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Three-pion wave functions with zero spin, and specific isospin and S, properties, are constructed from

powers of the Dalitz-plot variables. They are then used to study the decays of F, B, and K mesons into

three pions. Tests of the selection rules imposed by the standard charm model on I' and D decays are

discussed, especially in the ratio of rates for the m+m+m and m m m+ modes; S3 properties play an

important role in these tests. In E decay quad'ratic terms are shown to have a likely origin in a state of
mixed S, symmetry.

I. INTRODUCTION

In the first paper' of this series we developed a
new approach to the permutation group 8, which
enabled us to construct the most general three-
pion wave functions with arbitrary spin and parity.
We now employ the spin-zero wave functions to
study the decay of various pseudoscalar mesons
into three pions.

Our principal interest is to test the isospin se-
lection rules associated with the nonleptonic de-
cays of charmed particles and of strange parti-
cles. ' However, we shall find that 8, behavior
plays an important role in this endeavor because
simple statements about isospin do not always lead
to simple relations between different decay modes.
When the wave functions for a given isospin belong
to a single representation of S„ then we can pre-
dict specific values for the ratio of rates for two
decay modes, but when the wave functions involve
more than one 8, representation, then the best we
can do is to predict bounds for the ratio. In E+ de-
cay, for example, the three-pion state may be an
isovector, but we shall find that the ratio of g+g+g

and m'm'm+ decay rates can have any value between
1 and 4. If we specify in addition that the isospin
wave function belongs to the 2„repres.entation of
8„ then we can pin the ratio down to a value of 1;
and if we specify the 1~ representation, we obtain
a value of 4. Thus, to make specific predictions
in cases such as these, we must know the S, be-
havior of the three-pion system as well as its iso-
spln.

Another example of this occurs in the decay
E-3m. In E decay, the matrix element is known to
be dominated by an energy-indepebdent term, but
it does contain a small admixture, roughly of or-
der 10%%up, of terms which depend on the first and
second powers of the Dalitz plot. ' The energy-in-

dependent terms belong to the symmetric 1~ repre-
sentation of S„whereas the linear ones belong to
the mixed-symmetry 2~ representation. As a re-
sult, the 4T = —,

' rule leads to one set of numerical
relations between decay rates, and to another set
of numerical relations for the slopes of different
decay modes. 4 Were it not for this sharp differ-
ence in strength between energy-dependent and en-
ergy-independent terms, the predictions of the
&T = —,

' rule would be much harder to analyze.
The matter of energy dependence may prove to be

a very important difference between E-3w and
D-3z on the one hand, and K-3g on the other. At
present we do not know whether the charmed-par-
ticle decays conform to the X-decay pattern, in
which case we can get simple predictions from se-
lection rules, or whether they have a much stron-
ger energy dependence, in which case we may get
the much vaguer bounds on ratios mentioned above.
Given the large amount of energy released in the
charmed-particle case, we might expect signifi-
cant components of 2m resonances such as p and f
in the final state. However, we will not be able to
settle the question until the decays have been seen
in large quantities.

The charm and strangeness selection rules of the
standard model' are such that E'-3g is a Cabibbo-
allowed decay, while D-3m is Cabibbo-forbidden.
Thus, the amplitude for E decay is proportional to
G cos'8, where 8 is the Cabibbo angle, and that for
D decay is proportional to 6 coso sin8. Even
though the D decay is suppressed by a factor of
tan8 = —, in amplitude, it is still important to de-
tect it and to measure its properties as a confir-
mation of the standard model. '

Cabibbo-allowed decays are expected to satisfy
the isospin selection rule' 4T =1, and Cabibbo-
forbidden ones are an admixture of &T = —'and -'.

2 2

Since the E' meson is an isosinglet, the 4T =1
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rule requires the thr ee pions to be in a pure T = 1
state. The D meson is an isospinor and so its
three-pion final state will, in general, be an ad-
mixture of T =0, 1, and 2. Whether one of these
states will be dominant over the other two will de-
pend in part on the weak Hamiltonian, and in part
on the structure of the final state. If, for exam-
ple, the 4T = —' part of the Hamiltonian is en-
hanced over the 4T= —' part, and if the final state
is purely 8 wave, then the three pions will be in a
T =1 state; higher partial waves could introduce a
significant T = 0 component.

