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We discuss the use of a forward calorimeter to trigger on hard hadron-hadron collisions. We give a
derivation in the covariant parton model of the Ochs-Stodolsky scaling law for single-hard-scattering
processes, and investigate the conditions when instead a multiple-scattering mechanism might dominate.
With a proton beam, this mechanism results in six transverse jets, with a total average multiplicity about
twice that seen in ordinary events. We estimate that its cross section is likely to be experimentally
accessible at.values of the beam energy in the region of 100 GeV/c.

I. INTRODUCTION

Most strong-interaction events are soft, multi-
pheripheral collisions, but in recent years inter-
est has turned to the hard collisions. In these
events, the two initial hadrons collide 'head-on,
so that there is a prospect of obtaining informa-.
tion about the inner quark structure of the hadrons
and about the way in which the quarks interact
with one another.

Most of the investigation of the hard collisions
has been through large-transverse-momentum
reactions, using single large-p~ particles as trig-
gers. It was realized' that a calorimeter mould
be a more fruitful trigger for large-p~ events,
and on the basis of correlation data from the
CERN ISR it was predicted' that for a given p~
the event rate would be two orders of magnitude
times that with a single-partic1. e trigger. There
are now experimental indications that this is in-
deed the case. '

In these large-p~ experiments, the calorimeter
has limited solid angle and is placed to one side
of the beam so as to trigger on those events in
which an unusually large transverse momentum
or energy is produced in the form of a jet. In an
important paper, 4 Ochs and Stodolsky have pointed
out the interest of using other types of calorimeter
trigger to explore the hard collisions. The infor-
mation so obtained will be complementary to that
from the more conventional high-pz experiments,
and because of the complications in those experi-
ments from trigger bias, ' some of it may be sim-
pler to interpret.

The original expectation' was that hard colli-
sions would be scale-free. This has not so far
been found to be the case in high-p~ collisions.
A number of possible reasons have been advanced
for this, ' and so far it is not known whether the
presence of a mass or length scale is intrinsic
to hard collisions, or whether instead collisions
that are rather harder, and therefore rarer, than
those studi. ed so far will turn out to be scale-free.

Another possible point of view (though one which
we believe to be less plausible) is that the scale-
free character of the reactions has so far been
hidden as a result of trigger-bias effects, and one
motivation' for using new configurations of calori-
meter trigger is to attempt to minimize these ef-
fects.

Qchs and Stodolsky' have discussed the case of
a single downstream calorimeter, and they have
required that a given fraction v' of the initially
forward-going energy is deposited in it. If little
energy emerges in the forward direction, there
must instead be an appreciable amount of trans-
verse energy. It mill be interesting to discover
whether this transverse energy emerges in the
form of a small number of jets, or whether it is
more uniformly distributed in azimuthal angle.
The latter possibility would occur, for example,
in a model where the two initial hadrons coalesce
in their head-on collision so as to form a massive
firebalt. , which then decays isotropically. ' 'I'his
is not necessarily ruled out by the fact that a pair
of transverse jets appears to be a feature of the
conventional high-p~ experiments: it is possible
that the triggering configuration in these experi-
ments preferentially selects those events that do
contain jets.

But if one assumes that such a trigger does se-
lect events in which there is a single pair of trans-
verse jets, and that these are produced by a scale-
free hard scattering, then a simple scaling law
obtains. This was first stated by Qchs and Stod-
olsky. ' We review it in Sec. II, and in the Ap-
pendix we show how to derive it from the covari-
ant yarton model. %e also give the straightfor-
ward generalization to the case where the hard
scattering that produces the pair of jets is not
scale-free.

The Ochs-Stodolsky scaling law applies to the
case where the forward-going fractional energy
s in the center-of-mass frame is small, so that
it is guaranteed by the kinematics that neither of
the transverse jets enters the calorimeter.
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Another case of interest, which we discuss in
Sec. II, is that in which v'& 1, that is, rather more
energy emerges in the forward direction than en-
tered towards that direction. (We work through-
out in the center-of-mass frame. ) In this case
one can be sure that both transverse jets go into
the calorimeter, and we give the corresponding
scaling law.

