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Gnyta-Blenler condition and infrared-coherent states
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A recent claim by Zwanziger that the Gupta-Bleuler subsidiary condition and the infrared~herence
condition are inconsistent is examined. It is shown that the correct form of the Gupta-Bleuler condition

agrees with the infrared-coherence condition. The effect of using a subsidiary condition proposed by
Zwanziger as a substitute for the Gupta-Bleuler condition is discussed.

In a recent publication' Zwanziger proposed
a new subsidiary condition to replace the one due
to Qupta and Bleuler' for the Lorentz gauge for-
mulation of quantum electrodynamics (QED). To
support his contention that a change in the Qupta-
Bleuler (GB} subsidiary condition is desirable,
Zwanziger cites a number of defects from which
he claims that the QB condition suffers. The
most serious among the faults that he ascribes
to the QB condition is incompatibility with the
infrared-coherence condition. ' Another difficulty,
related to the first, is that the states that satisfy
the GB condition form. a Fock space, but the states
that satisfy the infrared-coherence condition do
not. Also related to the above is the claim that
the GB condition has no localized solutions in
the charged sector. Elsewhere' the argument is
made that the solutions in the charged sector
are not only nonlocalizable but also non-nor-
malizable.

The purpose of this note is to point out some
flaws in Zwanziger's criticism and to show that
the GB subsidiary condition is a viable and sat-
isfactory basis for the Lorentz gauge formulation
of QED in charged as well as in neutral sectors,
and that Zwanziger's subsidiary condition is
neither an improvement nor really new, but is
a special case of a set of subsidiary conditions
that are related to the QB subsidiary condition
by pseudounitary trans formations.

Care is necessary in the comparison of the GB
subsidiary condition and the infrared-coherence
condition, because in Zwanziger's work both are
written in terms of "in" operators, and, in the
case of charged-particle states, these are dif-
ficult to treat correctly. In @ED in the Lorentz
gauge one may not assume that the '*in" and "out"
limits of field operators obey the equations of
motion and commutation rules of noninteracting
fieMs. ' Such an assumption implies that when
photons and electrons have not yet begun to inter-
act (or are no longer close enough to interact),
there are no couplings between properly normed

electron states and any components of A„. In
fact, in the physical sector of Hilbert space,
charged particles are always coupled to an electric
field, as is required by Gauss's law.

For example, in Ref. 1, the asymptotic form
of A„(x) is given (in approximate adherence to
Zwanziger's notation) by

At"'(x)=(2w) 'I' fdk(2+) [a„"'('0)e"'*

+(in)'i(k) + Ar] -(i)
If one were to simultaneously express the cor-
responding limiting form of the spinor field by

p(in)(+) (2&}-3/2 fdp(2E)-1[b(in)(p)ssi xii (p)

d(in)t(p) e iD'x s (p)]

with canonical commutation rules for the "in"
creation and annihilation operators l.e.

{k(ia)(p) k (in)t(ps)) {d(in)(p) d&jn)t(pg)]

=2E t}... 6(p —p'}

[a'"'(k), a'"'t(k')] =2(d 6 „.5(k-k'),
then the use of these "in" operators to construct
incident states would be clearly wrong. The pro-
cedure would generate charged-particle states
which have vanishing expectation values of electric
and magnetic fieMs, whereas in fact we know that
the actual charged-particle states, even in the
noninteracting "in" limit, are accompanied by
electric and magnetic fields. The charged-particle
states Zwanziger wants to select with the infrared-
coherence condition are modified to take par-
tially, but not completely, this fact into account.
The infrared-coherence condition "dresses" the
charged particles so that at large distances, which
correspond to low-frequency components, they
are accompanied by the electric field necessary
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to obey Gauss's law.
According to Zwanziger's account, the for-

mulation of the infrared-coherence condition is
properly covariant, so that the appropriate low-
frequency components of the magnetic field also
accompany "in" states for charged particles not
at rest in the laboratory frame. In short, these
"in" states are improvements over the "in" states
that have no electromagnetic fields at all ac-
companying charged particles. However, even
"in" states that obey the infrared-coherence
condition have expectation values of electro-
magnetic fields that fail to obey Maxwell's equa-
tions, and thus they are not correct "in" states
either. For that reason it seems advisable to us
to avoid the "in" and "out" nomenclature for
charged-particle theories unless the appropriate
caveat about the electromagnetic field of charged-
particle asymptotic states is explicitly stated.