Our interest in K decay in this paper will center
upon terms with a quadratic dependence upon the
Dalitz-plot variables. We derive the predictions
of the ~T = —' rule for quadratic terms, and we
emphasize a point discussed in an earlier paper on
linear terms': namely that relations between dif-
ferent decay modes of the same E meson depend
only on the isospin of the final state, but relations
between decay modes of different X mesons de-
pend on the isospin selection rule as well.

The paper is organized in the following way. We
write down the most general forms of three-pion
wave functions with spin zero, definite isospin ei-
genvalues, and definite 8, behavior in Sec. II, and
we apply them to I' decay in Sec. III. Section IV is
devoted to the quadratic terms in K decay and Sec.
V to D decay. The results are summarized in a
brief Conclusion, and potentially useful relations
between various decay rates are emphasized.

II. SPIN-ZERO WAVE FUNCTIONS

It has the same formal properties as the imaginary
number i but is entirely distinct from it. As was
shown in our previous paper, ' powers of Z, form
representations of 8, in the following way:

p ~ p cos3A'p~

1~ '. p sln3k'tp
q

p Sk+e- f (3kyl) y ~30~e+j(30~ ) y
M'

(2.6)

There are seven independent isospin wave func-
tions for three pions: one with T =0, three with
T='1., two with T=2, and one with T=3. The iso-
singlet state is totally antisymmetric and the T = 3
state is totally symmetric under all permutations
of the three pions. One of the T =1 states is total-
ly symmetric and the other two form a mixed sym-
metry 2~ representation. ' The two T = 2 states be-
long to a 2„.' In a condensed notation we write
this classification as

1.: 1».(ls)& I
3 T.(ls)&

1„:
~
00(1„)),

2: Zl». (2 )& &l2T.(2.)&

(2.7)

and they belong to the 2„representation of the per-
mutation group S„

(2.4)

where' j is the "permutation complex element":

X=gk, (2.1)

The Mandelstam variables are

s, = —(X —k()',

Q s, = Ss, =M'+ g pyg, ',
(2.2)

where M is the invariant mass of the three-pion
system and m,. is the mass of the ith pion. The
standard Dalitz-plot variables are

In this section we describe the most general
three-pion wave functions for zero spin in terms
of the standard Dalitz-plot variables and the seven
independent isospin states.

Each pion is assigned a four-momentum vector
k, (i =1,2, 3) and the center-of-mass momentum is

where the first two numbers in the ket denote T
and T„and the third indicates the representation
of 8,. We can form these states by coupling the
first two pions, m, and m» to a resultant T„, and
then by coupling T~ to the third pion m, to form the
final isospin state ((Ts)TT,&; details are given in
the preceding paper, ' and in the original one by
Barton, Kacser, and Rosen. '

Since we intend to expand decay amplitues as a
power series in the Dalitz-plot variables, we de-
fine the basic states in terms of their isospin,
their 8, behavior, and the power of their depen-
dence on Z, . Using the rules developed in the pre-
ceding paper' to ensure total symmetry under all
permutations of the pions, we obtain the following
set of states:

i
T T,(ls)Sk& =p" cosSky

~

T T,(1s)), T =1,3

y=(s, —s,) =p cosy,
1x=—(s —s ) =p sinyj. 2

(2.3)

I
«(1~)Sk& =p"sinSk y 1

00(4)&

(2.8)

(2.9)
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i
1 T,(2„)3k+ 1)=p"+'cos(3k+ 1)q

,' l(2)32.&--: ((3)(2.
&I

—p'""sin(Sk+ l)y
~
(1)1T,),

(2.10)

~

1 T,(2„)Sk+ 2) =p'~icos(Sk+ 2) g

s .((2)1T,) ——*
i
(3)(2',

&I

+p" ~sin(Sk+ 2)y
~
(1)ITp) 3

i
2T,(2s)3k+1) =p'""cos(3k+ 1)(p i(2)2T,)

+ p'""sin(Sk+ 1)y
~
(1)2T,),

(2.11)

~

2 T,(2„)Sk+ 2) =p""cos(Sk+ 2)y
~

(2)2T,)
p" sin(Sk+ 2)p ~(I)2T.).

