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The question of the existence of the soft-photon expansion and its connection with the derivation of the soft-
photon theorem is studied. We find that the soft-photon expansion does not necessarily exist for all possible
bremsstrahlung cross sections, and if such an expansion does not exist for some types of cross section, then
the soft-photon theorem cannot be derived for them. We define two different classes of bremsstrahlung cross
section for our study, which we call the 0-type cross section and the R.-type cross section. We find that the
R-type cross section can be expanded in powers of k (photon momentum) with a11 coefficients of the
expansion which are independent of k, while the 0-type cross section can only have an expansion whose
coefficients are all functions of k. Moreover, we have shown that those coefficients which are functions of k
must necessarily contain off'-shell parameters. Therefore, we conclude that the soft-photon expansion exists
and hence the soft-photon theorem can be derived only for the R-type cross section, This strongly implies
that the R-type cross section is to be preferred for the study of.bremsstrahlung processes.

I. INTRODUCTION given by Eg. (la):

a= —+a', +o,k+''',0'
i (la)

where

8
o, = lim —(ko)„0~0 8k

and
Q2

o, = lim, (ko)„.
A/2 . X ~

Here the g,. refer to the set of observables which
are held constant in carrying out the partial dif-
ferentiation. We emphasize that all coefficients
in this expansion are independent of k. In terms
of this expansion, the soft-photon theorem states
that g, and 0, are independent of the off-mass-
shell effects (or off-energy-shell effects) and that
they can be evaluated from the amplitude of the
corresponding nonradiative process (or elastic
process) and its derivatives. This theorem thus
provides us with an approximate method for calcu-
lating bremsstrahlung cross sections. In this ap-
proximation, known as the soft-photon approxima-
tion (SPA), one calculates the cross sections by
retaining only the first two terms of the expansion

The soft-photon theorem (or Low's theorem or
the low-energy theorem for photons) has played an
important role in the study of all bremsstrahlung
processes. The derivation of this theorem is based
upon the important soft-photon expansion, which
gives the bremsstrahlung cross section 0 as an ex-
pansion in powers of the photon energy 4:

~O'„

~SPA (1b)

When o~~„ is plotted as a function of Q, Eq. (1b)
yields a family of hyperbolas characterized by two
constants, o, and 0,. For a given o „the shape
of the hyperbola is determined and the constant o,
will shift this hyperbola up or down along the ver-
tical axis without changing this shape. The univer-
sal characteristic curves for the SPA are there-
fore hyperbolas if o»A is plotted as a function of

Those calculations which fail to produce these
characteristic curves should not be classified as
the SPA.

The importance of this SPA calculation can be
understood as follows: As we know, measuring
off-mass-shell effects is one of the main reasons
given for st&dying the bremsstrahlung processes.
Since the SPA is a model-independent calculation
which uses only the on-shell amplitude of the cor-
responding nonradiative process as an input for
calculating radiative cross sections, the cross
section os» produced by Eg. (1b) will provide us
with an "on-shell model-independent cross sec-
tion". A comparison of this with experiment can
then provide physically meaningful information about
the possible off-mass-shell effects (and resonance
effects, if any) which can be extrac'ted from the
data. Moreover, since all model-dependent cal-
culations, which may contain some approximations
and assumptions, should reproduce the result of
the SPA in the soft-photon region, the SPA can be
used not only to extract the off-mass-shell effects
produced from these models but also to check the
validity of these model-dependent calculations. '
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18 SOFT-PHOTON EXPANSION AND SOFT-PHOTON THEOREM

The soft-photon theorem was first derived by
Low' and was later generalized and extended by
many other authors' using the formalism of rela-
tivistic quantum field theory. Since bremsstrah-
lung can also be calculated from a potential theory,
several authors have rederived the theorem using
the Lippmann-Schwinger formalism. ' Unfortunate-
ly, in all these derivations, the kinematics and dy-
namics of the bremsstrahlung process were ~ot
expanded consistently and completely. ' As a re-
sult, the expansion obtained previously was not ap-
propriate to the soft-photon theorem. The incom-
plete expansion can be written as

o= i +o'(k)+o'(k)k+''' 'o,(k) (2a)

Here all coefficients in Eq. (2a) are functions of k,
and as we shall show later, although o,(k) and

o,(k) are independent of off-shell derivatives, they
are still functions of off-shell parameters. The
cross section calculated from the first two terms
of Eq. (2a) has the form

o,(k) („)
k

(2b)

Obviously, when o is plotted against k, Eq. (2b)
does not represent a family of hyperbolas. There-
fore, all calculations based upon Eq. (2b) should
not be classified as the SPA. Equation (2b) has
been applied to predict the pion-proton brems-
strahlung cross section, d'o/dQ, dQ+k, at 298 MeV
for various H„and p„. The predicted spectra rise
steeply with increasing photon energy above 4= 80
MeV in complete disagreement with UCLA data. '~'

The problems arise from o,(k) and v,(k) which are
not independent of k (or off-shell parameters). If
we look at the UCLA data, we find that every
bremsstrahlung spectrum obtained by the UCLA.

group exhibits the shape of hyperbola in agreement
with the characteristic curve of the SPA given by
Eq. (1b). This observation was supported by a re-
cent calculation. Nutt and I have used Eq. (1b) to
predict the coplanar g'py cross section and have
obtained results which are in excellent agreement
with the UCLA. data. ' These results show that the
soft-photon theo'rem, derived from the correct
soft-photon expansion Eq. (la), works remarkably
well for z'py at 298 MeV. However, there is an
important problem which has not been studied.
This problem is related to the following question:
Does a physically meaningful soft-photon expan-
sion, Eq. (la), exists for all possible bremsstrah-
lung cross sections 7