It is of interest also to consider the case in
which, instead of requiring that the energy E de-
posited in the calorimeter is less than some fixed
fraction v' of the initial forward-going energy,
rather E is required to be less than some fixed
value E,. We discuss this in Sec. III. We find
that the cross section then receives a contribution
from a multiple-scattering effect' with the same
s dependence, in the case of scale-free scatter-
ing, as that obtained from the single-scattering
term. This multiple scattering corresponds to
each of the valence quarks in the beam particle
undergoing a wide-angle hard scatter, with no
residual beam fragments. We show that the multi-
ple scattering dominates over the single scattering
if the value fixed for E, is sufficiently small. Its
dominance is further enhanced if there is in addi-
tion a calorimeter in the backward direction, and
it is required that the energy deposited also in this
calorimeter is less than some fixed value. An
alternative to this, which may be more practi-
cable, is to have a calorimeter that encompasses
2m in azimuthal angle and includes all but the for-
ward and backward regions. The trigger in this
case would be the requirement that all, or very
nearly all, the incoming energy was deposited in
the calorimeter.

In the multiple-scattering mechanism, the en-
ergy is carried off transversely by a number of
jets, four in the case of a pion beam and six for
a proton beam. These are distributed more or
less axisymmetrically about the beam axis. We
estimate that, in the case of a 100-GeV/c proton
beam, the total average multiplicity will be about
twice that seen in ordinary events at the same
energy. '

In See. IV we attempt to give quantitative esti-
mates of the cross section for the multiple-scat-
tering mechanism. These estimates are subject
to very considerable uncertainty. For a proton
beam, the cross section is an integral of an ex-
pression of the form

P. (&.,)'
a4

Here, a„ is the wide-angle quark-quark scatter-
ing cross section, R is a radius that characterizes
the proton wave function, and P is the probability
that a proton can be a system of three quarks

only. We take 8 = (140 MeV) ' and argue that com-
parison with recent pp elastic-scattering data then
gives an acceptable value of P. The integration
to be performed on (1.1) is one over angles and
over the fractional momentum taken by each quark
in the beam and target nucleons. We have assumed
that the nucleon wave function is peaked very
sharply around a value of 3 for the fractional mo-
mentum of each quark; making this assumption
gives an undex'estimate of the cross section, quite
possibly by an order of magnitude. For a„, we
use the (non-scale-free) expression that was de-
duced by Field and Feynman" from single. -parti-
cle large-p~ data:

„-„X=2300 mb Gey'.-st (1.2)

ace 4"+8 s'+8'
dt 9 s't (1.3)

[In both (1.2) and (1.3) there should, of course,
be additional u-channel exchange terms if the
quarks have the same flavor and color. ]

II. OCHS-STODOLSKY SCALING

Suppose that a calorimeter is placed axisym-
metrically in the forward direction (Fig. 1). We
work throughout in the center-of-mass frame.
Let the calorimeter be such as to accept any par-
ticle whose angle of emergence 8 is less than n,
and suppose that in a given event the total energy
deposited in the calorimeter is E.

In soft-scattering events, one expects to find
that, unless o'. is very small, E =-', Ms. Possible
triggers that might select the hard-scattering
events are thus either E«& Vs or E rather greater
than —', Vs .

S'»~~'~~~, ~o b~gj.n with, that the energy is car-
ried away by a single pair of transverse jets, So
that one may use a hard-scattering model such as

This gives a multiple-scattering cross section
that varies with the incident beam momentum as
p~, and which is of the order of half a millibarn
for P = 100 GeV/c and a forward calorimeter of
acceptance +45' in 8.