The states on the right-hand side of E(ls. (2.10)
and (2.11) are of the form

~
(Tz)T T,), while those

on the right-hand side of Eqs. (2.8) and (2.S) are
as in E(I. (2.7).

HI. THE DECAY F+ 3m'

According to the standard model, ' the F' will de-
cay into a three-pion state with isospin T =1 and
z component T,=1. There are two possible charge
states w'm+m and n'g'n', and the isospin of the fi-
nal state should lead to definite relations between
'them. Our aim in this section is to find these re-
lations.

In general, the three pions will be in a linear
combination of the states ~11(lz)Sk), ~11(2„)
3k+1), and

~

1 l(2~)3k+2) of Eqs. (2.8), (2.9), and
(2.10). If we define the amplitudes for decay into these
states to be a(Sk), b(3k+ 1), and c(Sk+ 2), respec-
tively, then the matrix elements for decay into
specific charge states can easily be shown to be4

Sit(F' m'n')T ) = a(Sk)pa~cosSky+ b(3k+ I)p'""cos(3k+ I)y+ c(3k+ 2)p""cos(3k+ 2)y~ (3.1)30 I 3k 1
St 15 3( 3 vS

and
1 1

3A &32(P c'c'c )= '-— 'c(3k)p' coskkp+ k(3k+1)p' "cos(3k+1)p+—c(3k+3)p" 'cos(3k+2)CI. (3.2)~15 WS vS

In both cases, the rate is given by
1I'=

&~ f ~Std~'d(phase space),
t

where the 2l enters because of the two like pions.
There are no terms in sin(p(p) in E(ls. (3.1) and
(3.2) because n, and v, are identified with the like
pions in the isospin wave functions, and sin(py) is
always antisymmetric under the permutation of z,
and m, . Notice also that the a, 5, c amplitudes can
be functions of p' without disturbing the permuta, -
tion symmetry of the matrix element.

If we make a general cosine series expansion of
the matrix element for F+-m m~g" in the form

SR(F' m n v")= g f(aPy;n)p"cosrap,

(3 3)

(3.4)

then E(ls. (3.1) and (3.2) imply that

f(++ —;Sk) = -2 f (00+;Sk),

f(++ —;SR)=f(00+;31I) (%= 3k+ 1,Sk+ 2).
(3.5)

The difference between the two relations in Eq.
(3.5) stems from the fact that the terms associated
with p

~ transform according to the 1~ representa-
tion of S, while those assocated with p"'" (r = 1, 2)
transform according to the 2~ representation. If

the symmetric isospin wave function is the domi-
nant one [a(Sk)»b(Sk+ I) and c(3k+ 1) in Eqs. (3.1
and 2)], then the rate for vow~ mode will be four
times that for m'g'g', on the other hand, if the
mixed-symmetry isospin states are dominant, the
rates for these decay modes will be equal. In
general, for an arbitrary admixture of 1~ and 2„
the ratio of rates will lie somewhere between 4
and 1.'

Should the experimental ratio fall outside these
limits, it would indicate a clear violation of the
4T =1 rule. Should it fall within them, it wouldbe
consistent with the selection rule and indicate the
presence of 1~ and 2~ states. The q dependence of
the Dalitz plot will have much to tell us about the
properties of these decays, in this case.

Finally we note that this analysis -for F'-3w is
exactly the same as the original analysis by Wein-
berg' of the r and 7' decay modes of K'-Sm.

IV. QUADRATIC TERMS IN E ~ 3m

Since the Dalitz-plot densities for K-Sg have
been shown' to contain a small, but significant
quadratic dependence upon the kinetic energies of
the pions, we use our present techniques to extend
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an earlier isospin analysis4 which only went so far
as the linear terms. In that analysis we sought to
emphasize the point that relations between decay
modes of the same X meson depend only on the
isospin of the final state, while relations between
the decay modes of the charged and neutral kaons
depend upon additional constraints imposed by the
isospin properties of the weak-interaction Hamil-
tonian. We make the same point here for the quad-
ratic terms. We also indicate tests for the pres-
ence of specific isospin states in the three-pion
system and compare them with experiment.