In Eq. (1a), the independent variables in the ex-
pression for 0 are not specified. As we know, in
all present bremsstrahlung experiments, there
are three outgoing particles with nine degrees of

freedom. This is reduced to five by the four equa-
tions of energy-momentum conservation. 0 is
therefore a function of five independent kinematical
variables. Since the choice of these five indepen-.
dent variables is quite different for different ex-
perimental geometries, many different types of
cross section can be constructed. Thus, if Eq. (la)
could be written without specifying the explicit ex-
pression of cr, it would imply that the soft-photon
expansion exists for all the various cross sections
which can be constructed. But the question is
whether such an expansion exists in terms of phys-
ically meaningful quantities for all possible cross
sections. This question has not been studied. The
importance of the question can be easily under-
stood. The existence of the soft-photon expansion
is essential for the derivation of the soft-photon
theorem. This means that the theorem can be de-
rived if and only if the expansion given by Eq. (la)
exists. If such an expansion does not exist for
some types of cross section, then the theorem can-
not be derived for them and the SPA given by Eq.
(1b) cannot be applied to predict those cross sec-
tions. In the past, the differential cross section
implied by the expression for o in Eq. (1) was nev-
er specified because the existence of the soft-pho-
ton expansion was tacitly assumed, and the SPA
was used to predict many different cross sections
without examining its validity. The question of the
existence of the soft-photon expansion and its con-
nection with the derivation of the soft-photon theo-
rem was never before carefully studied.

The main purpose of this paper is to study this
problem carefully. We have chosen two different
classes of bremsstrahlung cross section for our
study. These two classes are very general; they
represent various standard forms of the cross sec-
tion used in many different experimental geome-
tries. We call these two classes of cross section
the H-type and the 8-type cross section. We will
show that, to our great surprise, the previous as-
sumption about the existence of the soft-photon ex-
pansion for all possible cross sections was wrong.
We have found that the soft-photon expansion does
not necessarily exist in terms of physically mean-
ingful amplitudes for all possible differential cross
sections. We have also found that the A-type cross
section does have a natural expansion in powers of
0, while the H-type cross section does not. In the
latter case, one must violate the fundamental prin-
ciple of energy-momentum conservation in order
to generate nonzero coefficients for the soft-pho-
ton expansion since the H-type cross section is
zero in the k —0 limit. This means that the B-type
cross section does have an expansion given by Eq.
(la), while the H-type cross section can only have
an expansion which is similar to Eq. (2a). Fur-



thermore, we have shown that in any expansion of
the form given by Eq. (2a), the coefficients which
are functions of k must necessarily contain off-
shell parameters. Therefore, the soft-photon the-
orem can be derived in terms of physical quanti-
ties only for the R-type cross section, and hence
that is the cross section for which a physically
useful SPA exists. This strongly implies that. the
B-type cross section is to be preferred for the
study of bremsstrahlung processes.

H. KINEMATICS AND ITS SOFT-PHOTON EXPANSION

q,". = (E,, 0, 0, qq),

p",. =(M, O, O, O),

(4a)

(4b)

q&
= (E,, q& sin&, cosg„q& sin8, sing, , q& cos&,),

p&
= (E~, p& sin&~ cosQ~, p& sin&~ sing~, pl cos&~},

(4d}

k" = (k, k sin&„cosp„, k sin&„sing„, k cos&„), (4e)

where

E =(m'+ j ')"', E,=(m'+i, ')",
E=(M+p ) i

P f
and m and M are the masses of particles A and B,
respectively. The angles 8 and g follow the usual
convention in spherical coordinates. These four-
momenta satisfy energy-momentum conservation:

It is obvious that Eg. (la) cannot be obtained
without expanding the kinematics of the brems-
strahlung process. In fact, Eg. (la) exists if and

only if the expansion of the kinematics in powers
of 0 exists. Therefore, the kinematical and dy-
namical aspects of bremsstrahlung are equally
important in the derivation of the soft-photon the-
orem, and they must be treated consistently in the
soft-photon expansion.

We consider photon emission accompanying the
scattering of two particles A. and B:

A(q", )+&(P,)-A(q,")+&(p,")+V(k") (3)

Here q", (q&) and p~& (p&) are the initial, (final) four-
momenta for particles A and B, respectively, and
k" is the four-momentum for the emitted photon.
These five four-momenta are defined in the lab-
oratory frame as

q&sin&, sing +plein&&sing&+ k sin&„sing„=0, (6b)

q&cos8, + p&cos8~+ k cos8„=q, ,

E +E~+Q=M+E].

(6c)

(6d)

For a given incident energy E„ there are nine
variables in these equations: q&, 8,, P„p&, 8&,

P~, k, 8„, and P„. If five of these are chosen to
be independent variables, then the other four can
be determined in terms of these five independent
variables by solving Eqs. (6), and the bremsstrah-
lung cross section can be expressed as a function
of these five variables. The choice of these five
independent kinematical variables is strongly in-
fluenced by experimental considerations. During
the last 15 years, a great number of nucleon-
nucleon (NN), nucleon-nucleus (tiA), nucleus-
nucleus (AA), and pion-nucleon (vN) bremsstrah-
lung experiments have been performed. The most
typical choices of five independent variables in

these experiments were the following:

(i) Choosing 8,, P, , 8~, g~, and 8„as indepen-
dent variables, such that the bremsstrahlung
cross section can be expressed in the form d'a/
dQ dQ~d&„. Here dQ,

—= sin&,d&,dg, and dQ~

sin&~—d&~dp~
(ii) Choosing, , P, , 8~, P~, and E,=-(m'+ql')~~'

as independent variables, such that the brems-
strahtung cross section can be expressed in the
form d'oldQ, dQ~dE,

(iii} Choosing 8,, p, , 8~, p~, and k as indepen-
dent variables, such that the bremsstrahlung cross
section can be express ed in th'e form d'o/dQ, dQ~dk.