However, we must warn that there are reasons to
question' whether existing large-p~ data can in fact be
interpreted in terms of quark-quark scattering. If
instead quark-quark scattering is taken to be scale-
free, the resulting multiple-scattering cross section
falls only as p ', but its value atP = 100 Ge V/c is likely
to be several orders of magnitude smaller. This last
estimate is on the basis that the quark-quark scat-
tering is then described not by (1.2), but occurs
through the exchange of a colored octet gluon with
point coupling:
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BEAM

TARGET

stated by Ochs and Stodolsky, if this scattering
is scale-free,

do 1 fz(1 —r)
dr s 1 —r

g = (1 —7') tan2(~ o.),
(2 6)

FIG. 1. Downstream veto calorimeter in the cepter-
of-mass frame.

appears' to describe conventional high-p~ events.
Write

where fz(xz) is the probability of finding the parton
x~ in the beam and the function G~ depends on the
structure of the left-moving initial hadron (the
target) and on the dynamics of the central scatter-
ing in Fig. 2. If this wide-angle scattering is not
scale-free, but rather has the behavior

We show in the Appendix that if o. & 60 and

(2.1)
4G16vs'=- (s) "4 (t /u),dt

(2.6)

7 (-,' sec'(-,'o. ),
or if n is between 60' and 90 and

(2.2) with n& 0, then further inverse powers of s(1 —7')

appear:

2 Sln20t&
1+ sin&a ' (2.3) (2.7)

then it is guaranteed by kinematics that neither
jet enters the calorimeter. (This neglects the
transverse momenta of the jet fragments relative
to their jet axis, which4 is not a very accurate
approximation unless the jet is rather energetic. )

Suppose that one of these pairs of inequalities
is satisfied. Then w is equal to the fractional en-
ergy carried by the spectator partons of the in-
itial right-moving hadron:

v'= 1 -x~. (2.4)

Here, x~ is the fractional energy taken by the ac-
tive parton of that hadron, that is the one that un-
dergoes a, wide-angle scattering (Fig. 2). As is

We derive this formula, in the Appendix, together
with the explicit form of G~ (g):

] w 1 f ( ) Pxklc @,(X)

where f~(xz ) is the probability of finding the par-
ton x~ in the target and the summation is over the
various different parton-parton scatterings that
can occur.

Quantitative estimates of do/dv for the scale-
free case n = 0 have been given by Ochs and Sto-
dolsky. If the quark-quark scattering occurs through
the exchange of a colored octet gluon, as in (1.3) with
G, = 3, then for 7 = 2 and n = 45 one finds a value for
do/dr at the level of a few microbarns with a 100-
Gev/c beam. But the pr~ behavior so far observ-
ed in large-p~ experiments corresponds rather to
n='2, and with the Field-Feynman form (1.2) for
do„/dt we find that do/dr is nearly two orders
of magnitude larger at 100 GeV/o, but it falls
more rapidly with increasing beam energy. How-
ever, we repeat our warning that the quark-quark
scattering interpretation of the large-p~ data may
not be correct.

If the inequality (2.2) or (2.3) is not satisfied,
one can no longer be sure that neither of the jets
enters the calorimeter. However, if

sec'(-,'o.))v & sec'(-,'o.), (2 9)

FIG. 2. The single-hard-sc attering model.

then both jets will enter the calorimeter, in ad-
dition to the beam fragments. Then neither jet is
found in the region m & 8& &a. , and so the cross sec-
tion may be calculated from a straightforward
adaptation of (2.V):
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do 1 f~ (7—'1 )
tl+1 (r 1 )tltl R(

& = (r —1)cot'(~ n) .
(2.10)

As we explain in the Appendix, if the three wide-
angle scatterings are scale-free the mechanism
gives

The function 6„ is as given in (2.8), with f~ re-
placed by fs.

Of course, some "ordinary" events will have v

& 1. So, in order to be reasonably sure that by
triggering in this way one might be selecting a
hard-scattering event, one must take 7 rather
greater than 1. Because of (2.9), this demands a
reasonably large calorimeter. With n = 60' and
v'= 1.2, we find that the scale-free wide-angle
quark-quark scattering gives a cross section at
the 50-nb level for a 100-GeV/c proton beam,
while the Field-Feynman scattering gives a value
of a few microbarns.

(3.3)

leading on integration to a contribution to o&(E,)
of the form

o (E,)-s '[M (n}]'. (3.4)

Here M~(n) is a function that is independent of E,
It is determined by the wave functions of the two
interacting nucleons and by the angular depen-
dences of the wide-angle scatterings, and it has
the dimensions of mass.