In contrast to the infrared-coherence condition,
the QB condition requires states to obey Gauss's
law for all frequency components. We have pre-
viously shown' how to select a set of asymptotic
states that satisfy the QB condition and how to
formulate quantum electrodynamics in the space
they define. These states also include coherent
superpositions of photon components but can be
transformed by a pseudounitary transformation,
into elements of a Fock space. The charged-
particle states selected in Ref, 6 are dressed with
the coherent photon "ghosts" required to equip
them with the Coulomb field appropriate for a
charged particle in its rest frame; they lack all
transverse field components. These charged-
particle states therefore differ from the "in"
states Zwanziger chose. ' In spite of the dis-
crepancy between these two sets of states, there
is no conflict between the infrared-coherence
condition and the GB condition. The infrared-
coherence condition requires that Gauss's law
hold in the low-frequency limit and that, in that
same limit, charged particles are accompanied
by the transverse fields necessary to preserve
termwise manifest covariance of the S matrix.
The GB condition requires that Gauss's law hold
for all frequency components; it makes no re-
quirements at all on transverse fields and can
be satisfied by states having any or no transverse
photons. There is no inconsistency between these
two conditions and, in particular, the "correct"
asymptotic "in" and "out" states wouM have to
satisfy both.

The erroneous conclusion that the QB subsidiary
condition contradicts the infrared-coherence
condition [i.e. , the inconsistency behveen Eqs.
(1.14) and (1.15) in Ref. 1] is based upon a mis-
taken assumption about the t-+~ limits of the

+a'„(k, x,) e "'"]. (3)

The assumption that is implicitly made in Ref. 1

is that, for the purpose of specifying the GB con-
dition, in the limiting ca.se t- —~, a (k, x,) and
a((k, xn) become the time-independent a("'(k} and
a„'"' (k}, respectively; a similar assumption is
made about the t -+ ~ limit and the corresponding
"out" operators. In the limit t- —~, A„(x) then
becomes A("'(x) given in Eq. (1). This is the
assumption that is made when the Lehmann-
Symanzik-Zimmermann (LSZ) formalism is applied
to all components of A„ in a manifestly covariant
gauge, and this is also the assumption made in

the earlier work of Yang and Feldman. ' If we
use the t- —~ limit of A (x), given in Eq. (1},
to calculate the positive-frequency part of B„A
we find that

(S A(in))(+)
(2 }3/2

dk k. a &(»(k) e(k'n (4)
2(d

and then the subsidiary condition becomes the one
Zwanziger identifies as the GB condition, namely

k. a""(k)~y} =O.

The use of Eq. (5) as the subsidiary condition
implies thatA„(x) has been assumed to behave
like a free field in the t- —~ limit, and leads
to the following paradox. Since &. E can be re-
presented as

& E=i v'A, —s,(& A),

it also has the "in" limit

~, E(in) —1 dk
[k, a(in)(k) e(k n

(2(()'~' 2

+ki a ((n)((k) e-sk n]

(5)

Since the electron "in" fields g""(x}and g()n (x}
commute with A„'"'(x), and if we choose an electron
state ~ek) for Eq. (5), we get

Heisenberg fields A„and g. Reference 1 takes
account of the fact that the infrared-coherence
condition requires the t- +~ limit of A„ to differ
from a free field by the potentials contributed by
a moving charge. But the GB condition is treated
in Ref. 1 as though the t-+~ limit of A„were
entirely free. It is this discrepancy that is respon-
sible for the apparent inconsistency. A correct
treatment of the GB condition neither requires
nor even permits A„ to behave like a free field
in the t- +~ limit when charges are present.

