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Chang and Nelson have recently constructed an analog of Yang's parity test for a spin-zero particle which
decays into P$. We show that a simple generalization of this test allows one to determine the parity of a
system of any spin J which decays into PP. In addition, with certain exceptions, one can determine (—1) .

Recently, Chang and Nelson' have constructed
an analog of Yang's' parity test that enables one
to determine the parity of a spin-zero particle
which decays into two g mesons. The test is
based on the dependence of the decay distribution
on the azimuthal angle y between the two y -K'K"
decay planes. They show that the distribution is
given by

I+ P cos2X,

where

P = -1, pseudoscalar particle,

0 (P (1, scalar particle.

In this note, we extend their result to a particle
of spin J and show that measurements of this type
can be very useful in determining the parity g and
the signature (-1)~ of the particle. In addition to u „, , =n(-I)'u, ~.

Likewise, we learn from that paper that the
identity of the two p's requires in addition that

(2)

the dependence on y, we will also make some use
of the dependence on 8, the polar angle of the K
momentum in the rest system of the y with re-
spect to the helicity axis. (See Fig. 1 for the
definition of the angles. ) The main advantage of
this test is that it is independent of the polariza-
tion state of the particle. '

The matrix element for the decay of the particle
into PP is defined by

(e, C, It„q, i
vie)=D„", (C, e,-c)a„+, (1)

where X„A, denote the helicities of the two P's
and A, =&y &2 The angles are defined in the
particle's rest system in the usual way; see Fig.
2.

According to Jacob and Wick, 4 parity conserva-
tion in the decay implies that

K

FIG. 1. The angles describing the $ decay, in the $i
rest system, $2 moving in the negative z direction.

FIG. 2. The angles describing the tI5 i/2 distribution in
their center-of-mass system.
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These are the relations on which our results are
based. The point is that for certain values of q,
(-1), &„and k, (2) and (3) are incompatible
and force the corresponding a» to vanish. In1 2
Table I, we list the nonvanishing amplitudes for
the various values of (-1)~ and q We see that for
q= (-l)~ = -1 there is only a single nonvanishing
amplitude, for q= -(-1)~ there are two independent
amplitudes, and only for (-l)~ = q =+1 are all
four amplitudes present. One difficulty always
encountered in this sort of problem is that some
amplitudes may vanish even though (2) and (3)

allow them to be nonzero. We shall see that this
difficulty can be overcome to a large extent, but
not completely.

The decay matrix element for the P decay into
K'K is given simply by

( &,y, i
IX ) = CD' (cp„8„-y ),

where C is a constant, irrelevant to our problem.
Thus, if the initial density matrix of the particle
decaying into pp is p„„„the general decay dis-
tribution is given by

f(e @ ~. P1 ~2 e2}= Q &u~ D~1 (4' 8 -@)D~1(@O @} 11 ~1'1'D"0(m1 81 -V1)Dgo(V2 S2 -e2)
N~N

Xg QX,Q

1 0(P1& 1&9 1) 1 0(92t 21 92) ' (5)

It is clear that if we define

V. =-41-X}
then X is the azimuthal angle between the two de-
cay planes. I.et us keep X fixed and integrate
over all 0 &cp, &2m; that is, we keep the angle
between the decay planes fixed and sum over all
orientations of the decay planes about the axis
defined by the p momentum. Notice from (5) that
the dependence on qr, is of the form

exp[i y, (A., —A —X', + X')],

so the integral over all y, leaves only those
terms in (5) with

X1 —k = X1 —X'

A = A1 —X1= k —A' .

Now, with X= X' we can use the orthogonality of
the D~1 (C, e, -C) to integrate the distribution
over all p directions. This forces M =M' and the
sum on M in (5) can be done yielding Tr p as a
factor. Hence, the remaining distribution are
independent of the initial polarization state.
Finally, the Clebsch-Gordan series' for combining
products of D's can be used to write the remain-
ing distribution as

1(e„e„q)=Tr pg a, , a,*,
&

e""(-1)' "(2j+1)(2j'+1)~/I 1 j (I 1 j' (I 1 j /I 1 j'
(000)I,000) (~, X,'A. f (q X,

' a)

(8)

This same distribution is obtained if the initial
particle is unpolarized, independently of the in-
tegral just done; in that case, the distribution is
isotropic in 4, 0, and y, .