With a pion beam, only two wide-angle scatter-
ings are necessary. If these are scale-free, one
obtains

III. FIXED-ENERGY TRIGGERS AND MULTIPLE
SCATTERING

c,(E,) -s-'[M, (n)P. (3.5)

The rapid decrease of dc/dr as r- 0 is due to
the decrease of fs(1 —r) as r-0. Iffs(1 —r) r-
as r-0, then for sufficiently sma. ll r = 2E/Vs
we obtain from (2.7)

do' ~ ~-n-m/2-s/2@m
dE (3.1)

where E is the energy deposited in the calorime-
ter. This formula gives the behavior of the cross
section for fixed E« —,v s .

For a nucleon beam, m=3 or 4. With m=3, and
for scale-free scattering (n= 0), the cross sec-
tion o~(E,) for the deposit of energy E ~ E, in the
downstream calorimeter has the behavior

cq(EO) ~s 'Eo'. (3.2)

This is calculated from (3.1). There is, however,
another process which in the scale-free case
gives a contribution to a~(E,}with the same s de-
pendence as (3.2) but with a coefficient that does
not vanish as Eo 0.

'This process is the multiple-scattering mech-
anism, by which all the (valence) quark constitu-
ents of the hearn proton are scattered at wide
angle as shown in Fig. 3. (We have previously
considered' a similar multiple-scattering mech-
anism as a possible source of large-pz baryon
production. ) Each of the three quarks of the beam
proton is scattered at wide angle off a constituent
of the other initial-state hadron. After these scat-'
terings the participating partons emerge in dif-
ferent directions to form six jets. In contrast with
Fig. 2, where the two transverse jets are coplanar
with the intial beam, these six jets are distributed
more or less randomly in azimuthal angel (though
they are coplanar in pairs with the initial beam).

'The corresponding result from the single-scatter-
ing mechanism is

o,(EO) ~s ~ED~, (3.6)

FIG. 3. The multiple-hard-sc attering model.

if m=1 for the pion. In either case, therefore, the
multiple scattering gives the same s dependence as
the single scattering if the hard scattering is
scale-free, and becomes dominant for sufficiently
small values of E,. If, on the other hand, m=4
for the proton, or m = 2 for the pion, the single-
scattering results, (3.2) or (3.6), will have an ad-
ditional factor E,/v s, so that then the multiple
scattering will become dominant at any fixed E,
if the energy v s is sufficiently large.

In order to obtain the result (3.3), we have used
the part of the wave function of the initial right-
moving proton that consists only of valence-quark
components, with no additional nonvalence qq
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pairs. For the left-moving initial nucleon, we
can use the whole wave function. However, if for
the left-moving nucleon we use also only the val-
ence part, we obtain a cross section where no en-
ergy emerges either forwards or backwards, and
all the initial energy is carried off by the six
transverse jets. If we integrate, to obtain the
cross section for the case where the energy is
less than Eo, the result again has the form (3.4),
though with a smaller numerical coefficient be-
cause now only part of the wave function of the
left-moving nucleon is used. On the other hand,
the scale-free single-scattering mechanisms in
this case would give a contribution proportional
to E,'/s' (assuming m= 3).

If the wide-angle quark-quark scatterings are
not scale-free, but rather n=2, then o~(E,) and

o,(E,) are still independent of E, in the multiple-
scattering mechanism. However, now the mech-
anism gives o~(E,) ~s~ and o,(E,) ~s '. The falloff
with s is then too rapid to offer any hope that the
mechanism may be detectable at very high-energy,
However, in the next section we estimate that the
cross sections may well be accessible at beam
momentum in the region of 100 GeV/c.

