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A new method is developed for picking a given irreducible representation of the permutation group S; out of
the product of many representations. It is then used to construct three-pion wave functions of arbitrary spin
and parity. Applications of the method to three-fermion systems are briefly described. The essence of the
method is to represent the two-dimensional representation of S; as a “‘complex number” in an Argand
diagram; because the action of S; involves simple rotations and reflections in the diagram, the behavior of
products of many two-dimensional representations is easy to analyze.

I. INTRODUCTION

The application of Bose symmetry to systems of
three pions!*® has always raised interesting prob-
lems in the permutation group of three objects.’
When the wave function is written as a product of
an isospin part and a spatial part, the properties
of these two parts must complement each other in
such a way as to ensure that the wave function is
symmetric under all permutations of the particles.
These complementary properties are easily in-
serted by hand when the spatial part of the wave
function is relatively simple; but as the spatial
part becomes more complicated, it becomes nec-
essary to use more sophisticated group-theoretical
methods. This, in turn, gives rise to the problem
of picking out a specific irreducible representation
of the permutation group from the product of many
representations.

Similar problems arise in the study of three-nu-
cleon® and other three-fermion systems.? The
wave function is usually expressed in terms of
products of isospin, intrinsic-spin, orbital-motion,
and possibly color wave functions, and from this
product it is necessary to pick out the totally anti-
symmetric combination. Again this can be done by
hand in relatively simple cases, but it becomes
more difficult as the level of complexity increases.

As is well known, the permutation group of three
objects, S;, has three irreducible representa-
tions’: a totally symmetric one, 1g, a totally anti-
symmetric one, 1,, and a two-dimensional one of
mixed symmetry, 2,. Products of 15 and 1, are
easily characterized with respect to their permu-
tation properties, but products of two-dimensional
representations, especially products with a large
number of factors, are much more difficult to
handle. The purpose of this paper is to introduce
a simple method for constructing irreducible rep-
resentations of S; from n-fold products of two-di-
mensional ones.

To illustrate the method, we use it to construct
properly symmetrized states of three pions with
arbitrary spin and parity, and with various iso~
spins. We also construct antisymmetric states of
three nucleons with various isospin, intrinsic-
spin, and orbital-motion properties. Many of our
results have, of course, been obtained by other
means in the past; however, our general method
and our results for general orbital motion are new.

Our general method is based upon a very simple
device which is described in Sec. II. It is then
applied to Dalitz-plot!? variables, momentum vec-
tors, and isospin and intrinsic-spin variables in
Sec. III. The general forms of three-particle wave
functions are given in Sec. IV, and some applica-
tions are briefly discussed in the Conclusion.

1. THE TWO-DIMENSIONAL REPRESENTATION

" Our basic approach to the two-dimensional rep-
resentation of S; is to represent it as a vector in
an Argand diagram. The actions of S; upon this
vector consist of rotations through 120° and reflec-
tion in the real axis of this diagram. It is the
simplicity of these actions that enables us to clas-
sify the n-fold products of two-dimensional rep-
resentations almost by inspection.

Let us represent the three objects to be permuted
as basis vectors ey, e,, e;, in some linear space.

The vector .

E=73(e; +ey+e,) (2.1)

is symmetric under any permutation of the basis
vectors, while the two orthogonal vectors

A :-é-(el +ey— 2e,),
(2.2)

1
B=—=(e;~-ey)
2v3 't
transform into one another. We now construct an
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Afgand diagram in which A and B are the “real”
and “imaginary” parts, respectively, of a “com-
plex” number

Z=A-jB, j*=-1. (2. 3a)

The symbol j has exactly the same properties as
the imaginary number #, but is entirely distinct
from it; here j serves as a basis vector for the
2, representation. In analogy with complex con-
jugation, we define the “permutation conjugate” of
Z to be

Z*=A +jB. (2. 3b)

The six elements of S; consist of three transpo-
sitions (12), (13), (23); two cycles (123),. (132); and
the identity element (I). It is not difficult to show
that the actions of these elements upon Z are

12) z=z*, @ Z=Z
(13) Zz=2z%7"/3, (132) Z=2z¢'%/3, 2.4)
(23) Z =27 /3, (123) Z =Ze'*7/3,

where ¢’ has the usual meaning of cosé +j siné.
We emphasize that e;, e,, e;, and hence A and B,
can represent any objects, be they spatial coor-
dinates, spins, isospins, or anything else. Thus
Eq. (2.4) represents the actions of S5 upon any
specific realization of the basis vectors.