.(iv) Choosing 8,, g, , 8„, p„, and k as indepen-
dent variables, such that the bremsstrahlung cross
section can be expressed in the form d'o/dQ, dQ+k.
Here dQ„= sin&„d&—+P„

These four special cases can be generalized and
classified into two classes of bremsstrahtung cross
section:

(A) H tyje cross se-ction rr„=d'o/dQ, dQ&dx. —Here
x is chosen from one of the following variables:

q&, E,, p&, E&, k, 8„,P„,P„, . . . . The independent vari-
ables for the H-type cross section are, therefore,
&„g,, 8~, P, and@.

(R) R type cross section o's=—-d'o/dQ„dkdyCk.
Here y can be either @, or p~, and k is chosen
from one of the following variables: q&, E,p&, E&,
8,, 8~, . . . . The independent variables are &„, P„,
A;, y, ands.

q& sin&, cosp, + p& sin&~ cosp~+ k sin&„cosP„=0,
\

(6a)

One should not confuse the H-type (R-type) cross
section with Harvard (Rochester) geometry since
the H-type (R-type) cross section can also be mea-
sured from Rochester (Harvard) geometry. [Har-
vard geometry refers to any experimental arrange-

'I
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q& s in 8, c os', + p& s in 8~ c os/ &

——0, (Va)

ment in which two final-state particles (A and B)
are detected and the photon momentum is calcu-
lated from Egs. (6}. Rochester geometry refers
to an experimental arrangement in which all three
final-state particles (A, B, and y) are detected. ]
There are other types of cross section which can-
not be classified into these two classes. These
types of cross section will not be discussed here,
primarily because they have never been studied
experimentally or theoretically. As can be seen
from our classification, the basic difference be-
tween these two classes of cross section lies in
their choice of independent kinematical variables.
The kinematics associated with them is therefore
different. Now, since it is impossible to have a
soft-photon expansion for any type of cross section
if the kinematics associated with it cannot be ex-
panded in powers of k, the question of the existence
of the soft-photon expansion for a cross section
can be answered by studying the existence of the
soft-photon expansion for the kinematics.

We shall carefully study the above four special
cases, (i), (ii), (iii}, and (iv), to see if there exist
soft-photon expansions for them. The results will
then be generalized to more general cases. In
each of our four special cases, there are four de-
pendent kinematical variables which are functions
of five independent variables. If a soft-photon ex-
pansion exists, then the solutions for, these four
dependent variables can be expanded in powers of
the photon energy k and the soft-photon limits for
these dependent variables (i.e. , the lowest-order
solutions for these dependent variables) must exist
as 0-0. Thus, what we are trying to determine
is whether the lowest-order solutions for these
variables exist as jg 0. The existence of such
limits means that the kinematics of the brems-
strahlung process (which is three-body kinematics)
can be reduced to the kinematics of the corre-
sponding nonradiative process (which is two-body
kinematics for elastic scattering) as k-0. If such
limits do not exist, then the expansion given by Eq.
(I) is not physically meaningful, even though one
might mathematically use analytic continuation to
define its existence.

In case (i), the dependent variables are q&, p&,
k, and p„. For a given E„ they are functions of

8„$,, 8, p, and 8„. Since k is not an indepen-
dent variable, one cannot let k approach zero ar-
bitrarily (or simply set k equal to zero). Thus,
the soft-photon limits lim~, q&, lim~, p&, and
lim~ op„do not physically exist under the restric-
tion of energy-momentum conservation, Let us
examine what would happen if we let k=0 in Kqs.
(6). We obtain

q&sin8, sing, + p&sin8~sin@~= 0.

q~ cos8 + p~ cos8~= q),

(Vb)

(Vc)

E + E~ ——M+ E). (Vd)

To satisfy Eqs. (Va) and (Vb), p, and p& must have
the relation

y, = y, ~nv (n=0, I, 2, . . .), (Ve)

which shows that one of them must not be an inde-
pendent variable. That P, or P& is not an indepen-
dent variable is in contradiction to our original
assumption. We thus conclude that the limits for
q&, p&, and p„do not exist as k-0. Since p, and

p~ are the angles used only in the noncoplanar
case, one may wonder if such limits exist. for the
coplanar case where $,= 0, p~= v, and p„= 0. The
answer is still no. To see this, we combine Eqs.
(Va) and (Vb) into one single equation by using P,
=0 and p~=v:

(7f)q&sin8, -p&sin8 =0.
If Eqs. (7c) and (7f) are solved for q& and p&, we
get

q,.sin8&

sin(8, + 8~)
(8a)

q ~ s ll18q

sin(8, + 8~)
'

Inserting these results into Eq. (Vd) gives

q
2 sjn28 1/2

q
2 s jn28 1/2

m2+ ~ ~ + M 2~
sin'(8, + 8&) 3 sin'(8, + 8&)

(8b)