729K,
o (n= 2s' sin'(-,'n) ' (4 2)

If the radius of the nucleon is R, the cross sec-
tion for head-on collision of the two nucleons is
rR2. When this occurs, the probability that each
quark of one nucleon collides with a quark of the
other and scatters through the required angle is
approximately

6x4

The factor 6 counts the number of ways the quarks
can be paired and the factor 4 approximates the
average enhancement due to the existence of
u-channel exchanges for some pairings. [(4.1)
and (4.2) have been calculated for t -channel ex-
changes. The existence of color makes the ex-
changes combine in a way that is predominantly
incoherent. However, when quarks of the same
color and flavor interact, there is destructive in-
terference, which makes 4 a slight overestimate. ]

Hence we estimate the cross section for the case
where both nucleons consist of three quarks only
as

24P'[o„(n)]'
+2R4 (4.3)

IV. QUANTITATIVE ESTIMATES OF MULTIPLE
SCATTERING

8m& s2
o (u)=

s sinm(~~n) ' (4.1)

where we have used s = s/9. The corresponding
answer with the Field-Feynman cross section
(1.2) is

We do not have sufficient information to calcu-
late' the multiple-scattering mechanism with any
accuracy. In this section we present rough esti-
mates of the cross section. We use a crude geo-
metrical picture, and exploit the possible connec-
tion between the mechanism and Regge cuts." We
consider only the nucleon-beam case.

We imagine that each initial nucleon consists of
just three valence quarks, and that the wave func-
tion is very sharply peaked so that each quark
takes 3 of the nucleon momentum. These assump-
tions greatly simplify the kinematics, since they
imply that the overall center-of-mass frame is
also the center-of-mass frame for each of the
three wide-angle scatterings. This means that
we have to integrate do„/dt, given by either (1.2)
or (1.3), between t = -s sin'(~ n) and t = -s cos'(~ n)
in order to ensure that in each scattering both
quarks are scattered clear of the forward calori-
meter. In the scale-free case (1.3), the result is
(to a sufficient degree of accuracy when nS 60')

where P is the probability of the three-quark con-
figuration in a nucleon. If we take R '= 140 MeV,
n, = 3, and X given by (1.2), the scale-free case
(4.1) gives o =4P'x 10 '4 cm' at 100 GeV/c, while
the Feynman-Field cross section (4.2) gives about
P2 mb at the same energy. Notice that in the lat-
ter case the cross section decreases much more
rapidly with increasing s, and with increasing n.

We can test the reasonableness of the picture
by seeking to estimate P from pp elastic-scatter-
ing data. At very small momentum transfer the
differential cross section is, of course, domina-
ted by single Pomeron exchange. We have pre-
viously suggested" that the Pomeron couples di-
rectly and in a simple fashion to the valence
quarks within the proton, so that at small t the
differential cross section for quark-quark scat-
tering is

dv g4 s 2m'(t) -2

dP 16vs' m&2
(4 4)

We found that a good fit to small-t elastic-pp data
was obtained by taking the Pomeron trajectory
n~(t) to have slope 4, and the coupling g approxi-
mately constant at the value

= 1 mb/GeV'. (4.5)

The pp elastic-scattering data'4 from the ISR show
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~s= 53 GeV

for the lower vertices. So if we take the triple-
Pomeron-exchange data at reasonably large

~

f
~

and extrapolate it back to f, = 0, we expect to ob-
tain the contribution to the triple-Pomeron cut
from Fig. 5 with no additional lines inserted. We
have performed this extrapolation in Fig. 4, using
the best fit 0.88 to the slope quoted by the experi-
mentalists. " This extrapolation is, of course,
highly uncertain, «~ut an error of an order of mag-
nitude here will give an error of less than a factor
of 2 in the estimation of P.