Now consider a pair of two-dimensional repre-
sentations Z, and Z; which transform according
to Eq. (2.4). The Clebsch-Gordan series for the
product is’

2,82, =152, (2.5)
M M

and our problem is to pick out the appropriate ex-
pressions for the representations on the right-hand
side of Eq. (2.5). Since the basic actions of S,
consist of permutation conjugation and rotations of
120° in the Argand diagram, we begin by consider-
ing the product Z,Z%; under the first column of

Eq. (2.4) it transforms into Z3Z; and under the
second column it remains unchanged. Thus the

S; invariant, or totally symmetric product is the
“real” part:

15=(Z2,2%) +(Z3Z). ' (2.6)

The totally antisymmetric product changes sign
under the first column of Eq. (2.4), but is invar-
iant under the second column. Thus it is the im-
aginary part:

1,=j(Z2425-252,) . 2.7

When Z, and Z; are identical, the totally symme-
tric combination is the “square modulus” of Z,
and the totally antisymmetric combination van-
ishes, as it should.

To pick out the 2, representation we consider

the algebraic product Z,Zz. Under Eq. (2.4) it
transforms in almost the same way as Z itself:
The only difference is that the phase factors for
ZyZg, i.e., the e’?r/3 factors, are the permuta-
tional conjugates of the corresponding factors for
Z. This means that the permutation conjugate of
Z 4Zg transforms in exactly the same way as Z;
thus

2u=Zs =(Z,Z ). (2.8)
It is easy to extend these results to products of
more representations. From Egs. (2.6), (2.7),

and (2.8), for example, we find that for three rep-
resentations

1s—j14=(2,2%) =2 Z4Z,. (2.9)

For products of an arbitrary number of represen-
tations, we define

Z,=24ZyZ, --Z, (n-factors) (2.10)
and find that under Eq. (2.4)

(12) z,=2z7, n z,=z,,

(13) Z,=2Z%7%™/3 (132) Z,=Z,e"*™/3, (2.11)

(23) Z,=Z5e"™/3, (123) Z,=Z,e'"™/3, .
We now distinguish three cases corresponding to

n=3k+7v, v=0,1,2. (2.12)

When » =0, the phase factors in Eq. (2.11) are
all unity, and we have exactly the same situation
as in Eq. (2.9), namely that the “real” part of Z,
is totally symmetric, and the “imaginary” part is
totally antisymmetric:

Z"EIS—].IA, n=23=k. (2. 13)

When 7 =1, the phase factors in Eq. (2.11) are ex-
actly the same as those for Z in Eq. (2.4), and
when ¥ =2 they are the permutation conjugates of
the phases for Z. Thus the two-dimensional rep-
resentations in the product are

Z,=2y, n=3k+1
Z3=2,, n=3k+2.

From Eq. (2.13) and the first line of Eq. (2.14),
we can show that if C, is a totally antisymmetric
quantity, then the 2, contained in the product of
C, with any Z is given by

ChZ=2,.

(2.14)

(2.15)

We can also show this directly from Eq. (2. 4).
Given these results, we can determine the Cle-
bsch-Gordan series for any number of two-dimen-
sional representations. It should be emphasized
that the various Z factors in Eq. (2.10) need not
all refer to the same realization of the basis vec-
tors. Thus some Z factors could refer to spatial
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coordinates, others to isospin, and still others to
color. The following sections will demonstrate
this point.

III. CONSTRUCTION OF S; REPRESENTATIONS

In this section we construct representations of
S; from various powers of the coordinates des-
cribing a three-particle system. We begin with
the Dalitz plot, or energy variables and determine
the S; properties of arbitrary powers of these
variables; then we do the same for the momentum
vectors of the particles. Finally we consider spin,
or isospin variables: Here the requirements are
somewhat different from the energy and momentum
variables in that the basic spin, or isospin wave
function must always be a product of the wave func-
tions of each particle. Our classification of the
representations of S; applies to all spins or iso-
spin eigenvalues from 3 to infinity.