To second order in kinetic energy, the matrix
element has the general form

g a(T, T,) i
T T,(l ))+ g b(T, T,) T T,(2„)1)

+ Q c(T, T,

)HATT,

(2„)2),

(4.4)

a(T, T,) = a, (T, T,)+a,(T, T,)p'. (4.5)

If we neglect the effects of CI' violation, the final
state in E~ decay involves only odd isospins, and
so we may set

where the amplitudes b and c are constant, but the
amplitudes a depend linearly on p',

K=E(1+a(s, —s,)+3P(s, -s,)'+y(s, -s,)')
(4.1) b(2, 0) =c(2, 0) =0.

v 3 (s, —s,) = 2M+@X,

3(s3 —so) = -2MrQF,

@=Mr -3m,

(4.2)

=&(I ~p cosV + '(p -))p—'cos2V + '(p+-r)p'],

where the index 3 is reserved for the unlike pion
in E' decay and the neutral one in E~ n+m w'. If
mass differences between charged and neutral
pions are neglected, the energy variables in Eq.
(4.1) can be expressed in terms of the nonrelativis-
tic Dalitz-plot variables X and Y,

From Egs. (4.4)-(4.6) we can determine the para-
meters E, c, P, and y of Eg. (4.1) for each decay
mode; they are given in Table I. Notice that Bose
symmetry rules out a cos2cp term in E~-3m' and
hence'

p
000 — 000 (4.V)

H=H, i +H
g

+H ] +H 1 (4.8)

where the superscripts indicate the three-pion
charge state.

In general the effective Hamiltonian contains iso-
spins 4T running from -' to -',

and the Dalitz-plot density becomes

/mb)'= fz[*It-;@or
8M' ' 1r

[(p + 2) p'2+ y+3]I,
3 8' (4.3)

x(1, 1)= ~,(x) —,
' ),(x)

p

x(1,0) =),(x)+ q(x)

(4.9)

and the a, b, c amplitudes of Eq. (4.4) can be ex-
pressed in terms of the reduced matrix elements
of the H i2 For the T = 1 states we have

Throughout this discussion we neglect final state
interactions and CP violation; thus the coefficients in
Eg. (4.1) are all real

In the notation of Egs. (2.8)-(2.11), the most gen-
eral form of the final state for E 3g is

where X„(x) is the reduced matrix element of II„1,
between the E meson and the appropriate T =1
state. For the T = 3 state the only relevant ampli-
tudes are a(3, T,) and they are given by

TABLZ I. Amplitudes for K" x~m™vP.

Charge
state

00+

+ —0

000

2 + 1~- a p(1, 1) +
~

— a p (3, 1)

1 a(1 1)+~ =- a(3 1)
2-

4 15 ' 4 16
1

p(1, 0) +~ p, 0)

—(+) +a (1 0) + (+5) ap(3, 0)

1——b (1, 1) +~b (2, 1)
1

W3 ' W3
1 1~b(1, 1) ~b(2, 1)

~ b (1,0)
1

&(P +7)

—2
--—a 2(1,

1
4 15 a2(1,

1
a 2(1,

1
4 15

2
v' 15

1"'~ 10

a 2(3, 1)

a 2(1, 1)

a 2(3, 0)

—( ) a 2 (1,0) + {+)i a 2 (3, 0)

&(P -v)
2 +-2—~ c(1,1) +-~ e{2,1)

2 2c(1,1)—~ c{2,1)

2~ c(1,0)
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a(3, 0) =q, +q, ,

(4.10)

a(3, 1) =a(3, 0) =0. (4.11)

Substituting Eq. (4.11) into Table I, we find that

pyy- ~ y+- p00++ 00'

p
y 0 ~ y+ 0

p
000 ~ F000 2y000

(4.12a)

(4.12b)

The additional constraint of a pure T =1 final
state, i.e. ,

where g„are the reduced matrix elements
{~ ~H„&, ~ ~

—,'). Since the T = 2 state does not occur
in K~-3m, there is no need to relate the corre-
sponding amplitudes to reduced matrix elements
of H„(2.

We can use Eqs. (4.9) and (4.10) and Table I to
deduce the consequences of any selection rule for
E-meson decay. Suppose, for example, that the
Hamiltonian is an admixture of 4T = -' and —,': The
final state is then an admixture of T = 1 and 2, and
the T = 3 amplitudes must vanish,

(4.12), (4.14), and (4.15)]. In order to relate
charged kaon decay to neutral kaon decay we must
impose a stronger restriction upon the isospin of
the Hamiltonian: for example, &T=-,' [&,(x)=0], or
gg)(= -4x, (x), or any other precise relationship
between reduced matrix elements.

