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Neutrino-antineutrino oscillations
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We show that observable neutrino-antineutrino oscillations require not only the nonconservation. of lepton
number and fermion number and a nonzero mass for the neutrino but also the presence of some right-handed

leptonic charged current, and we discuss, very briefly, the prospects for an experimental search.

In the present note we consider the possibility of
neutrino-antineutrino oscillations, i.e., of v, —v,
or v„—v„or v, —v„or oscillations; such os-
cillations (as [A,Z]- [A, Z+2]+e +e or K+

-m + g++ p+) violate not only lepton-number (l)
conservation but also fermion-number (f ) conser-
vation. In contrast, v, —v„or v„—v, or v, —v,
or .~ oscillations' (as p,'-e'+y or T'- p, '+y
or r'- e' +y or ~ ~ ) violate the conservation oi
electronic lepton number (l, ), muonic lepton num-
ber (l„), tauonic lepton number (l,), etc. , in such
a way as to conserve l =l, +l„+I,+ and f. For
the sake of definiteness, and with the possibility '

of nuclear-reactor experiments in mind, we shall
focus our attention on the case of v, v, oscilla-
tions.

To parametrize the situation as simply and as
economically as possible we suppose that the

v, v, and v& v& oscillations as well as the

v, —v„and v, —v„oscillations take place between
mutually orthogonal neutrino states Iv, ), lv, ), lv&),

Iv) which can be expressed in terms of the one-
particle helicity (g) eigenstates of a Dirac neu-
trino-antineutrino field, g„, via'

where H =H„„„,+H, +H„„„+~ ~ is the world
Hamiltonian. Also,
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In a similar way, we can suppose that

v~ =n'* v+ + '* v'

V~
= CV V + V+

v =n'* v+ — '* v'

V~ =Q V V+ p

I
~'I'+

I
O'I' =I,

where c specifies the relative amount of right-
handed leptonic charged current entering into

3H weak p
1.e

v, =e*v++ *v

Ve =& V + V+ p

V

Vp =Q V — V+

l~l'+ I pl'=1,

&a;,&=-&~,& =(t;„&=-&a.„&-=&t.&,
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with

m —=m =m- =m =m
ve ve vp vp v

m„=(v, lHlv, &p„, =&v, lHlv, &p„„
m„- =(v, lHlv, ) „etc

(2)

where 0 is a charged lepton with m & m, , v, is its
associated neutrino (assuming such particles
exist), and Iv', ), lv'g are one-particle helicity eigen-
states of another Dirac neutrino-antineutrino
field, g„i. It is to be noted that Eqs. (1) and (2)
completely segregate v„v„v„,v„ from v„v„v,
v, but this restriction can. be easily removed by postu-
lation of a more complicated relationship between.

lv, &, lv, &, lv, &, I v&&, I v, &, I v, &, lv. , I v & ~d lv, &, lv &,

I v ), I v ), I v+), I v' ), I v,'), I
v' ). It is also to be noted

that the states n*lv+& —P*lv & and nlv &
—Plv+&,

which are identified with I v„) and lv„) in Eq. (1),
may not have anything to do with the muon and so
should be labeled lv&) and

I v&) with the question of
the participation of v& together with an appropriate
charged lepton $ in H„„„left completely open; in
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Vp
= Qf V+ + V

VII
= Of V + V+

V

Vq
= + V V+

l~'I'+ IP'I'=1, (8)

this case we would have, in addition to Eqs. (1)-
(3),

mv =mv mvu ~ mv =mv+mpv y1 2
(10)

P(-..;ftl-...0) = I&-..l.-'"-.,&I'

= l&v le 'H'v, ) I'

m -„=—He (vt I H I pt) p

Thus, substituting Eqs. (8)-(10) into Eq. (7), we
obtain the oscillational v, -survival probability,
and the oscillational v, -transformation probabil-
ities for a flight path R (flight time t),

1-(~')' Ip. I

1+(e')' (Ip, I'+m, ')'~' '

m„-„=m, =m„, =&v,'Ielv,')-,

=&v,'IffIv,'&p, „
with an analogous set of equations for I p, ), lp, ),
Iv, &, Iv, &.

%'e proceed to calculate the oscillational v, -
survival amplitude (v, le 'H'v, ) and the oscillational
p, -transformation amplitudes (v, le l "tp, ),
(vie ' 'v, ), and (vvle 'H'v, ). Using Eq. (1),
&v Ie ' 'v &=&v, le '"'v,

& [Eq. (2)], &v le
' 'v

&

=(v, le '"'v, ) (cPTinvariance), and (v, le 'H' p, )
=(p, le 'H'v, )=0 (angular momentum conserva-
tion) we get

(
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V

P(v.;flip. ; 0) =l&v, le '"'v )I'
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4E,

P(v ftlv 0)=I&v le-'"'v &I'
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I
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&-. I. t"t.&-=&tt.-&&v, I. t" -.
&

(v le-tHtv ) 0

with (v„ le t Ht v,& and (v, le '"'v, ) immediately cal-
culable once the relation between lv, ), lv, ), and
the one-neutrino mass eigenstates is specified.

To specify this relationship we assume4

Iflv, ,&=E., lv. ..&, alv. ,.,&=E.,lv, ,&,

(8)
Vg. p

= Pp Vp y V2. p
=

Vp + V

so tha. t

= (lp I2 /m 2)t~2 = (@ 2 m 2+m 2)tl2

2 2~v
2E.