A. Dalitz-plot variables

We describe each of the three pions by a four-
momentum vector k; (i =1, 2, 3) and introduce a
center-of-mass momentum

3
K_—_z; k. (3.1)

Instead of the energies of the pions, we use the
usual Mandelstam variables

S;=-— (K— k{)z,
3
is,:3sO=M2+Z m?, (3.2)
1 1

where M is the invariant mass of the three-pion
system and m; is the mass of the 7th pion. The
standard Dalitz-plot variables are

1 .
y=(sp—s3) =pcosy, X= (s1~ sy) =p sing.
3.3)

A comparison of these expressions with Egs.
(2.1) to (2. 3) indicates that s, is symmetric under
permutations and that y and x belong to the 2, rep-
resentation: :

Zy=y - jx=pe®, (3.4)

It follows immediately from the results of the pre-
ceding section that powers of Z can be classified
in the following representations of Sj:

15: p%, p*cos3ko,
1,: p*sin3ke, (3.5)
2, (2%, (202

These results are well known from studies of
K~ 3716 .

B. Momentum vectors

The Dalitz-plot variables are scalars under ro-
tations, and the only quantities we can construct.
from them are scalars. We now turn to quanti-
ties from which we can construct vectors and
higher tensors under rotation, namely the momen-
tum vectors of the pions.

In exactly the same way as in Egs. (2. 3)-(2.3),
they can be written as a totally symmetric vector,

K=1(K +K, +k;), . (3.6)
and as a mixed symmetry pair,

Ky=1(& +E, - 2Ky,
(3.7

In the center-of-mass frame K vanishes and KA
=- %(k?,). Corresponding components of K, and

Kp form 2, representations of S,

Z, =K - jKpy, (3.8)

where X denotes a Cartesian, or a spherical com-
ponent of the vectors in Eq. (3. 7).

For spherical components, it should be remem-
bered that “permutation” conjugation as defined in
Egs. (2.3a) and (2. 3b) sends Z, into Ky, +jKp,,
but it does not change a spherical component such
as re!® with A =+1 into 7e™*® with A == 1. Only
complex conjugation does that.

The product Z,Z73, behaves like a linear combin-
ation of 15 and 1, under S, for all choices of A and
[T

ZZ, +25Z ,=1g,

Jj@Z\ZL -Z,Z)=1,.

(3.9

Since the 15 part is also symmetric in A and u, it
behaves as a combination of a rotational scalar
and a tensor of rank 2. Because the identity

3 X 1 % 2 2
; 2,25=12725+1 (M -3 my ) (3.10)

relates the scalar component to products of Z,,
the second rank tensor, namely

1s=2,2}, +Z,Z5- %5, (ZZQZ’;>, (3.11)

is the only new term of interest. The 1, term in
Eq. (3.9) is automatically antisymmetric in X and
W, and so it behaves as a rotational vector

szeluvzhzz
~Kux Ky (3.12)

> - }
~Kk XKk, in c.m.s. frame.
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In the 2, representation (Z,Z,)" we again have a
quantity which is symmetric in A and p, and which
therefore behaves as a combination of scalar and
second-rank tensor. The identity

d = 1 2 1 »x
;Zuza_ el + 173 (3.13)

relates the scalar component to known functions of
Z, and so the second-rank tensor

x
2M_=_<leu‘_%6ku.z ZozZa>

is again the only new term of interest.

In general, the n-fold product of Z,’s has per-
mutation properties which depend on n [see Egs.
(2.10)-(2.14)]:

(3.14)

1S —ley n =3k

ZMZAQ'”ZM.E 2y, n=3k+1 (3.15)
2, n=23k+2.
It is symmetric in the components Ay, Ay, . . . , A,

and hence it contains an admixture of rotational
tensors of ranks n, (n~2), (k—4),... down to

0 (# even) or 1 (# odd). The highest rank tensor
and all of its components can be selected by set-
ting A, Ay, .+ . , A, all equal to their maximum val-
ue of (+1) (in spherical coordinates) and then op-
erating on this state 2n times with the total angu-
lar momentum lowering operator L_; this operator
lowers the A eigenvalue of Z, by one unit without
changing its S; behavior. The next tensor, of rank
(= 2), can be selected by contracting two com-
ponents, say A, and X,, and applying the above pro-
cedure to the remaining A5, 24,. . . ,2,. Because
of the identity in Eq. (3.13), however, we might
just as well work with an (z - 2)-fold product of

Z, in this case, similarly for the (n-4), (n—6),
and lower rank tensors.