From the extrapolation in Fig. 4,
I

8 10
-t

(GeV )

Vx 10' mbjGeV'= ~K'"'~'1
16ms' (4.6)

FIG. 4. der/dt for pp scattering at&s=53 GeV.

a dip at -t = 1.34 GeV', followed by a change of
slope. It seems reasonable to suppose that this is
due to a changeover from single-Pomeron to
double-Pomeron exchange. It has now been re-
ported" that there is a further change of slope at
-1=6.5 GeV', see Fig. 4. We shall assume that
this results from a changeover to triple-Pomeron
exchange. "

The diagram corresponding to the triple-Pomer-
on cut is Fig. 5, with each bubble a Pomeron-ex-
change amplitude. At small t, there will be addi-
tional lines joining the two top vertices R, and
also joining the two bottom vertices L. However,
as ~f

~
increases we expect that the importance

of these additional insertions will diminish, since
then the quarks kz' are moving in a rather differ-
ent direction from the quarks k~, and similarly

where SR'" is the Regge-cut amplitude at t = 0.
The calculation of this amplitude is described in
the Appendix. Because the slope of the Pomeron
trajectory n~(t) is small, we may approximate n~
by the constant value 1. Because of our assump-
tions about the nucleon-wave function, we may
also set x„,=x~, = 3 in (A13) and (A14). The result
is that the squared matrix element for Fig. 3 is

mn 2, & Cg g (4.7)

As before, we include a factor close to 4 for u-
channel exchanges, and a flux factor 1/(2s):

( )
16 [(r„(n}]'
S g

(4.8)

We compare this with (4.3). Notice first that. the
energy-dependent quark-quark cross section can-
cels out between-the two expressions, as it should.
Using (4.5) and (4.6) and choosing 8 ' =140 MeV,
we obtain

3
5 (4.9)

FIG. 5. The squared modulus of the matrix e'j.ement
for multiple scattering —and also the Mandelstam
Regge-cut di agram.

Because of the crudeness of our calculations this
result should not be interpreted too literally, but
we regard it as a reasonable value which sustains
confidence in the general approach used.

We have hire compared cross sections where
both nucleons are treated as three-quark systems.
This is in fact the quantity of relevance when there
are veto calorimeters both upstream and down-
stream with the requirement that no energy is de-
posited in either. When there is only a down-
stream calorimeter, it is the process represented
by Fig. 3 which we wish to calculate, in which the
right-moving nucleon is treated as a three-quark
system but the left-moving nucleon can have ad-
ditional structure. It is not possible to calculate
this by a Regge-cut comparison, but if we assume
that it is crudely estimated by replacing P' by P
in (4.3), then we obtain the value of —, mb at 100
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Gev/c with the Field-Feynman hard scattering,
as quoted in Sec. I.

V. DISCUSSION

We have sought to discuss in this paper the
physics of experiments based on downstream cal-
orimeters. For the case of a finite fraction 7' of
the beam energy deposited in the calorimeter we
confirm the Ochs-Stodolsky scaling law, suitably
generalized to the nonscaling case as necessary,
both for the case of small T satisfying (2.2) or
(2.3) and also for the case of T& 1. In Sec. II we
showed that at 100 GeV/c the Field-Feynman quark
scattering would give a cross section two orders
of magnitude greater than that given by scale-
fx'ee gluon exchange with n, = 3. However, the
Field- Feynman contribution will soon damp out
compared to the latter as the beam energy in-
creases.

When the case of limited energy deposited in
the calorimeter (E~ E,) is considered, a new mul-
tiple-scattering mechanism may be of importance
which gives a contribution independent of Eo. We
estimate that for a +45 calorimeter its contribu-
tion will only be a fraction of a nanobarn at 100
GeV/c if the hard scatter is gluon exchange with

&,= 3, but if the hard scatter is due to the Field-
Feynman process the cross section could be at
the half millibarn level at that energy. Moreover,
it would not be reduced very substantially if a sim-
ilar upstream veto calorimeter were also inserted.

Various striking features would be present in
events triggered to choose interactions dominated
by this multiple-scattering mechanism. One is
obviously the presence of six transverse jets, co-
planar with the beam only in pairs, though since
at 100 GeV/c each jet carries only about 2 GeV
energy the appearance of the jets will be rather
diffuse, and it is not likely to be possible to sep-
arate them from each other. The large number of
jets would imply an enhanced multiplicity of sec-
ondaries. Using phenomenological inputs for jet
multiplicity we estimate this to enhance the as-
sociated multiplicity by a factor of about 2 over
ordinary events at 100 GeV/c. Because the cross
section decreases rapidly with increasing n, in
most events three of these jets will lie just out-
side the veto calorimeter. (The same effect occurs
also for one of the pair of jets from the single-
scattering mechanism. ) This fact means however
that the transverse momenta of jet fragments rel-
ative to their jet axis, which we have not taken
into account, must have some significance for de-
tailed estimating of cross sections, as Ochs and
Stodolsky have warned.