Just as the experimental values of combinations
such as (o' '+ 2o'+ ) indicate whether or not the
&T = —, rule is satisfied, so other combinations in-
dicate the presence or absence of specific isospin
states. For example, the difference between
(Ea)" and (Eg)"' is proportional to the amplitude
b(2, 1) (see Table I), and should its experimental
value be different from zero, then

~
2T(2„)1) must

be present in the final state, . Similarly if the com-
bination (EP+Ey) vanishes for every decay mode,
then the totally symmetric isospin states will make
no contribution to the quadratic dependence of the
three-pion system. In the same way the combina-
tion (EP —Ey) can be used to detect the presence of
the quadratic states ~TT,(2„)2)with T=1, 2,
through relations such as (see Table I)

(EP Ey)" —(—EP Ey)"'= —— a(2, 1). (4.19)
W3

b(2, 1)=c(2, 1) =0;

gives two more relations,

(4.13) The data on E~-m'p ~' suggest that

P+-0+ ~+-0 0 (4.20)

2( yy- Pyy-) POOq. F00+

(4.14a)

(4.14b)

the second of which can be combined with Eq.
(4.12a) to yield

Therefore, if the final state is pure isovector,
then y000 should vanish [Eq. (4.12b)] and the Dalitz-
plot density for K~-3rD should be constant (in the
quadratic approximation). In addition, if the
4T = —,

' rule is satisfied then we should also have

3y++-. p++- —2PDD+ (4.15)

If we now impose the &T = —' rule [X,(x) =0 in Eq.
(4.9)], we have

POD++ ~00+ 0

P" +y" =0,
2y++- + y+ "0 0

(4.21)

x(1, 1) =x(1, 0) for x=a, b, c

and hence from Table I,
+ -0 00+

p++ y y++ —p+ 0+ y+

2(~++- P++-) —p+-0 ~+-0

(4.16)

(4.17a)

(4,17b)

(4.17c)

Equations (4.17b) and (4.17c) combine with Eq.
(4.15) to give

The data are not inconsistent with the second and
third parts of Eq. (4.21) but the errors are too
large to draw a definite conclusion from them. In
conjunction with Eq. (4.20), the first two equations
of (4.21) imply that the symmetric isospin states
~T T,(lz)) with T =1, 3 should not contribute signif-
icantly to the quadratic dependence of the final
state; however, the fact that (EP —Ey)' ' does not
vanish means that

~

1 T,(2„)2) is present in the de-
cay.

00+ @ 0 (4.18) V. THE DECAYD~ 3m

These results agree with those given'by Gail-
lard, ' except that Eq. (4.15) is a consequence of
a T = 1 final state rather than the &T =

—,
' rule. The

important feature they bring out is that, as long as
the selection rule merely restricts the isospin of
the final state, we only obtain relations between
different decay modes of the same K meson [Eqs.

%e turnnowto the Cabibbo-forbidden decay of the
D meson into three pions. In general the isospin
selection rules predicted by the standard modeP
are an admixture of &T = —,

' and —,'. The &T = -',

component drops out if the interaction is dominated
by the 6 representation of SU(3), but the &T =

—,
'

component is present in both the 6 and the 15* re-
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pr esentations.
Because the D meson is an isospinor, the three-

pion final state will, in general, be an admixture
of T = 0, 1, and 2. Moreover, the T = 0 and 2
states are expected to contribute to neutral D de-
cays as well as to charged ones: Neutral D
mesons, unlike their kaon counterparts, do not ap-
pear to split into approximate CP eigenstates with
vastly different lifetimes, and hence we cannot ap-
ply the usual CI' arguments to them. ' ~

Another possible difference between D and X me-

sons concerns the energy dependence of the decay
amplitudes. As we have discussed in the preced-
ing section, the E-meson amplitudes are largely
independent of energy; we do not know, however,
whether the same holds true for the D-decay am-
plitudes, or whether they have a strong depen-.
dence on energy. %e shall therefore analyze them
in the most general way, and wait for experiment
to answer the question.