To construct tensors of a fixed rank » which
transform according to each of the S; representa-
tions, let us set A{ =Xy=-.. =), =1 in Eq. (3.15)
and suppose that n =3k. Then (Z,)" and its permu-
tational conjugate form the 15 and 1, representa-
tions. If we replace one Z, factor by its permuta-
tion conjugate, we do not alter the rotational prop-
erty of the product but we do change its S ; behav-
ior. The product now takes a form (Z,2%)(z,)3* "
in which the first factor is totally symmetric and
the second behaves like 2),: Thus the entire prod-
uct behaves like 2,,.

The cases n =3k +1 and n =3k +2 can be treated
in a similar way. Thus for any », we can con-
struct rotational tensors with rank » and third-
component eigenvalues equal to » which transform
according to any of the irreducible representations
of S;; they are displayed in Table I. Tensors with
smaller third-component eigenvalues can be gen-
erated from them by applying the lowering opera-
tor L_ a sufficient number of times.

So far the tensors we have constructed corres-
pond to three-pion states with angular momentum
n and parity (-1)"(-1)® where the first factor comes
from the orbital motion and the second from the
intrinsic parity of the pions. We can create states
of the same angular momentum but opposite parity
by replacing one Z, factor by @, [see Eq. (3.12)].
This changes the S; properties of the particular
product in which the substitution is made, but it
is still possible to find nth-rank tensors with par-
ity (=1)™!(-1) belonging to each representation of
S3. These tensors are shown in Table II.

C. Isospin vectors

Turning to the isospin vectors m; (i=1,2, 3) of
the three pions, we can again form a symmetric
linear combination

elz—;('rri + Ty + )y, (3.16)

TABLE L. Representations of S in terms of spatial wave functions with J® =7 (- 1)** 3 and
an L g eigenvalue-of . The parity includes the intrinsic parity of the pions.

S 3 representation Ig—jl, 2y
JP
3k+1,-j(Br+1)¢
0~ p €
p3ke=i(3r9) p3kt 2,i(Br+2)9

1* Zpei® z,

2" (ZIZ’i) (Z1Z1)x

n(=1y"*3, n=3p @) @31z
n(=10"% m=3p+1 @)* "ty @t
n(=1"*3, n=3p +2 CALARIVANY (Z5)3+2
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TABLE II. Representations of S in terms of spatial wave functions with J® =7 (— 1) *4
and an L 3 eigenvalue of . The parity includes the pion intrinsic parity. pc denotes permuta-

tional conjugate. @, is defined in Eq. (3.12).

A S 3 representation 1, 2y

7 :
1" . Q cee
ot cee cee QZ
3 e Q1Z:27) Q12%?
n(-1"" m=3p+1 Q& -pe) Qy(Z% +pe) AT A
n(=1* n=3p+2 QUZMI@P -pel  lZ%THEY)? +pcl @z
n(=1"* n=3p+3  QEMT1ZY-po) Q& 1Z% +pc) Quepr

for each charge component A, and a pair with
mixed symmetry :

GH=m=iby, (3.17a)

a = % (_771 +my = 23,

1
by = ——=(my = y),.
y =2 7 1= Taly
The isospin wave function, unlike its spatial coun-
terpart, must be constructed from products of the
form my,, my,, 7. Thus we must invert Eqgs.
(3.16) and (3.17) and decompose the product into
irreducible representations.
Inverting the expressions for e, and z,, we ob-
tain
T =6, +2,e"/3 + 25" 7/3

Tou =€p +Zu-e-j'/3+zieh/3’ : (3.17p)

x
Mgy =€,=2,—=23 .