E„=(lp„l'+m„')' '= (E ' —m„'+m„')' '

with

~ ), . R(m„,'-m„, )
Ip sin ~ —
)J

I'Zm m -'t 't'Rm„m, „

P(v„;ftlv„0) =I&v„le '"'v, &I'=0

Equations (11) and (3) show that P(v„ftlv„0) is
small for all R since

4e' 1-e')' m„'
1 —&tt„)'=( $,2+ g l, "

g &0.04, (12)1+&2)2 1+g2 ) [p, (2+m„2

where the numerical upper bound is obtained on the
basis of measurements of the longitudinal polar-
ization of electrons

1 —e' Ip. I

emitted in nuclear P decay. We also mention that
the "inhibition factor, " 8„, for [A,Z]- [A,S +2]
+e +e may be calculated from Eqs. (1) and (8)
and turns out to be approximately equal to
P(v„Alp„0) [Eqs. (11) and (12)] with It =—1/E
= radius of [A,Z], i.e. , &10 '~ for (m„m„„-]'~'
& 0.2 eV [see Eq. (13) just below] —this is to be
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compared with the experimental upper bound on

8„, (8„],„„,&10 '.
To discuss the implications of Eqs. (11) and (12)

on performed and proposed neutrino-oscillation
experiments, we first note that a study of the
positron energy spectrum from v, (reactor) +p- e ++n has set a lower bound on P(v„R='11.1 m

~v„o) of about 0.9; using (1/E„'),„„-=1/(3Mev)'
this yields

(m„m„„-)"& O.2 eV.'

Further, any actual observation of v, p, oscillamm

tions with monoenergetic v, beams (or energy-
selective v, detectors) would determine 1-&5„)'
and m„m„„—separately [from the value of P(v„R
= («/2) E,/m„m„„~v„' 0)]; unfortunately, suffi-
ciently intense monoenergetic v, beams are not
easily available so that consideration must be
given to v, —v, oscillation experiments with the
nonmonoenergetic (but extremely pure) v, beams
emerging from nuclear reactors. In this case,
the effective cross section for a v, (reactor)-in-
duced reaction [e.g. , v, (reactor) +"Cl- e +"A,
or v, (reactor)+'Li- e +'Be, or v(reactor) +"Ga- e + "Ge)]at an energy-nonselective detector dis-
tant R from the reactor is

f «(E„;v, )P(v„.Riv„o)y(E„;v, )dE„

1
&o)~ =1.2&&10 "cm', , ), ,

(16)

v, +'Li- e +'Be:

1 1

E„g 2.9 Me7

Thus, assuming Rm, m„„—/E*„«1 and combining
Eqs. (16) and (17) with Eqs. (14), (15), (12), and
(12)

v, (reactor) +"Cl- e + "A:

c„, {R;c,) = {1.3 x 1{t cm')
I {

, (R)'
& (2xlo ~ cm')

(&10 m] ' (16)

v, (reactor)+'Li- e +'Be:

& 10 "and &P), & will be immeasurably small.
We proceed to give estimates of &«)& and &1/E„'),&

for v, +"Cl e +"A and v, +'Li- e +'Be. Using
all available nuclear physics data to calculate
g (E„;v, ), ' and the expression for p(E„, v, ) given by
Avignone, ' we obtain from Eq. (14)'

+37cl ~~ + 37Am

& ) fo(E„;v.)y(E„; v.)dE„
Jy(E„;v, )dE„

( )
fP(v„RIv„'0)«'(E„;v, )y(E„;v, )dE,

j«(E„;v, )y(E„v,)dE„

(i4)

c.c {{{;i)-={C.Cx{O- cm')I{,), {

2

& (6X10 "cm')i
(10 m

which is to be compared with an experimental
upper bound obtained by Davis, '

(i9)

where «(E„;v, ) is the cross section for the v, -in-
duced reaction at energy E„$(E„;v, )dE„ is the
flux of v, with energy between E„and E„+dE„
emerging from the reactor, and P(v„R~ v„o) is
given by Eqs. (11)-(13). Since in all practical
situations 0(E„;v, )$(E„;v, ) has a reasonably sharp
maximum at E, =E,*»m„we can write

{P)„c=({{—{{4F)c{c(. Z
""}

4g2 t 2 1 . RmPmi, „-
(Rm„m„v)' —3, ". '" «1,

(1 ++ J {

'

p gg Eff

cc' { Rm, m, ;} { {{C)

Thus, observation of «,«(R; v, ) as a function of R,
together with a calculation of &g)& and 1/(E„a),~, will
yield both m, m„„- and 4e'/(1+a')'= 1 -(Pi„)' We.
also note that. if e = 0 (no right-handed leptonic
charged current), ((1 —(h„)')) & =(m„'/(E„)') &

v, (reactor) +37Cl- e +'7A:

0 «(R = 10.7 m; v, ) & 2.5x 10 ~ cm'. (2o)

that is significantly smaller than tha. t available
from Eqs. (12) and (13). We also see that in view
of the relatively large value of &g)& and, conse-
quently of «,«(R;v, )/R', for v, (reactor) + 'Li- e
+'Be [Eqs. (17) and (19)], a search for this pro-
cess appears to be especially attractive. " Such
a search, if a negative result emerges, should
yield a much smaller upper bound on

2

(1 Q„)')(m, m-„„-)'= (,), —(m„m„„-)'

than is now available and, if a positive result is

%e therefore see that a significant improvement
of this upper bound would yield an upper bound on

4 2
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found, would provide a finite value for (m„m„,—)'~'
and for 1-„) = 4e'/(1+&')' and so establish

(i) the nonconservation of lepton number and
fermion number,

(ii) a nonzero mass for the neutrino (v, ), and

(iii) the presence of some right-handed leptonic
(e, v, ) charged current inIf
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