To see this in detail we represent the Heisenberg
field A„as

1 dk
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k a'"'(k)
~
e,}= 0

as the subsidiary condition, and ean infer that
V X, taken between one-electron states, vanishes.
But the equation (e~~& Rle~} =0 violates Gauss's
law, and therefore Eq. (8) cannot be the correct
form of the GB condition, since the latter not
only cannot violate, but in fact implies the validity
of Gauss's law in the physical subspace. The
equivalence of Gauss's law and the GB condition
has pl'evlously been discussed and ls summarized
as follows: In the Feynman gauge (which we choose
for convenience, though this argument could be
repeated for any other one of the Lorentz gauges)
V E —p=-Bo(B„A ) is one of the Euler-Lagrange
equations of motion. ' Therefore the validity of
B„A„"~(j)) =0 and ($ ~*B„A,' '=0 is equivalent to
the va. lidity of both, ((())

~
~B„A„~(j)) = 0 and

((j) ~*(V E p}~@}=0. It is not surprising that
this paradox arises. %hen one assumes that A„

is a free field in thy t -+~ limit, one does not
allow for the obvious fact that part ofA„must be
available to accompany charges into the asymptotic
region of space-time. Even when t -+ ~, part of
A„cannot be free, but must represent the lon-
gitudinal field required by Gauss's law. In dif-
ferent ways this same point is made in the papers
listed in Ref. 5.

In addition to the foregoing, the following point
ean also be made. In general, the assumption
that a field behaves like a, free field in the t -+~
limit neither follows from nor contradicts the
equations of motion. But in @ED, because of the
coupling of A„ to a conserved current, and the
role that the indefinite-metric space plays in the
theory, we ean infer behavior in the t --+ ~ limit
that is incompatible with the assumption that A„
is free in the t-+~ limit. For example, from
Eq. (3) and the equa, tions of motion we find
that

P

B,[k.a(k, x,)]=,~, dx e "" -p(x}+ifdye(x y)s, p(y)0 ) 0
{2 Pj2 x'0"-yg

(9a)

s, [). a();, *,)]= dx0 "'* p(x) ( faye'(%-y)a, p( ))(2v)'"

where k designates (k„k„k„-k, ) and where

S(x—y) =(2v) ' Jdk((u) 'exp[ik (x —y)].

In general the two time derivatives given in Eqs.
(9) do not vanish as f- +~ although they may
vanish in special cases, as for example in the
limit (d 0, provided that the integrals on the
right-hand side of Eqs. (9) remain finite. However,
if we define

p(k x } ef(P+ro)xo p(k) e-iexo

then the combination

Q{k,x,) =k a(k, x,)+(2v) '~'p(k, x,)
and its adjoint Q (k, x,}have vanishing time de-
rivatives. %e can make use of that fact to rewrite
the Ao component of A, in Eqs. (3) (the curl-free
part of A ean be treated in the same way, but to
save space only the results for A, will be given);
we get that

A, (x)= „, , ([h a(k, x,)e" +k a'(k, x,)e ". "] Q(k, x,')e"' Q*(k,x,)e-" )(2v}'"

dk+, , p(k, x,)e"' .
(2v)' 2&v'

Q(k, x,) and Q*(k,x,) in this equation both are time
independent, and therefore are their own t-+~
limits. Q{k,xo) and Q~(k, xo) are c-number mul-
tiples of the positive- and negative-frequency

parts of B„A„which in turn obeys ClB„A„=0and
is an inva, riant local operator. These consid-
erations dictate that the proper form for the GB
condition is"
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[k a(k}+(2w) '"p(k)] le}=0. (13a)

Since we have shown that [k a(k)+ (2w) '~'p(k)]
is its own t- + ~ limit, we are also entitled to
write the GB condition as

[k a(k) + (2w) '~' p(k)] "'
~
P}= 0 (13b)

or, similarly, with an "out" designation. If we
combine Eq. (12) with a similar expression for
V A and then use Eq. (6), we find that

11m[k azz~'(k}+ (2w) z~z
Q] ~

P) =0
id' 0

(15)

since Q = lim„, p(k}. Thus the GB condition agrees
with Zwanziger's form of the infrared-coherence
condition [Eq. (1.15) in Ref. 1] and the inconsisten-
cy that he claims to have found is not there.