It then turns out that we can decompose the prod-
ucts of the three-pion wave functions into irredu-
cible representations of S; by using the permuta-
tional symmetry with respect to A, u,v. For the
totally symmetric and antisymmetric representa-
tions we have

Is= % Z (T1aT3uT5)

all perms
Ay

— X %X %
= (eheuev_ R )RRy = BYR Ry

-1 > (ewu2d) (3.18)
all perms
rnv
and
1,=det(m,my,Ty,) = 3V3 j det(exz ,27), (3.19)

respectively. The mixed symmetry expression is

2,=3 D

cyclic perms
Apv

%% x
(szuev_ exeuzv“zhzuzv)

- 9(zhzier = eue,zy — 2,42,23)
=A(\pv) - jB(uv), (3.20)
where

2ARY) = [ (1 2 Tou + Ty, T T,
+ (T4, Top + T2 o) Tay
= 2(myumy, + WIV‘IT.QU:)WS).]’
2B(\v) =3 [(1,Ty = 11, )73,
— (T4, Tgp = T Tg) T, . (3.21)

The totally symmetric expression in Eq. (3.18)
contains isospins 1 and 3, the antisymmetric ex-
pression of Eq. (3.19) has isospin zero, and the
mixed symmetry terms of Eq. (3.21) are admix-~
tures of isospin 1 and 2. In the conventional
scheme in which m; and 7, are coupled to a result-
ant isospin T by means of Clebsch-Gordan co-
efficients and this resultant is coupled with 75 to
an overall isospin (T, T,), we find that the sym-
metric states are’: :

13’ Tz(ls» = } (2)31 Tz> ’
(3.22)
: V5
1, T(e)) =5 |01, T2) +4 (1, T,
where the number in parentheses denotes the inter-

mediate resultant Tz. The antisymmetric state is
the triple scalar product, or

lo(1,)) =] (1)0). (3.23)

The A and B states of isospin (T',T,) correspond-
ing to the mixed symmetry expressions of Egs.
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(3.20) and (3.21) are

Z|2,T,2,))=@2,T.,)-j|(1)2,T,) (3. 24)
and
le,Tz(2M>>=g (@1, 7)-2|01,7,)
+7] (D1, T,). (3. 25)

General expressions for these states |(Tg)T,T,)
can be found in the paper of Barton, Kacser, and
Rosen. ?

D. Generalizations to other spins

Although the results of the two preceding sec-
tions have been derived for the specific case of
momentum and isospin vectors, they can easily be
generalized to other tensors. In Eq. (3.7), for
example, the vectors k; can be replaced by spher-
ical tensors of rank 9, where 9 is arbitrary; the
index A in Eq. (3.8) now runs from (=) to (+91)
instead of (—1) to (+1). The rotational properties
of the various products of Z, discussed in Eqgs.
(3.9) to (3.17) will now depend on 9, but their
permutational properties under S; remain the same
for all values of oM. Our methods for picking out
rotational tensors from n-fold products of Z, are
readily generalized from the vector to the mth-
rank-tensor case.

In a similar way, the results of Sec. IIIC, for
isovectors can be extended to other isospins by
allowing the indices A, u, v in Egs. (3.16) to (3.21)
to run from (~I) to (+1I) instead of (1) to (+1);
moreover, I can take on integer, or half-integer
values. When I=3, the results of Egs. (3.18) to
(3.21) reproduce well-known results for the iso-
spins of three-nucleon systems: Thus the 15 state
of Eq. (3.18) has a total isospin of 3; the 1, state
of Eq. (3.19) vanishes identically because two of
the three indices A, u, ¥ must always be equal for
I=3%; and the 2, states of Eqs. (3.20) and (3. 21)
reproduce the standard mixed symmetry isospin
wave functions for the triton and *He (Ref. 8) or
for the neutron and proton in terms of # and d
quarks.® For example, define

(3.26)

and set A=p =3, v=—3 in Eq. (3.21); we then ob-
tain the usual expressions with mixed symmetry?

244 /9,1 72-172 == [(@(1)B(2) + @ (2)8(1)) a(3)
- 2a(1)a(2)8(3)],
2By /3,1/9-1/2== V3 [(B(1)a(2) - a(1)B(2)) (3)].
(3.27)

The application of these results to the intrinsic
spin of nucleons and to particles with higher spins

TO=T e, B=Tlqg

is just a matter of interpretation; the @ and 8
states of Eq. (3.27) could just as well be intrinsic
spin states as well as isospin ones.

IV. THREE-PARTICLE WAVE FUNCTIONS

Having constructed the representations of Sy in
terms of Dalitz-plot coordinates, momenta, and
isospins, we are now in a position to construct
three-pion wave functions for any state of angular
momentum, parity, and isospin.