Using the states of Eqs. (2.9)-(2.11), we write
the final state of the three pions in the form

Q [a(».;»)
l
».(la)Sk&+ d(Sk)100(1~)3k)]

0 =0

+ Q [b (T T.; Sk+ 1)
~

T T,(2„)3k+ 1)+ c(T T,; 3k+ 2)
~

T T,(2„)3k+ 2), . (5.1)
0 =0

p= j., 2

(5.2)

where the amplitudes a, fj, e, and d may be constants or functions of p'. The matrix elements for D' de-
cay into specific charge states can be written as a cosine series in y:

K&+'(g Pm") = P (f»(nPy)p»cosSky+ f»,,(nPy)p'"~cos{Sk+ 1)y+f„„(nPy)cos(3k+ 2)y],

where

f»(++ -) = -2f,~(00+) = (2/0 15)a(l 1;Sk),

f»~(++ -) = (1/&3)[b(1,1;3k+1) -b(21; 3k+1)],

f» (00+ ) = (1/v 3 )[b (1 1;Sk+ 1)+ b (2 1;3k+ 1)],
fs„„(++-) = (1/v 3)[c(11;3k+ 2) —c(2 1;3k+2)],

f»„(00+)= (1/v 3) [c(l 1;3k+ 2)+c(31;Sk+ 2)].

(5.3)

Terms in sinpy do not appear in these expressions because of Bose symmetry for the two like pions. They
do, however, appear in the matrix elements for D' decay:

Stt'"'(m m 7j") = g [f»(nPy)p»cosSky+f», (nPy)p»"cos(3k+ 1)y+f»„(nPy)p»"cos(3k+ 2)y
0 =0

+g (npy)p~~sinSkqr +g»,,(nPy)p»+ sin(Sk+ l)y+g», ~(nPy)p»+ sin(3k+ 2)y], (5.4)

where

f„(+—0) = ——f„(000)= — a(1 0; 3k),
1 = 1

15

f»„(+—0) = — b (1 0; Sk+ 1), f»„(000)= 0,
1

f»„{+—0) = — c(1 0; 3k+ 2), f,„,(000) = 0,
1

(5.5)
g„(+—0) = — d(3k), g„(000)= 0,

1
3 6

All of these matrix elements are defined so that
the decay rate is

1
1 =—

t
f

~

K 'd(phase space), (5.6)

where n is the number of J.ike pions in the final
state.

The Hamiltonian in the standard model contains
a &T = -,

' term and a &T = -, term but no 4T = -,
'

term:

g» y(+ 0) b(20' Sk+ l)~ g» y(000) 0~
1 H Hy/g +Hg/p e (5.7)

g„., (+ —o) = — c(2 0; Sk+ 1), g„„(000)= 0.
1

Consequently the T = 2 states in both D' and D' de-
cays a. e engendered by a single term, namely
H3 / p and the corr esp onding amp litudes ar e pro-
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portional to one another:
l/2

x(21:Sk+~) = (-.') x(2 O; Sk+ ~)

The Z =1 states, however, can arise from both
parts of the Hamiltonian and there are no simple
relations between the amplitudes fox B ' and D' de-
cays. In terms of the reduced matrix elements
X„(3k+x) of H„&, between the K meson and the ap-
propriate T = 1 states we have

x(11;3k+ x) = x,(Sk+~) —p' x,,(3k+x),

x(10;Sk+ ~) =—[X,(Sk+ r) + A.,(3k+ x)], (5.9)
1

f„(++—) = -2f,„(00+);

f,„,„(++-)=+f,„.„(OO+), ~=1, 2 (5.10)

It is evident from Egs. (b.2)-(5.9) that vfe cannot
obtain any relation between the rates for different
decay modes without making further assumptions.
Some possible assumptions we shall explore in-
clude (i) pure T =1 final state, (ii) a &T = —,

' rule,
and (iii) a pure T = 2 final state. In general, as-
sumptions about the isospin of the final state give
relations between different decay modes of the
same D meson, but not between decay modes of
different B mesons; assumptions about the isospin
of the Hamiltonian are needed to obtain relations
of the second kind.

