cartan equation (2). Substi-
tution of (20) into (3) yields

W= .'Scl'[(qy„y—,q) (yy„y, q)u "I"

+ (8'&x.4) (7tr 'y. g) ].
In a frame with u"=(1,0, 0, 0), we obtain

8@«'[(8',y.p)'+ (p y,r.g) (pr "r.g) ]
:3

(4rp' 0)' (23)

which is evidently positive-definitebecause (gy~ys|t)
$s real for 0=1,2, 3. The result indeed supports
gerlick's expectation.

III. THE ZERO-MASS LIMIT

The example we have considered in the previous
section is concerned with a torsion-including
massless Dirac field whose presence could enhance
singularity formation. A question may arise as to-

whether such a massless example can be suffici-
ently representative of the torsion-including Dirac
sources. In the limit m -0, the Dirac equation
(6}takes on the form of Heisenberg's nonlinear
equation' defined in a Riemannian background; it
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becomes the neutrino equation only if the torsion
term is absent. Therefore, in the Einstein-Cartan
theory not all massless Dirac fields describe neu-
trinos. In fact, Heisenberg' looked for @11possi-
ble states of matter in the nonlinear character of
his equation without any presumed mass. The only
distinct role the mass term plays in the Dirac
equation (6) is to break chiral symmetry. It 1s con-
ceivable that the torsion term will generate a mass
as a consequence of the spontaneous chiral-sym-
metry breaking. Yet it seems unlikely that the
constant m assigned ab initio to each Dirac field
in the Einstein-Cartan theory plays any more sig-
nificant role than an adjustable parameter. The
value m =0 is merely an ordinary choice of the
parameter. However, the neutrino limit is some-
thing which has to be considered separately.

At a glance, the mass term in the expression (3)
for W appears to cause a negative effect on the
energy condition. However, we must notice that,
while P~g is positive definite, the bilinear scalar
gg can be negative and that the net effect of the
mass term is not always negative. If in a certain
case the negative effect wholly due to the mass
term happens to dominate, then the limiting pro-
cess rn-0 will act to shift the turning points of the
sign of O'. In this connection, it would be interest-
ing to take another look at Kerlick's example in a
nonrotating spatially flat cosmological model, for
which

3 GS
W= kmc'00+, (gy, y, g) (8 "y.p). (24)

As readily follows from (10) and (ll),

Qy, y.c) (cy'y. y) =(qc)" (qy. y)'= o. (25)

Therefore it is obvious that W~ 0 in the zero-mass
limit. Since PP may be negative, the positive-def-
initeness of W for nz + 0 is not immediately cIear.
The following consideration may be instructive
though it provides no general assurance of the pos-
itive-definiteness of W in (24) for m 0 0. Suppose

PP =-/Pat a certain instance. Suppose the mass
density p may be approximated by m„l gPlwith a
nucleon mass mN and

I (pl ~~
I (y5$I Then (24) can

be expressed as

not always be valid. If the super-relativistic ap-
proximation is employed as another extreme, then

@pl will assume a very Small value and the posi-
tive-definite spin-density term will dominate in
(27). Again we obtain W~ 0.

Finally we wish to remark on the neutrino limit.
The neutrino field may be characterized by the
two-component condition, e say p=iy, g. In c-num
ber theory, the two-component condition demands
not only the mass term to vanish but also the tor-
sion term to disappear. '~ As is evident from (11),
(+„y,g)y"y, g= 0 if and only if g=iy, g. This implies
that the c-number two-component neutrino field
mill ioduce no torsion effect upon itself. ' Fur-
thermore the disappearance of spin-spin interac-
tions reduces the Einstein-Cartan equation to the
original Einstein equation. In the tmo- component
limit, Kerlick's W of (24) vanishes. In contrast,
the example proposed in the previous section re-
duces to a special class of neutrinos whose stress-
energy tensor is of the form

o,.= &„„= 8~I'(4y-, 4)(4y. 4) . (27)

