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General-relativistic nonlinear field: A kink solution in a generalized geometry
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A time-independent spherically symmetric solution of general-relativistic nonlinear field equations is
obtained. It is shown that the nonlinear negative-energy scalar field has a localized solution with a positive

mass. W'heeler's wormhole-type geometry is generated by the field. It can be regarded as a three-

dimensional extension of the usual kink solution on the generalized spatial topology, connecting the two
vacuum states from one asymptotically flat space to the other through the Rosen-Einstein bridge. The
solution is shown to be completely singularity-free.

I. INTRODUCTION

The recent development of a nonlinear field
model of elementary particles presented an in-
teresting viewpoint on the origin of their mass
spectrum and structure. A stable and static
solution of the nonlinear field equation has been
shown to have a particle character and is called

cckink or ccsolj
The simplest version of such theories is the

so-called Xp model. For the one-dimensional-
space case, its kink solution has several inter-
esting properties. One of them is that it is topo-
logically separated from the vacuum state so that
it is considered to represent a fermion in this
space. ' The idea of defining a fermion as a state
topologically distinguishable from the vacuum is
very interesting and useful, for example, to
explain the conservation of baryon numbers.

However, unfortunately, a simple extension of
this model for a three-dimensional case encoun-
ters a difficulty. The pseudovirial theorem"
does not permit a static, nonsingular, spherically
symmetric solution if the potential term of the
scalar field is defined ta be positive definite.

On the other hand, the formulation of the pro-
blem in the view of general relativity brings a
new feature to the theory. ' The point is that
the effect of general relativity alters the curva-
ture. of the spacetime as well as its topological
structure; hence, the pseudovirial theorem is
also affected.

In this pqper, we show that the general-rela-
tivistic treatment permits the kink-like solution
of the simple Xp' source-free Lagrangian. This
is possible only if we modify the topological
structure of the space geometry.

In Sec. II we briefly review why the non-general-
relativistic XQ4 theory does not have a three-di-
mensional kink solution. We then show in Sec.
III how the effect of general relativity alters the
situation. In Sec. IV we show some numericaj.
examples of solutions and discuss the consequen-

ces. The geometry of the spacetime is also
investigated.

H. FIELD EQUATIONS

ds' =e'" (ds')' —s'"(dr)'-r'dA' (2)

where g and n are functions of radial coordinate
r.

Together with the definition of line element (2)
Einstein's equation reduces to the following equa-
tions~"

2m, =or'S, '+ I —(1 —sr~ V)s' (4)

S»+(q, —a, +2/r)S, -Se'"dV/dS' =0, (5)

where the subscript 1 means the derivative with

respect to r. In the weak gravitation limit, the
equivalence of energy source and gravitation
source gives the pseudovirial theorem written
as

&S,'&+ 3& V& =0, (5)

where &A& means the total space integration of A, ,

(«0=4«f «'d«A.
0

Thus it is cJiear to see that the above pseudo-

We write the Lagrangian density as

gZ =(-g) (3R+e [S„S g"s- V(S )]), a'=SAG/c

(1)

where g is the determinant of the metric tensor

g„„,R is the scalar curvature, S is a scalar
field, and the notation SI denotes the derivative
of S with respect to the coordinate x~. V is a
potential depending only on S', and e is the signa-
ture of the field S, and takes the value +1 (usual
field) or -1 (ghost field).

For a static and spherically symmetric case,
we may choose the line element as
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virial theorem does not permit a nonsingular
static and spherically symmetric solution in the
weak gravitation limit if V is positive definite.
The situation is found to be the same even in. the
nonlinear limit of gravitation provided that the
metrics are nonsingular everywhere. 4

In this paper, we investigate the potential

(7)

where f and p, are constants. Then the classical
vacuum state of the field is given by $», =+f '.
Equation (7) is nothing but the usual A, Q Lagran-
gian term except for the additional constant 2 p'/f',
which is necessary to eliminate the gravitational
source at the classical vacuum state of S.

For the sake of convenience we introduce new

variables

(8)

(~)

(10)

(11)

From Eqs. (3)-(5) we get

y" +2y'/x = —[y(1 —y') +y'f '(q/x' —exv)] e',
(12)

q' =ex'(y"e '"+v),

analysis of singularity, we find that a consistent
solution is possible only if e' ~(x-x,) '. This is
nothing but the Schwarzschild-type singularity.
However, it is well known that such a singularity
in the metric does not imply any physical singular-
ity of the spacetime structure. In Sec. IV we will
discuss the geometry of the spacetime implied by
our metrics. The behavior of y and q near x =@0

is given as y ac (x -x,)' ' and q = const, respec-
tively.

Then we write

(»)
(16)

where p=—x-x„.and Z and E are analytic func-
tions of p near p =0. In order to maintain the
order of singularity, we should have E(0)e 0.