= E)+M, (9)

which shows that either 8, or 8~ is no longer an in-
dependent variable, and this again is in contradic-
tion to the original assumption for this case.
Therefore, the limits lim~, q&, limy p p&, and
lim~, p„do not exist for either the coplanar or
noncoplanar case. This means that energy-mo-
mentum conservation would be violated if we set
&= 0 and if we try to expand the dependent vari-
ables q&, p&, and p„ in powers of k. Furthermore,
since q", +p", -q& -p& -k" WO implies that
5'(q, + p, —

q&
—pz —k) = 0, the bremsstrahlung cross

section must be zero for 4=0. We therefore con-
clude that the expansion in Eg. (la) does not exist
in terms of physical quantities for the cross sec-
tion d'o/dQ, dQ~d8„, and hence the soft-photon the-
orem cannot be derived in terms of physical elas-
tic amplitudes for this type of cross section. [It
is interesting to note that for 8,= 8~= 30', p, = 0,
p&= v, and m =M, k is zero for any value of 8„
only if q&= p&= (W3/3)q, = v 8M; that is, the total in-
cident energy E& must be 5M. ]
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In case (ii), the dependent variables are p&, k,
8„, and g„. Here again, k is not an independent
variable. Therefore, an argument which is similar
to the one used in case (i) can be applied to show
that the soft-photon limits lim~, p&, lim~, 8„, and

lim~, g„do not exist. Briefly, if k=0, we would
obtain Eq. (7e) which shows that either P, or P~ is
no tan independent variable in contradiction to our
assumption. And for the coplanar ease, we find the
the following contradictions:

where

g~- lcm g~ ~ p~ —llm p~ y4~0 A~o

8~= lim 8~, P~= lim P~.A~0 y~o

Here q&, j&, 8~, and p~ are the lowest terms in the
expansion, and they satisfy the energy-momentum-
conservation equations for the corresponding non-
radiative two-body elastic scattering process,

sin8,
py= q~ . =(qI —

qy cos8 )/cos8s fsjn8 & f + 0~

(10)

q& sin8, cosp, + p& sin8~ cosg~= 0,

qzsin8, sing, + pzsin8~sin&, =0,

(12a)

(12b)

Here q, , m, and M are given, and q&, 8, , and 8&

are independent variables. We therefore conclude
that the soft:-photon expansion given by Eq. (la)
does not exist for the cross section d'g/dQ, dQ&dE, ,
and hence the soft-photon theorem cannot be de-
rived for this type of cross section.

In case (iii), the independent variables are 8,,
p, , 8~, p~, and k. This is an interesting case
since 0 is now an independent variable. It seems
thai the soft-photon limits exist for four dependent
variables (qz, pf, 8„, and p„}as k-0, and they
can be expanded in powers of k. But actually the
answer is still no. This is because we always ob-
tain Eqs. (7) if k=0, and the situation becomes
exactly the same as we had in case (i}. This means
that we would find the same kind of contradictions
as we obtained there. Thus, the limits lim~, q&,

lim„, p&, lim~, 8„, and lim~, p„do not exist,
and the dependent variables cannot be expanded in

powers of k. We therefore conclude that a physi-
cally meaningful soft-photon theorem cannot be
derived for the cross section d'o/dQ, dQ&dk.

In case (iv), the independent variables are 8„
g„8„,P„, and k, and the cross section is ex-
pressed in the form d'II/dQ, dQ„dk. This is the only
case in which the soft-photon limits for four de-
pendent variables exist, and these dependent vari-
ables can be expanded in powers of k as

Q~cos8 + p~ cos8~= g. ,

E +X~=M+ E, ,

q& sin8, —p& sin8& ——0.
The result given by Eq. (12e} i.s a special case of
the general solution given by Eq. (7e). Here we
have chosen ~ in. such a way that the coplanar ease
can be defined as $,=0, p~=II, and $„=0. From
Eqs. (12c) and (12f), q& and j& can be written as

qf = q, s in 8~/ sin(8, + 8 ),

p&= q,.sin8, /sin(8, + 8&). (13b)

If we substitute these expressions into Eq. (12d),
we obtain

q."sin'8i
yn + -=— — +

sin'(8, + 8~)—

sin 8 1/2
M'+

s 111 (8 + Hp)—

= M+ (~'+ q, ')'~', (14)

which are obtained from Eqs. (6) by setting k= 0.
These equations will be solved in order to show
that the solutions for q&, p&, 8&, and p& exist.
Combining Eqs. (12a) and (12b) gives

(12e)

dgy
gy= Q'g+ k+ ' ' '

4~0

dPy
Py ——P~+' k+ ' '

0=0

8 8

(1la)

(lid)

which can be solved for 8&. The solution for 8~ is
then used in Eqs. (13a) and (13b) i:o calculate q&
and p&. Thus, the solutions for g&, 8&, p&, and q&
exist. There is no contradiction or ambiguity in
obtaining these solutions.

In order to show that q&, p&, 8~, and y~ have the
soft-photon expansions given by Eqs. (11), we have
to derive the expressions for (dq&/dk)~. „(dp&/
dk)~ „(d8~/dk)~ „and (dg~/dk)~, . To do this,
we first differentiate Eqs. (6) with respect to k.
Remembering that the independent variables in
Eqs. (6) are 8„$,, 8„, p„, and k, we obtain



SOFT-PHOTON EXPANSION AND SOFT-PHOTON THEOg, EM

sin8, cosp, + sin8~ cosp~ + p& cos8~ cosp~ —
p& sin8~ sing~dpi' + sin8„cosp„= 0,

/=0 A~0 a,.O
~ t' ~ &u, 0

(15a)

sjn8 sing + sin8&sing& + p&cos8&sing~ — — +p&sin8&cosg& + sin8„sing„=0,
Pe 0 0~0 A~O A=0

(1.5b)

cose + cose~ - — -pgslne~ + cos~y= 0,dqy dPy — . — 46p,

A=O 0-"0 0~0
(15c)

(15d)

where

p, = q~/(m'+ q~')'~',

p, = p,/(M'+ p, ')'~'.