Simply taking the two-component limit of (22), we
obtain for this class of neutrinos

w= ,'a &'(4y—.4)(Py. 4) "~", (28)

which is, unlike Kerlick's, nonzero and positive-
definite. The nonvanishing mass limit of W indicates
that the torsion-inducing massless Dirac field con-
sidered in our example has indeed a proper neu-
trino limit. The neutrinos of this type would en-
hance singularity formation just as the electro-
magnetic fields mould. It may also be worth men-
tioning that the neutrinos with (27), which we have
referred to as a restricted class of neutrinos
elsewher e,"satisfy the Rainich- Misner-Wheeler
conditions for the null ehctromagnetic fields, "
and that an exact and explicit solution of the neu-
trino field slightly more general than that of the
restricted class has been found by Griffiths and

Newing. "
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(26)

This is positive for p& p and negative for p & p
where p =mm„c'/(6w GS') which is -10'4g/cm' for
m =rn~. In the limit m-0, the turning point p
shifts to zero and the negative region disappears.
Since p & p is the region pertinent to the gravita-
tional collapse, (26) suggests irrespective of the
limiting process that singularity formation cannot
be averted. The approximation adopted above may
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APPENDIX: DERIVATION OF THE IDENTITIES
(10)AND (11)

It is tedious but elementary to verify the iden-
tities (10) and (11) on the basis of a specific re-
presentation of y's. ' Here me derive. them in
slightly more general forms from the Pauli-
Fierz identity",
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Q y".sy".~=4~.a~~

where y"=(I,y„,iy, y„y»iy, ) .Using two four-

component spinors X and g, we write (Al) as

g (P'y"0)Qy"0= 4(7»X}QP,
A

or more explicitly,

(A2)

3PP&)QX —(&Py.&)Qy.x+ (&Py.&)Qy "X+&&Py.y.&)Qy "y.x l (&—Py.y.&)Qy"y"X
= 4QPX}H (A3)

where P and Q are arbitrary 4 x 4 matrices. Insomuch as (A3) is valid, the following identity holds true:

3(PPy $)Qy~X —(/PE)QX+ ()Py y~g)Qy"ysX+ (PPy„g)Qy "X —2($Py„y„y $)Qy"y "y X= 4((Py X)Qy g.

Set g= X. Then (A3} less (A4) yields

PPy, y.0)Qy "y"0= (P'y „y.r,4)Qy "y"y,0,
whereas (A3) and (A4) plus (A5) results in

(A4)

(A5)

(A6)

2(PPyqg)Qy "t/i+ 2(gPysg)Qy "ysg —2(gPy„y„g)Qy "y"g —2(gPy„y„y5$)Qy "y"ysg+ ($Py„y„y„g}Qy"y"y"g= 0.
(AV)

2(PPg)QP+ 2(gPy~g)Qysg —2(PPy„g)Qy" g —2(gPy„ymca)Qy" ysg+ (gPy„y„g)Qy"y "/= 0.
The resultant identity (A6} should hold even if P and Q are replaced respectively by Py„and Qy". Doing
these replacements and summing over X, we obtain

The last term on the left of (AV) can be expressed as

(PPy&y „y.4)Qy "y"y"0 = 10(P'yak) Qy'0 6(P'yi—y&4) Qy "y,4

with the help of the relation

y,y„y. =(~ g&4~)e&-.y'y. +g y. g..y. +-gi.y. .
As a result, (AV) becomes

6(PPyil) Qy "0 2(P'y—„y 0)Qy "y,4 (8'yiy.—P) Qy "y"0 (SPY'„-y&4)Qy "y'y, 4 = o

Correspondingly, the following identity should also hold:

6(8'yiy, k)Qy"y, 4 2(8'y&4-)Qy "0 (PPyiy„y-, t)Qy "y"y,P (8'y&y„l-)Qy "y "0=o

(A8)
'

(A9)

(A10)

(Al 1)

While (A10) minus (All) equals

CPPy&4)Qy "0=(SPY,k)Qy "y.4,
(A10) and (All) with (A8) give us

((Py,y.()Qy "y'0= (PPy 4)Qy "0

+(F&y,y. t)Qy y.4

(A12)

(A13)

Finally, making use of (A12) and (A13) in (A6),
we arrive at the identity

pPy„y)Qy "0=(0Pe)Q0+ (9'y.0)Qy, o, (A14}

which we have referred to as the Pauli-Kofink re-
lation. '0 In particular, with P=Q=l, (A14) re-
duces to (10) and (A12) to (11).
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