We now wish to consider separately the y and
8, distribution given by (8). The general form for
the X distribution is

E (y) = 1+ n cosy+ p cos2y,

cosy coming from the terms in (8}with A = +I and
cos2X coming from those with A. =+2. The value of
o and P depends on the 8, and 82 acceptances inte-
grated over in going from (8) to (9}. If the full m

acceptance (or any acceptance symmetric about.
90'} is integrated over, 01=0. This result depends
only on the assumption that the K'K comes from
a Q decay and not on any assumption regarding
the source of the p's. This comes about because

d (cos8) d f0 (6) = 0 for j even,

and the only way that an odd j could occur in (8) is
if the K'K system occurs in both even and odd
partial waves. [(0~1 0~2~0) = 0 unless (-1)~1+I2+~

=+ L] Hence a, nonzero n in such circumstance
is a direct indication that there is interference
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TABI K I. The decay helicity amplitudes which are
permitted to be nonzero for the various possible values
of parity g and signature (-1)~ .

Nonvanishing amplitudes

a+p =a -0 ——a 0+ -ap

(a (
—(a (

—ja j'+ (a (

2(g j + jg ( +2(g j +4(g (13)

In general, -1 &f &2; however, if app 0 then
so if g&-,' we uniquely have (-1)~=@=+1.

If n = —,
' and P=0 so g=-1, we have uniquely

f= —,'; i.e. ,

a+0= a 0= —ap+ =ap„
a+ =-a +

a+ p
= a p+ = —a p

= -ap-
a++ = -a

a+p=ap+ =a p=ap„
a+ =a +

a++ =a
app

2gja
2 ja„j'+ ja«('+4 ja„('+2 ja, j' (10)

2Re(a„a),) —2q ) a„I'
2 ja„('+ (a«('+4(ap, j +2 ja, j'

between the y decay and some even angular mo-
mentum background, ~ and P can be worked out
for an arbitrary acceptance but we present re-
sults only for an acceptance of 0 & 8, & —,

'
7t. With

this assumed acceptance, we can directly work out
the expressions for n and P, using Eqs. (2) and
(3} to express the result in terms of four inde-
pendent amplitudes

G (8,) = —,
' (1+cos'8)

independent of (-1)~, so for q = -1 and P = 0 we
cannot determine (—1) by this method. For
@=+1we can do better because, if P =0, then

g+ 3ot. = -1+ 4(a
(app(2+2(a, ( +4(a,p j

by combining (11) and (12). Hence, if f+ Sn 4 -1
we must have a«g 0 and (—l)~ =+1. If l'+ Sn = -1
we cannot determine (-1)~ in this way.

This seems to be the maximum amount of in-
formation that can be determined in this way.
The results are summarized in Table II. We
might mention several cross checks that can be
made, which must be satisfied if the y's are in
a state of definite g and (-1)~: (i) P&0 requires
n = -,'(1+ P) because q = -I; (ii) if P = 0 then if
n&0, n must have the value —,'; (iii) if P=0 then
g 3[ [= I.

Finally, although one cannot in general deter-
mine the particle's spin in this way, it may be
possible to rule out J=0 or 1 because then there
are fewer amplitudes a~ + and constraints are ob-

ey)t2

tained. Thus, if J=0, as in the case considered
by Chang and Nelson, only a» and a„=g a are

TABI E II. Allowed states for various values or ranges
of the parameters &,P, and f.

(p is the same for m or ~m acceptance. o.'van-
ishes for m acceptance. )

We see immediately from this and Table I that
if PWO, then (-1)~=+1; otherwise, a„=0. At the
same time, the sign of P gives the parity of the
state. Thus, if P oO, all the information obtain-.
able by these measurements is fixed and the re-
maining dependences are not needed, but of
course can be used for a check.

If P = 0, then from (11)we see that g is again
determined. In fact, we see from Table I that if
a„=0, q= -1 requires that n = —,

' for either value
of (-1}~. g=+ 1 simply requires that ——,

' & n & 0.
To obtain information about (-1)~ when P =0,

we go to our third parameter g. If we integrate
the distribution (8) over y and 8„we get a 8,
distribution of the form

G (8,) = 1+ l' P, (cos8,),
when

Value of parameters

P&0

P&0

P=O

and 0,'= 2

P=O

and n~O

P=O

and n& 0

aud g = Slnl-i

Allowed s tates

(-1) = a=+1

(-1)' = +1,

(-1)~ = g=+1

( 1) =+1, q= -1J'

(-1)'= v=+1

(-1)~ =+1, g= +1
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nonzero. For g= —1, app 0 and we have amplitude and so the distributions are unique

P= -1,
a = 0, for J= 0, g = -1.

P=O,

c. = —q/2, for a=1.

For J=O and g=+1, the constraints are weaker
but it is easy to combine (10), (11), and (13) to
show that

0&P&1,

)=2 —3P, for J=O, @=+1.

= [2V(1 —C)]'"

For J=1 only a» with ~X, —4
~

= 1 are allowed;
from Table I, we see that this leaves only one

These results obviously do not depend on any
special properties of the p and will be valid for
any suitable identical vector-meson system.
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thank S. U. Chung, S. Ozaki, W. Love, and A.
Saulys for useful and stimulating discussions.
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