If we eliminate (dP&/dk)~. , from Eqs. (15a) and (15b), we find

—sin8, + sin8~ + p&cos8~ + sin8„cos(p„—p~) =0.
0=0 Qa0 Q& 0

(15e)

In deriving Eq. {15e), we have used Eq. (12e) to set
cos(P, —P~) = -1. We then solve Eqs. (15c), (15d),
and (15e) for (dq&/dk)~. „(dp&/dk)~ „and (d8~/
du), ,:

1 —c,pn

P, P~ cos—(8,+ 8,)-
(16a)

dp& cos(8, + 8~) —c,P,
~.o p, -pecos(8, +8~)

(
d8~ sin(8, + 8~) —P~c, —P,c,
d& &.o p, [p, -p, cos(8, +&,)]

where

c, = cos8 cos8, —sin8~sin8, cos(P„—P,),

c,= cos8„sin8, —sin8„cos8, cos(g„—P,),

(16b)

(16c)

c,= sin8~ cos8„+cos8~ sin8„cos(g„—P,) .

Finally, (dg~/d}t, )~, can be obtained by substituting
Eqs. (16a), (16b), and (16c) into Eqs. (15a) or
(15b):

c
= sin8„sin(g„—P,)/(p&sin8 ) .

0-" 0
(16d)

It is obvious that our method can be easily extended
to obtain the higher-order terms. Therefore the
soft-photon expansions for q&, pI, 8~, and p~ exist.
We shall show in the next section that the soft-pho-
ton expansion given by Eq. (1a) exists indeed for
the cross section d'&r/dA, dQ+4, and hence the

soft-photon theorem can be derived for this type
of cross section.

As we have already mentioned, the special cases
discussed above can be generalized and classified
into two classes of bremsstrahlung cross section.
our generalization and classification are based
upon the following arguments: (i) In order to let 0
approach zero arbitrarily, we must choose k as an
independent variable. (ii) If we set k = 0 in Eqs.
(6), we obtain Eqs. (Va), (7b), {Vc), and (Vd).
There are six kinematical variables, q&, 8„y,,
p&, 8~, and p~, in these four equations. To solve
these equations without contradictions or ambigu-
ities, we can choose at most two independent vari-
ables from q&, 8,, P, , p&, 8~, and y~. This implies
that 8„and p„must also be chosen as independent
variables. (iii) We can rearrange Eqs. (Va), (7b),
(7c), and (Vd) into two groups: Eqs. (Vc), (Vd), and
(Vf) together as a group for the kinematical vari-
ables q&, 8,, p&, and 8~, and Eq. (Ve) alone for the
variables p, and p~. Since these two groups are
independent and we are allowed to choose only two
independent variables from them, we have to
choose one independent variable from the first
group (i.e. , from q&, 8,, p&, and 8~) and another
one from the second group (i.e. , from P, and
Q~). Now, if we follow these guidelines for
choosing five independent variables, we can con-
struct a class of bremsstrahlung cross sections,
which are defined as R-type cross sections in the
preceding section. The existence of the soft-pho-
ton expansion is guaranteed for R-type cross sec-
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tions and the soft-photon theorem can be derived
for this class of cross sections. There are many
other cross sections which can be constructed
without following these three quidelines. Since
the soft-photon expansion, Eq. (la), does not phys-
ically exist under the restriction of energy-mo-
mentum conservation, if these guidelines are vio-
lated, a physically meaningful soft-photon theorem
cannot be derived for all these cross sections. The
soft-photon approximation is therefore not valid
for them. The best way to calculate these cross
sections would be model-dependent calculations.
The H-type cross sections which we have defined
in the preceding section are just some examples
of these cross sections. We have discussed only
the H-type cross section here, primarily because
more than 90/p of the nucleon-nucleon bremsstrah-
lung cross sections are H-type cross sections.

q, -)
(a)

Pg

P-k
(a)

III. BREMSSTRAHLUNG AMPLITUDE FIG. 1. Four half-off-mass-shell I matrices.

As we have already mentioned in the Introduc-
tion, the main purpose of this article is to study
the existence of the soft-photon expansion for
bremsstrahlung cross sections and its connection
with the derivation of the soft-photon theorem.
The answer to this question does not depend upon
whether the particles (A and B) have spin or not.
Therefore, for the sake of simplicity, we shall
assume that both A and B have charge e, but they
have no spin. The bremsstrahlung amplitude M„
can be written in a standard way,

There are many ways of choosing these three in-
dependent invariants. If we choose s,. to be the av-
erage total energy squared, t, to be the momentum
transfer squared, and d

&
to be the square of the

invariant mass of the off-mass-shell leg on which
the photon emission occurs, we have

s,=s,=-,' [(q, + p, )'+(qt+ pt+k)'],

s, = s, = p [(q, + p(-k)'+(q~+ p~)'],

M =M&~&+M&»

where M„'~' is the sum of those terms which de-
scribe photon emission from the external charged
lines and M„' ' is the sum of all other terms. In
terms of half off-mass-shell T matrices for A-B
scattering, the external scattering amplitude M„' '

can be written as and

t, = t, =(p, p,)', -
t, = t, =(q~-q,.)',
&,=(q~+ k)',

t,=(q,. -k)',
~,=(p, + k)',

(20)

M&'&= q& T -T q& + P& T T P~ . (18)
q

o j'p 0 bq oQ p oQ c 4p oQ

Here the half-off-mass-shell T matrices T„T~,
T„and T4 are given by

T, = T(s„t., ~,), -

T, = T(s„t„,S,), -
T, = T(s„t„t,), -

T, = T(s„t„t,) . -
In Eq. (19), s&, t&, and L, (i =a, b, c, d) are three
independent invariants constructed out of the in-
volved four-momenta for diagram (i) of Fig. 1.

t,=(p, -k)'.
We have to expand these invariants and the half
off-mass-. shell T matrices in powers of k in order
to obtain the soft-photon expansion for M„~'. Since
the existence of such expansion depends upon our
choice of five independent variables (or cross sec-
tions), two general cases will be discussed.