Following Zemach? we write the basic wave func-
tions as products of three factors

BT =PI) X PUF) X YF), (4.1)
where ¥(I) describes the isospin, #(J*) the spin
and parity, and Y(F) is a form factor which behaves
as a scalar under spatial rotations and reflections.
The overall permutation properties must be sym-
metric and so the structure of the wave function is
as follows for symmetric isospin states:

1s()X 15(I7) x 1 4(F)
Y(3m) = {1s(I) X 14(JF) X 14(F) (4.2)
1s)X ZWP)X Z*(F) +pc,
where pc denotes permutation conjugate. For
antisymmetric isospin states, the possibilities are
140X 1,P)X 15(F)
! .
P37 = {14U) X 15(J7) X 1 4(F) 4.3)
140 % [2(TP)x Z*(F) - pc],

and for mixed-symmetry isospin there are five
combinations:

([Z21)X 25(P) +pe]x 15(F)
(2% 2%(J7) - pe] X 1,(F)
¥(3m) =( [Z()X Z*(F) +pc]X 15F) (4.4)
[Z(D)x Z*(F) - pe] X 1,4(J7)
k[Z(I)>< ZJP)X Z(F) +pc] .

The isospin wave functions classified according
to their S; properties are given in Egs. (3.22)-
(3.25), the spin-parity wave functions are given in
Tables I and II, and the general forms of the form
factors are )

PEF,15)=" ayp®* cossko,
k=0

YEF, 1) =3 byp* sin3kg, (4.5)
k=1

Y(F, 2,) = Z (Cpplettemitarsto + el Doy
k=0
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Thus given any set of quantum numbers for the
three pions, we can construct all possible wave
functions from Eqs. (4.2)-(4.4).

For certain quantum numbers we do not need all
the formulas in Eqs. (4.2)-(4.4). When I=0, for
example, the isospin wave function behaves like
1, and we only need Eq. (4.3); similarly for spin
zero, we need only those expressions involving
15(J%), and for J¥ =1~ (see Table II), we need only
the 1,(J%) expressions. Other properties such as
CP invariance may further reduce the number of
independent expressions.

Another application of these methods is to the
three-fermion problem. The first case we con-
sider is the three-quark wave function that occurs
in the nucleon, the A resonance, and in their ex-
cited states.? The color-singlet wave function is
totally antisymmetric under permutation of the
quarks, and so the product of isospin, spin, and
space wave functions must be totally symmetric.
We write this product as

¥(3q) =) X P(S) X (r), (4.6)

where ¥(I) is the isospin factor, ¥(S) the spin, and
() the spatial wave function. Since the isospin
and spin wave functions belong to the 1g(/ =-g-) and
ZM(Iz-%) representations, the relevent formulas
are contained in Egs. (4.2) and (4. 4) with the ob-
vious substitutions of S and T for J¥ and F. When
the three quarks are in the same shell (that is,

. when they have the same principal quantum number
and the same orbital angular momentum 1), then
we can regard the E‘ of Sec. III as representing the

appropriate spherical harmonics and we can con-
struct () from the corresponding Z, and product
formulas analogous to Eqs. (3.18)- (3.21). The
2, spin and isospin functions are as in Eq. (3. 27).
Next we consider the three-nucleon problem. 8

In this case there are no color indices to be anti-
symmetrized, and so the product of isospin, spin,
and spatial wave functions must be antisymmetric.
Thus

rls(l)x 15(S) X 1,4(F)

1) X [Z(S)x Z*(F) - pe]

Z()X15(S)x Z*(F) - pc (4.6)
Z(I)X Z*5(S) X 14(F) - pe

Z(I)X Z%(S) X 1,(F) +pc

\Z(I)X Z(S)X Z(¥) - pc.

Y(3N) =

N

Again the spatial wave function can be constructed
in a manner analogous to Z, when the nucleons are
in the same shell.

Finally we could also consider the three-electron
problem. In this case there is no isospin and so
the first two lines of Eq. (4. 7) contain the relevant
formulas.

We shall apply these results to the decays of
various pseudoscalar mesons in a subsequent pa-
per. Of particular interest will be the structure
of the Dalitz plot, and relationships between dif-
ferent decay modes predicted by various selection
rules.
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