If the' final state is pure isovector, then d(Sk) and

all x(2T,;3k+~) vanis, h, and exactly as in the case
of I' ' decay, we have

for x=c,b, e and x=0, 1,2. (5.14)

This then implies an additional relation for the am-
plitudes, namely

y;, „(00~ ) = &2f„,.„(+-0) (~ = 0, I, 2). (5.15)

Hence the rules obey

I'(00+ ) = I'(+ —0). (5.16)

Notice that this result is valid for all forms of the
energy dependence of the amplitudes and it is also
independent of whether the D' decay modes satisfy
either Eg. (5.12) or Eg. (5.13) or neither of them.

An alternative to &T =
—,
' with a pure isovector fi-

nal state is to assume a pure isotensor final state.
In this case all the amplitudes x(1 T„Sk+r) and

the d(Sk) vanish, and we find that, in addition to
Eg. (5.8), the relations

Sil& &(++ -) = -Sil& &(OO+),

K~"'(000) = 0
(5.IV)

also hold. Even though the D+ amplitudes form a,

cosine series in y while the B' amplitudes form a
sine series, Eels. (5.8) and (5.16) imply that in the
T = 2 case the rules obey

1"(++ -) = I'(00+) = —,
' I'(+ —0), I (000) = 0. (5.18)

An admixture of 1~ and 2„ isospin states yields no
simple relations between the rates, but does limit
the ratio to lie between 4 and 1.'

To relate the D ' decays to the B' ones we now

add the &T = —,
' rule to our isovector final state as-

sumption. (Notice that &T = —,
' by itself does not ex-

clude the T =0 state in I)' decay. ) This implies
that X.,(3k+v) must vanish in Eg. (5.9) and hence
that

x(11;Sk+ r) = v 2 x(1 0; Sk+ x)

I'(++ -) =4I'(00+), I'(000) =
2 I'(+ —0) (5.12)

exactly as in E decay. By contrast, if only the 2~
isospin functions are present, then all f» ampli-
tudes vanish and

I'(++ -) = 1'(00+), I'(000) = 0. (5.13)

for D' decay [compare with Eq. (3.5)]; and f»
D' we have

I»(+ —0) = —s f»(000) &» =&»..=&».2
= o

(5.11)

The difference between the relation for f» and

f», „in Eq. (5.10) reflects the difference in the 5',

properties of the isospin wave functions with which
they are associated. If we further assume that
only the l~ isospin state is present then all f», „
amplitudes with x = 1, 2 vanish, and we find that

In general both the 6'Jt' = -,
' and the 4T = 3 inter-

action may be equaOy important in D-3g, and in
this case Eg. (5.8) is the only relation that will
hold between different amplitudes. The above ana-
lysis does show, however, that a comparison of
rates for various decay modes can provide clues
regarding the isospinof the final state and the se-
lection rules imposed by the Hamiltonian. Be-
tailed information about the Dalitz plot would be
very helpful in this regard, but it will probably be
a long time in coming.

vr. coxcI,uS&ONS

We have analyzed the decays of various pseudo-
scalar mesons into three pions according to the
selection rules expected to hold for charmed-par-
ticle and strange-particle nonleptonic decays. ' In
the case of E meson decay, we have shown that if
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(,) I'(m+m'm )R'= (.. .) (6.l)

will lie between l and 4 (Ref. 7); it will have the
lower value if the state is a pure 2„representa-
tion of 8, and the upper value if it is pure 1~. Ex-
actly the same holds for D' 3m. Thus ameasure-
ment of R" can be used to decide whether or not
the final state is consistent with an assignment of
isovector.

the &T = —,
' rule is valid, then the quadratic terms

in the matrix element come from an isovector
state which has mixed symmetry (2s) and $3. In
E and D decay, the appropriate selection rules
make detailed predictions about amplitudes, but
it will be some time before we can test them.

There are, however, some crude tests we can
apply to the rates for various decay modes. Thus,
if the final state in E ' decay is an isovector, then
the ratio

In the case of D' decay, the isovector final state
implies that

(6.2)

lies between 0 and —,'; it will be 0 when the final
state belongs to the 2„representation of 83
when it belongs to 1~, and something in between
for an admixture of 8, properties. Irrespective of
8, properties, the isovector final state plus the
4T = —,', which is equivalent to 6-dominance, ' im-
plies that

(6.2)

These relations are useful in both a positive and

a negative sense. If they turn out to be satisfied,
they give us some precise information about the
final states; if they are not satisfied, they rule
out certain simple possibilities for the final state.
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