(i) Bremsstraklung amplitudes for R type cross-
sections. We have already shown in the preceding
section that the soft-photon expansion exists for
the kinematics for these cross sections, i.e. , four
dependent 'kinematical variables can be expanded
in powers of jg. This implies that the soft-photon
limits for s&, t, , and 6& exist as 0-0. In the limit
of k = 0, s, , t, , and 6,. reduce to
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lim s, = (q, + p,)'= (qf+ pf)'= s,4~0

limt, =(pf —p, )'=(qf -q,)'= t,$~0

limA, = limb, ~= m',
y~o k~0

(21)

where

gpss
Pf

(25)

limA, = limb, &=M',
A'~0

gy = limps ~4~0
(22)

These expressions for q& and p& can be used to
expand s&, t&, and 4&. If terms of order 4' are
neglected, we find

s =s =sa c

p~= llmpg q

0~0

which satisfy the equations for energy-momentum
conservation in two-body elastic A-B scattering:

(23)

Pf Pf ++p»~

(24a)

(24b)

P +0 =P +0
In Ejl. (21), s and t are the usual Mandelstam vari-
ables for elastic A-B scattering and they are inde-
pendent of k. We can also expand q& and p& in
powers of k. To the first order in 4, they can be
written as

sg= sg= s —2(q j+pj)' k q

1

t, = t, = t+ 2R~. (pf -pj),
t,=t,=t+2R, (yf-q, ),
4,=m +2@~

4 =m —2q,.'k,
6 =M +2p~'4',

(26)

A~=M -2p)'Q.

Applying these results to expand T„T» T„and
T~, we obtain

r, = T(s, t)+2R~'(pf —p, ) ' + 2iyf k
or(s, t) sr(s, t, ~,)

a h~=e2

T r( t) 2( )k ' 2R ( ) ' 2 kqj pj s p pf pj st qj
Qy= m

) ( )
T(s, t) 2 k

jjr(s, t, &c)
qf qj 'st pf sg ~2

(27)

and

T = T(s, t) —2(qj+pj)'k ' +2R, '(yf -qj) s
' -2pj'ker(s, t) Br(s, t) 9T(s, t, &g)

es

Here T(s, t) is the elastic scattering amplitude for A-B scattering, and again we have neglected terms of
order k' and higher. We next expand the propagators and electromagnetic vertices. If we use Ejls. (24),
we obtain the following expansions:

(R, k)qf„

q, k q, k (Vf'k)'

(28)pf„pf„R„(R'k)pf„

pf k pf'k pf'k (pf'k)

Combining Ejls. (18), (27), and (28), we finally obtain a complete expansion of the external scattering am-
plitude M„'~~:

+B& ~+~& &&+ ~ ~ ~
t (29)
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~ (s& fts itt pftt Pits
T( t)

q~ k q,-'k P~'k P,.'k

B(s&- 2( ) ~ h
p ~ k 8s

Pft P;)B (&T(s, t)
+ 2R (p -p,.) .——'. +2R, (qf-q, }

k q k ~ ~

p k p
.k 8t

B T( s, tts) ),+ 2Q.~ 86
a m

(30)

BT(s, tn, ) , B (BT(s, t, tss))
86 ~ @2 8b

d ~ ~2
C d

R,„=R,„/h,

Rq„= Rq~/h,

h =h /h=(1, sine„cos(t)„, sine„sin(p„, cos&„).

It is clear that A„'~' and B~~' are independent of k.
In the past, the expansions given by E(I. (24) for qf„and pf„were not introduced. The final expression

for the expansion of M„' ' was written in terms of q» and p&„without further expansion. Such an expansion
is inconsistent, incomplete, and nonunique. Moreover, since q&„and p&„are still functions of k, all coef-
ficients of the expansion are ~ot independent of k. This incomplete expansion can be written as

~(s&
+ B(s&(h)+ c's&(h)h+ ~ ~ ~

)B (31)

A(s&(h) = „T(s,t„f(.,=m') — T(s, t„l&~=m')+ „T(s,t„t&.,=M') — " T(s, t„b =M'),

-(
&( ) ( )

" q( eT(s t„4(,=m'} P(„BT(s t„t&.~=M }
p. k 8s

BT(s,t„)SBT(s,t;EB)),
9f/l 8~ ~ gal

0 h, g-" m h, p~ m

e T(s, t„t&.,) s T(s, t„t,)
84d

C d

t, =(pf -p,)', t, =(qf -q;)'

From these expressions for A(s'(h) and B(s'(h),
we can see that the expansion of M„'~' is expressed
in terms of T and its derivatives evaluated at
two different angles (t, and t,). , Since t, and t, are
functions of k, they can be expressed in terms of
p,. k, py k, q,. k, and &y k. This means that t, and
t, are not independent of the off-mass-shell effects.
(Note that p('h= pj(f —2n~t pf'h= 2n, —gM B q,.'h

1 2 1= —,m ——,z„and qf. h= —,n., —&m .) We can there-

fore conclude that all coefficients, including 4„' '(h)
and B„(s&(h), u)hich are functions of h must neces

saucily

contain off mass shell eff-ects. -
The ambiguity of the expansion given by E(I. (31)

arises from the fact that T and its derivatives may
be evaluated at many different energies if p~ and

q& are not expanded since we have many ways' of
choosing s, (i = a, l&, c, d). For example, we can use
p&'q&+ p&'q& to replace s and obtain different re-
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suits for A&a&(k) and B„'s'(k). To see this, we note
that p 'q. + p 'q~Wp. 'q + p~'qy= s -m -M . Th)s
implies that the energy at which T and its deriva-
tives are evaluated will be shifted from s by an
amount which depends on k.