Inserting Eqs. (15) and (16) into Eqs. (12)-(14),
we get

2 I-a -exv1 1 1 f~
p' 4 2f '& (x'

(18)
where a prime denotes d/Cx, and

e-'" =1-f-'q/x, v =-,'(1-y')'. (14) q' =ex'[g(Z+2PZ')'&+v1~

Note that in the limit of f -~ with finite q,
Eq. (12) tends to the non-general-relativistic
yy4 model, and hence there is no nonsingular
solution which satisfies the boundary condition.
To alter the situation, the second term in the
parentheses of the right-hand side of Eq. (12)
should be predominant somewhere. However, it
was found that the smallness of f alone (strong
gravity) is not sufficient to have a, consistent
solution as long as metrics are nonsingular. In
the following section we show that the generaliza-
tion of the spacetime topology permits static
nonsingul. ar solutions for y.

HI. NONSINGULAR SOLUTION

with

(2o)

1 1
4 2f'Z ilpP

(21)

Z(0) 4 2fa I& 2 exv)

Z 1' i(a
+ +,++ 2 g

—6XV Z =Opz
(22)

v =—'(1-pZ )

The requirement of analyticity of Z and E at
p = 0 (x =xo) gives the following boundary condi-
tions:

As stated before, the set of Eqs. (12)-(14) does
not have a nonsingular solution which satisfies
the boundary condition, i.e., iyi tends to unity
for large x, as long as the metric potential o. is
finite everywhere.

Now let us drop this condition. so that e' may
have a singularity at x =xo. By a simple order

( 1
f' »jr=0

A straightforward but tedious algebra gives

q(o) =f'»„ (24)

(2 5)
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x,f 'Z'(0) = —2e. (26)

From Eq. (26) we conclude that the positive-sig-
nature case (e =+1) has no solution. For e =-1,
we get

the typical dependence of q and e '" onx for the
case of f=l.

The asymptotic value of q, q(~), is related the
mass M of the system by

'(0) = f'—
~

=2
Xo

(27)
fmc 2—q(),
2p. 6 (29)

E(0) =—(2+x,'f ').1

0
(26)

The firstderivative of 8 at p=0, Z'(0) is also
calculated from Eq. (22) as a function of x, and f.

Thus for a given value of f, solutions are com-
pletely determined by specifying x,. On the other
hand, the boundary condition y- 1 for x ~ sets
an eigenvalue problem for x,. Note that if this
boundary condition is satisfied, the metric e'
automatically presents the Schwarzschild asymp-
totic behavior e'"-(1-2m/x) 'for x ~, where
m is a constant related to the mass of the system.
Thus, our potential Eq. (7) completely specifies
the mass without introducing any constant of in-
tegration.

IV. SOLUTIONS AND DISCUSSION

Equations (17)-(19) together with the boundary
conditions at x =x, can be solved numerically. For
a given value of f, the value of xo for which y sat-
isfies the boundary condition at infinity is uniquely
determined. In Fig. 1, three solutions of y for
different f values are shown. In Fig. 2 we show

where q(~) is a function of f. In Fig. 3, we plot;-
ted the quantiQ [f 'q(~)]''versus f We. note
that this quantity tends to zero linearly so that q
behavesasq-(f-fgmnear f=f0=0.645. For f
&f„ it seems that there is no solution, although
we failed to confirm this because of the computa-
tional difficulty. In this figure we also plotted
x,/f' as a function of f For . large f, it is found
that x, behaves as x,= 1.30f'.

The metric potential q can be obtained from the
equation

n'= f ' e' —I&+x~I-xy" . (3o)

By virtue of Eqs. (21) and (27), we verify that

q does not have a singularity atx =xo. Taking the
boundary condition@(~) =0, we get

'g= — f ~
I

2+xvI-xy' dx.

The time component of the metric e'" is also
shown in Fig. 2. Because of the nonsingular be-
havior of the metric g ".at x =xo, the structure of
our spacetime is different from that of the
Schwarzschild solution. The line element near

4.0—
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Pro. a. Isohxtions of y forf=0.77, 1, and 1.25 plotted versus x.
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FIG. 2. The function q and metrics e ~~ and e" plotted as functions of g for the case off =1. The asymptotic vajue
of q, q(~), defines the mass of the system.

FlG. 3. Quantities (q/f 2)~~ and go/f ~ plotted zezsus f .
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r =r, =x,/p has the form

ds'=A(dx')' —[(1 r-,/r) 'dr'+r'dQ']

rather than

ds'= (1 -r,/r)(dx')'

(32)

-[(1 r,/-r) 'dr'+r'dQ'], (33)

where A is a constant (0&A& 1). For r»r„ the
line element has the asymptotic form

ds'= (1-2m/r)(dx')'

—[(1 -2m/r) 'dr'+r'dQ'] . (34)

u =p

or

x =xp+u

Then the line element is written as

4 -2
de =e n(dx ) — (du)2 -r2dQ

E(p)
Since e'" and E(p) are nonsingular and have no
zeros for 0 ~ p & ~, the line element is always
regular.