Finally, we comment on our choice of 100 Gev/c

APPENDIX

The single-scattering term

In order to calculate the diagram of Fig. 2, we
parametrize the momentum four-vector of each
transverse jet in terms of its transverse compon-
ent —,xTMS, its pseudorapidity Tl, its azimuthal
angle Q and its total invariant mass m:

1 2m. '
kg = -,xT, Ms cosh7l. +

sx~, ' cosh', '

eesq„sinq„sinhq, ), a=A, B. (Ai)

This parametrization is valid asymptotically. For
the initial parton momenta, we use our usual"
parametrizations

kR = (pXL Ms+JR/VS s KR, BXR VS ),
kL = (BXLVS +$L/VS q ICL q BxLMS) q

(A2)

where v~ and I(~ are two-dimensional vectors
transverse to the beam direction.

We have to integrate over q„, q~, k~, and kl, ,
In terms of our parameters,

Jl d'q, = —,'s js,ds, dndq, dm, ', a=A, qi

(A3)

d ky=z
J

dx~dy~d K~, b=R, L.
These integrations are constrained by 5 functions
that conserve the four-momentum in the central
scattering: asymptotically,

(kR + kL QA IB )

8
2 ~(4A 4B + ~)~(xTA xTB)»S

x 5(xR ——,'xT„(e""+ "e))B5(x L,'xT„(e ""+e—"—B)).

(A4)

We shall write x» ——x» =x~.

as beam momentum in calculation. Owing to the
rapid decrease of cross sections with s (partic-
ularly for the case of the nonscaling Field-Fey-
nman interaction ) it is necessary to choose the
momentum not too large if observable effects are
to be found. On the other hand the beam momen-
tum must not be chosen too small, for otherwise
the hard scattering approximation breaks down.
This is signaled by the rapid increase of cross
section with decreasing s. Of course this increase
is cut off eventually by the unknown subasymptotic
behavior of the quark scatterings. 100 GeV/c
gives an energy of somewhat over 2 GeV/jet,
which seems the smallest plausible value for which
to use the theory.
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The variables associated with the central hard
scattering are

s = (ka+ kl ) xaxgs,

f = (ks —g~) -x@xrse

B = (ka —g2) -xaxrse

(A6)

We asume that the corresponding matrix element
satisfies the scaling law as in (2.6),

i
fail„

i

'- (s)-"e(t/a), (A6)

with n=0 if the scattering is scale-free. [In (A6)
we have suitably summed an averaged over parton
spins j,

l

When (Al) to (A8) are used in the integral for
the cross section associated with Fig. 2, various
parts of )he integral decouple. The variables y~
and 1(.z appear only associated with the top bubble,
and the subintegral over them is" proportional to
the pa. rton probability distribution fs(xs). Sim-
ilarly, the y~ and v~ integrations give a contribu-
tion proportional to f~(x~). The Q„and Qa inte-
grations over the azimuthal angle are, of course,
trivial. The variables m„' and m~' appear only
as arguments of the spectral functions for the two
transverse jets, and so the integration over each
of these variables gives unity.

With a flux factor (2s) ', we have therefore

1 fa(xa)fi (Xi )
64~ + dl+dlsxrdx dx dxz

x C(e" ~")6(xa ——,'x (e""+e" ))6(x ——,'x (e~"+e-" ))

(A7)

A
xg
xg

(A6)

This leads to the result (2.8).
In order to derive the inequalities (2.2) and (2.3),

notice first that it is trivial to show from the kine-
matics that if both jets enter the calorimeter then
necessarily 7 &1. So, suppose that v&1 and that
one jet enters the calorimeter. Let this be the
jet q„. Then, from (A1),

7' —1 —x~+x~ cosh'g~
(A9)