(ii) The external ampÃtude for H type-cross
sections. The independent kinematical variables
for this class of cross sections are 8,, (t(, , 8~, (p~,
and X. Here, X can be chosen from p&, q&, 8„,(p„, k,

For simplicity, we shall choose X to be 8„
for our discussion. In this case, four dependent
variables are p&, q&, (p„, and k. As we have al-
ready pointed out in the preceding section, the law

of conservation of energy-momentum would be
violated if we let k approach zero arbitrarily or
simply set k equal to zero. Therefore, the soft-
photon limits lim~, s& (j= b, d), lim~, t„and
lim~, &, (i = a, b, c, d) cannot be obtained, and the
soft-photon expansion for M„'~' around k= 0 is not
allowed under the restriction of energy-momentum
conservation. In the past, however, an expansion
which was similar to Eq. (31) with A' s'(k) and
B„'s'(k) defined by Eq. (32}was obtained. Such ex-
pansion is not the soft-photon expansion since all
coefficients of the expansion are still functions of
k. The dependence of these coefficients on k can
be understood from the following argument: All
coefficients can be determined by T and its deriv-
atives, which are evaluated either at s and f, or at
s and t, . If we apply energy-momentum conserva-
tion, Eq. (5), we obtain the following relations:

t, = t, —2(q, —qt')
' k

= t~+ b ~+ 6 —2' (»)

or

t2 = t(. —2(p) —p~) k

=t +6 +6„—2M

=0 (34)

The explicit expression for the leading term of
M'~' can be obtained from Eq. (34). Let us again
consider the following two cases:

(i} The internal amplitude for R type cro-ss sec-
tions. If we assume that M„ is analytic at k" = 0,
we can differentiate Eq. (34) with respect to k" by

keeping all other variables as constants and setting
k" = 0. Vfe find

(M' 'k") +O(k).8
~k y" a 0

(35)

Using the external amplitude M~~) given by Eqs.
(29) and (30), we can write M„'~' in the form

M(l) g(l)+ ~(I)k+, . ~

where

Since k 40, Eq. (33) shows that t, and/or t, must
depend upon k. This implies that all coefficients
of the expansion of M„'~' are not independent of k
and they must necessarily contain off-mass-shell
effects.

The internal amplitude M„' ' can be obtained
from M~s' by imposing the gauge-invariance (cur-
rent-conservation) condition

M„k' = (M(s &+ M('&)k"

sr(s, t) sr(s, t, a)).
kg~ n4

8 T(s, t, t,} 8 T(s, t, t,) 8T(s, t, t „)

C

(37}

(ii) The internal amplitude for H type cross sec-tions. Appropriate care must be taken for this case since
k0. I et the range of k be k „~k&k with k „&0, and we assume that M„ is analytic in this range.
Then, from Eq. (34), we have

(M' 'k")—
8k~ " 8k~

(33)

If Eqs. (31) and (32) are used, we can write M„'~' as

M"'= B' '(k)+ c' '(k)k+ 7

where

(39)
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8T(s, „(r~=m') 85s, ( E„~=M) BT(s, t. a,,,))

BT(s, t„~,) BT(s, t„t,) BT(s, t„r,)
a m C 4

(40)

The results obtained in Eqs. (39) and (40) apply also to R-type cross sections if the expansions for q& and

p&, Eqs. (24), are not introduced.
Finally, the total bremsstrahlung amplitude M„can be obtained from Eq. (1'I). Let us consider the fol-

lowing cases separately:
(i) The total bremsstrahlung amplitude for R typ-e cross sections Th.e external amplitude M„'s' and the

internal amplitude M„'I' are given by Eqs. (29) and (36), respectively. Combining these two equations, we
obtain

M =~+a +e k+

where

B» = 2(q)+ p))' k ~ + —~ —4(q)+ p))»
q

~ Q P ~ jp s

q j» 2( ) g PI» Pf» T(s) t)

p y &t

R „R~„(R'k)q~„(R 'k)pi„
q~'k i)I'k -(qp k) g~'k)'

(42)

%'e see that A.„and B„are independent of the off-mass-shell effects and they can be obtained from the two-
body elastic scattering amplitude T(s, t) and its derivatives, BT(s, t)/Bs and BT(s, t)/Bt. Therefore, the
soft-photon theorem can be derived for R-type cross sections.