On the other hand, the radial geodesic equa-
tions are given by

(38)

In spite of the above difference, it is easy to see
that our space geometry still exhibits a topologi-
cal structure similar to the Rosen-Einstein
bridge' ' on the spacelike hypersurface x'=const,
i.e., two asymptotically flat spaces connected by
a bridge" of radius r, . Thus the square root of
the variable p in Eq. (1„5) is equivalent to the
singularity-free coordinate u of Rosen and Ein-
stein which was used to describe the topology of
the Schwarzschild geometry. More specifically,
we define

u& 0 and u& 0. Thus each point of spacetime is
specified by u rather than by r. For a given r
there correspond two distinct spacetime points,
u& 0 and u& 0. Both u& 0 and u& 0 spaces are
asymptotically flat, and are connected to each
other by a Rosen-Einstein bridge of radius-ro.
However, unlike the case of the Schwarzschild
solution, the region r & r, is completely discon-
nected from our space. The geodesics connect
the upper (u& 0) space to the lower (u& 0) space,
but never penetrate into the region r &ro. Fur-
thermore, the signature of the manifold in this
region is zero, so that it does not correspond
to the physical spacetime.

On the other hand, we observe that our field
solution v =HZ� (o) is a part of an entire function
y'=pZ'(p). The counterpart y

—--vp Z(p) is also
a solution of the field equations. Taking the branch
y =HZ(p) in one space (say, u& 0) and the branch
y =-WpZ(p) in the other, we get an analytic solu-
tion y =uZ(u2) defined on the entire space geometry
(-~& u& +~). We thus conclude that y =uZ(u') is
a natural extension of the usual one-dimensional
kink solution in our geometry, connecting the two
vacuum states from one flat space (u- +~) to the
other (u- —~) through the bridge. The solution
y =uZ(u') is not only a kink in the usual sense
but also "folded" at the edge of the bridge.

It should be emphasized that the apparent sin-
gularity in e'" at x =x, does not imply any sin-
gular behavior of the space geometry but is due
to the particular topological nature of our space,
which is completely nonsingular everywhere. In
fact, the curvature invariant' is calculated to be

I=a ngy6

( 2=4 I v --q'u'Ej +—,(u'Zq')'
x i x'

d & dxo&
l=o

ds I ds ]
(3'I)

+f 6+ 2 (E+uE ) (39)

—
~

e"—I=-n'e'"I "
I

+~'e"I —
Ids ~ ds )

" (ds) (ds/

which reduce to the following equations for u =u(s)
and x' =x'(s):

If'du)~ p, E
( 2„1)

(ds) 4
(38)

0cia

From the properties of e '" and E, we easily
see that there is no singular behavior for the
geodesics u =u(s) and x' =x'(s). The geodesics
given by Eq. (38) connect analytically the regions

which is nonsingular in the entire space (-~& u
& ~). The x =0 singularity never occurs in the
physical space. . This is the reason why the radius
of the Rosen-Einstein bridge is uniquely deter-
mined without introducing any arbitrary integral
constant when the two parameters p and f in the
original Lagrangian density are specified. The
parameter p,

' describes the dimension of the
system and f decides the mass of the system ex-
cept for the scale factor g ' in Eq. (29). If p,

'
is not extremely small (p, '& 10 "cm), then the
value of f to give the order of elementary-parti-
cle masses (= 10 "g) is practically f,. In an
appropriate limit of g '- 0 and f-f„our model
contains a point particle with an arbitrary mass
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M.
Wheeler' introduced a similar geometry in the

spacetime structure and gave a geometrical in-
terpretation of electric charge. He has shown
that the electromagnetic field equations are con-
sistent with such a "wormhole" structure of the
spacetime, and the wormhole can be regarded as
a source of the electromagnetic field.

In our case, such a wormhole structure is gen-
erated automatically by the scalar field S. It is
expected that such a geometrical structure of the
spacetime together with the kink property of the
scalar field would give a geometrical interpreta-
tion of, for example, the baryon number.

One of the objections to our model would arise
from the fact that only the negative value of the
field signature & is permissible. Such a field
carries a negative energy density in a flat space
and, when quantized, it behaves as a ghost. How-
ever, in our model the ghost field S generates a
curvature of the spacetime and the total energy
of the system recovers the positive value. Fur-
thermore, the scalar field tends rapidly to its
vacuum state, having no physical effect outside

the particle. Thus from the purely classical
viewpoint, the ghost scalar field S does not cause
any serious difficulties. It seems that the field
S is not observable as a usual particle field but
it composes fermions and guarantees their sta-
bility. Such a situation is quite analogous to that
of Weyl's gauge field studied by Utiyama. "

In spite of the difficulty which arises from the
simple quantization of the ghost field in a flat
space, we may have to wait to decide whether such
a ghost field is really unacceptable or not, until
a satisfactory quantum fieM theory in a curved
space (or quantized general theory of relativity)
is established.
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