=1-x~ e"&+e"& '

where we have used the first 6 function in (AV).
A straightforward calculation shows that the mini-
mum value of 7' occurs for x~=1, e"~=cot2n, and

where the summation is over the various parton-
parton scatterings that can occur. To calculate
do'id&, we insert under the integral the extra fac-
tors

6(1 —r -x„)8(e""—tanan)8(e "a —tan-,'n)

and introduce the integration variable

(Fig. 2) the internal momenta are determined when
the external momenta are prescribed, this is not
true for multiple scattering. This means that
when we calculate the squared modulus 5lNlt* of
the matrix element, the internal momenta in 5R

and 3R* are not exactly equal. We draw 3lVR* in
Fig. 5, and show how we label the momenta. Here,
each of the three central bubbles represents a
suitable integral of the squared matrix element
9R„SK,*, for quark-quark scattering: we illustrate
this in Fig. 6, where we show a t-channel ex-.

change. The lines q~, q~ are the transverse jets
of Fig. 3.

We parametrize each internal parton momentum

ks, k„', k~, and k~ as in (A2). For each momen-
tum, the Jaeobian of the transformation is &. see
the second equation of (AS). These momenta are
constrained by energy-momentum conservation
at the external vertices R,L. If the vertex has
no additional beam fragments, as is the case for
the R vertex in Fig. 3, we obtain

e""=cot&a n& 60'

= sec& n+ tan& n 60'& n &'90'.
(A10)

If v is less than this minimum value, we can be
sure that peither jet enters the calorimeter; thi. s
gives the conditions (2.2) and (2.3).

Multiple scattering

The calculation of the multiple-scattering term
of Fig. 3 is more complicated. This is partly be-
cause, while in the case of the single scattering

FIG. 6. Hard scattering by exchange in the 8 channel
(to be inserted into Fig. 5).
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4&( »~ —1 &l Qxs~ —1 ~ lp»~l&l Z»~(
=1 i t if ) i

x tl'*'~ g a;,~~II"' P «,',) (A11R)
j z

from that vertex b. If there are aditional beam
fragments„as for the L vertex in Fig. 3, these
must have the same total momentum for 9R and
K*, and so we have instead of (A11a),

xb» —Zx~~l~
I Z»~ Q &w
(

i

first equation of (A3). The powers of s from (A4)
and Jacobian cancel, so that if the wide-angle
quark-quark scattering is scale-free, the overall
power of s in l5Rl

' comes from (A12) and is s '.
With a flux factor, this gives an s 'behavior for
the cross section.

With a further transformation of integration
variable as in (A8), we find that the contribution
from each bubble is

r z, ~l~& 4'(X )
(x„,x~, ) J( )„(1+X,)

x g'" vb, — &bI& . A11b
$) =xs, tan'(~n) . (A13)

Then there is energy-momentum conservation for
each of the bubbles in Fig. 5. Because of (A11),
if we impose this for two of the bubbles, it will
automatically be satisfied for the third one. Hence
we have

2

5(xsg —xs))5(xg( —xg))5 (~lc )+ /f1 ~ . —le ~ —~K)) .
=1

For each of the bubbles in Fig. 5, we parame-
trize the momenta q„,qs (displayed in Fig. 8) as
in (A1). Energy-momentum conservation within
each bubble gives 5 functions as in (A4), and for
each momentum q~, q~ the transformation of in-
tegration variables requires a Jacobian as in the

The remaining factors in the integral corres-
ponding to Fig. 5 are the vertex functions, cor-
responding to the vertices R and L. In Sec. IV we
make use of the fact that the same vertex functions
come into the calculation" of the triple-Regge
cut in the pp-scattering amplitude at zero-momen-
tum transfer. That is, if we replace each of the
bubbles by a simple Hegge-exchange, we obtain
just the Mandelstam-cut diagram. " In this case,
(A13) is replaced by

) apt& )2)

(A14)
P

sg =xggxggs, g) = I'gg —K~g y

where n„ is the Regge trajectory and g is its cou-
pling to the quarks.
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