(ii ) The total bremsstrahlung amP/itude for H tyPe cross-sections. The external amplitude and the in-
ternal amplitude are given by Eqs. (31) and (39), respectively. The total amplitude is obtained by combin-
ing Eqs. (31) and (39). We have

M„=- " +B„(k)+c„(k)k+ ' ' ',A„(k)

A„(k) =A&"(k),

B„(k)= 2(q, + p,)'k ——2(q;+p;)„' '8 ' + 2(q)+P))'k - —2(q)+Pg)
qg» BT(s, t~, t)~=m ) ) Pg» 8'I(s, t2, &g=M )

Pj

(44)

From the expressions of A„(k) and B„(k) given by Eq. (44) and the relationship between t, and t, given by

Eq. (33), we find that although the off-shell derivatives are canceled out precisely, A„(k) and B„(k)are not
free of off-shell parameters 6,, L~, b,„and b,

~
because of k dependence. Moreover, A„(k) and B„(k) are

not obtained from the real two-body elastic scattering amplitude, T(s, t), and its derivatives, BT(s, t)/Bs
and BT(s, t)/Bt, but rather from two off-shell amplitudes, T(s, t, ) and T(s, t,), and their derivatives,
BT(s, t~)/Bs and BT(s, t )/Bs. This means that A„(k) and B„(k) depend on two different scattering angles
which are functions of k. We therefore conclude that the soft-photon theorem cannot be derived for H-type
cross sections. This conclusion applies also for R-type cross sections if the expansions for qj„and p&„,
Eq. (24), are not introduced.
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IV. BREMSSTRAHI.UNG CROSS SECTION

The bremsstrahlung cross section can be expressed in the form

4[(p ' )' -m'M'J~~' Z " " ' ' ~ I (2v)'2E, (2w)'2E~ (2m)'2k '
- pol

where E' is the photon polarization and the summation sign indicates a sum over the photon polarization.
(i) For R-type cross sections, the five independent kinematical variables are 8„, p„, k, y, and s. These

cross sections can be obtained by integrating Eq. (45) over four dependent variables:

dQdkd dz J ~ 4 " ' ' ~ ~ EE d dz

d'o 4 k d gfd Pf
A„y z /de

(46)

where

e2 j 5

32[(P, q,)'-m'M']'» 2v

This integral can be carried out to yield nonvan-
ishing cross sections for the whole range of k,
0& k & k, since solutions for the four dependent
variables, which satisfy p", +q", -p& -q& -k'=0,
exist for all k. If the result were expanded in pow-
ers of k, we would obtain Eq. (1a), the soft-photon
expansion for R-type cross sections.

As an example, let us choose y = —cose, and z
In this case, Eq. (46) becomes

which shows that the first two terms of the expan-
sion of R-type cross sections in powers of k are
independent of the off-mass-shell effects and that
they can be obtained from the amplitude of the cor-
responding nonradiative process and its deriva-
tives. This confirms our conclusion that the soft-
photon theorem can be derived for R-type cross
sections.

(ii) For H-type cross sections, the five indepen-
dent kinematical variables are 8, , P, , 8&, p&, and

x. These cross sections can be written as

d5o

dQ„dQ, dk
(4Va)

= G M„e" 'M„e"
e pol

x 5 (p&+ q&
—

p& -q& —k)
OR

+OR+ORk+ ~ ~ ~
0 j. (4'I b)

Here N=p, (M„e")t(M„e")and F is the phase-
space factor. If we use the relation

gf Pf dgfdPfd k

E,Eqk dx
(52)

(48)

and the expression for M„given by Eq. (41), we
obtain

N= —~A ~'Ik' —(At'B+Bt A)/k

-( iB i'+A~'C+ C~'A)+ ' ' ' . (49)

,= -G/Af'F„

lx l2E
c ~= -6 ' +(At'B+ B~'A)FO'

k

(51)

The phase-space factor F is derived in the Appen-
dix. From Eq. (A3) of the Appendix, we have

E=E +E, . (50)

The expressions for 0, and o," can be obtained if
we combine Eqs. (47), (49), and (50}:

We already mentioned several times that energy-
momentum conservation would be violated if we
were to set k equal to zero for H-type cross sec-
tions. This implies that p",. +q", -pf- q& -k' wOfor
k=0. Since 6~(p, +q, -p&-q&-k} must vanish if
p", +q", -pf" -q& —k" ~0, all H-type cross sections
must be zero at k=0. Thus, in general, if the

kmin k km' " kmin 0, then the
cross section will have nonvanishing value only in
this range and it should be zero for 0&k&k „and
k &k . This is why a physically meaningful soft-
photon expansion a.round k= 0 for H-type cross
sections is not allowed. In the range k „-k- k
however, we could use the expression of M„given
by Eq. (43) to obtain Eq. (2a) for H-type cross sec-
tions. All coefficients of the expansion are still
functions of k, i.e. , they are not independent of the
off-mass-shell effects. This confirms our con=
elusion that the soft-photon theorem cannot be de-
rived for H-type cross sections.
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APPENDIX A

(&) The expmssi ons fox A," and R& W. e shall. de-
rive the expressions for 8,' and R~ when indepen-
dent variables are 8„, )p„, 8,, )p„and k. These
expressions have already been obtained in Ref. 5
for the coplanar case. They can be written as

Since these expressions are written in terms of in-
variants, they are also valid for the noncoplanar
case.

(2) Phase spa-ce factor, E. E can be written as

--- —() (p;+q, -p~-q, -k)dq~d p~
gy 3.

e

[(p. q )' — 'M']'~'
~*[(P; q,))P; q,)—

& we use g~=g&+&»d p& =.p&+R~~ to expand E,
we obtain

= [ 'p", -(p, q,)q,"](p, k)le„
&,=(pg'qg)(p~'qI) ~'(p pg).

dPy"

da

(A 1)

E= Eo+ E, +O(k'),

where

[(p,. q,)' -m'I']'~'
' M'[(p, q,)(p, q, ) '(p, p-,)]

(A3)

3(p q )(p g ) (p, q)(qf B + pf 8 )+(p~ qf)(p. ft ) —na p& 8&' (p,. q )'-md/ (p, q,)(p;q,) . m'(p, . p,)-
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