Suppose we were to identify k a(k, x,)
+ (2w) '~' p(k, x,) as k a'(k, x,), and then construct
the potentials A (x) from the primed a'(k, x,)
operators? If we identify k a'(k) ~@}=0 as the
GB condition, and note that a„'(k, x,) can be sub-
stituted for a„(k, xo) in the expression for B„A„, we

V E —p=-(2w) '?' —[Q(k) e"* A*(k) e "']
2

(14)

so that for physical states (Q ~

*(& E —p)
~
P) = 0.

The asymptotic behavior of A, dictated by Eq. (12)
does not at all agree with the condition that, as
t- +~, A, is a free field. The components of Ap
that are proportional to 0 and 0* have vanishing
expectation values in the physical subspace.
ithin the physical subspace Ao is therefore
constrained by Eq. (12) to "follow" the charge
density p in a kinematic relation that implies
Gauss's law. Of course A, is gauge dependent
and has matrix elements that project beyond the

physical subspace. Similar results for the curl-
free part of A, and more details about the gauge
structure of A„and P in QED, have previously
been given elsewhere and will not be repeated
here. " The transverse parts of A may be assumed
to behave like a free field as t +~ without af-
fecting the GB condition in any way, although, as
Zwanziger points out correctly, not without doing
violence to the manifest covariance of the infrared-
cohe rence condition.

How does Eq. (13b) compare with the infrared-
coherence condition [Eq. (1.15) of Ref. I]? In
general, k a(k, xo) does not have a time-indepen-
dent t-+~ limit, so that k a'"'(k) cannot be
defined. However, Eqs. (9) give us some confidence
that, in the limit u —0, and if the total amount of
charge in the space is finite, s, [k a(k, x,))vanishes
and the limit lim„, [k a'"'(k)] exists. In that case
we may write that Eq. (13b) has, as a special case

might believe that Zwanziger's paradox has some
validity after all. But deeper reflection shows
otherwise. The primed a„'(k, x,) contain p(x)
implicitly and no longer have canonical equal-
time commutation rules with P(x). Moreover,
in the expression for V' E [in Eq. (6)] the primed
a'(k, x,) may not be substituted for the unprimed
a (k, x,), and the (2w) '?z p(k) reappear to restore
consistency between the GB and the infrared-
coherence conditions. This topic is considered
in considerable detail in earlier publications. "
The discussion will not be repeated here except
to confirm that this essentially notational change
does not alter anything of substance in the fore-
going argument.

In Ref. 4 Maison and Zwanziger claim that states
that satisfy the GB subsidiary condition [Eq.
(13a)] cannot be normalized in cha. rged sectors,
and that no consistent theory can be based on the
existence of charged states that satisfy the GB
condition. However, that claim is not valid. The
fact that QED is formulated in an indefinite-
metric space completely eliminates this problem.
To see this, we express the solutions of Eq. (13a)
as

=8 tl (16a,}

where ~n) are elements of the Fock space that
constitutes the physical subspace of the indefinite-
metric space for spinor QED in a Lorentz gauge.
Equa, tion (16a) leads to

~v) =exp
&

k a (k) p(k) ~n}, (16b)
(2w)'?' 4(o'

which agrees with Eq. (1.12) in Ref. 4. ~v) includes
a coherent superposition of photons and super-
ficially may appear to have a divergent norm in
the charged sector in which p(0) t0. However,
k a(k} and k az (k) commute, even though they are
each others adjoints in the indefinite-metric
space. For that reason the norm is not divergent,
and, in fact,

(v+~ vz} =(n,*~n~}=6,. ~

trivially. In QED the starred adjoint (P* for
operators P and (i*~ for states ~i}) is the re-
presentation-independent adjoint that takes the
place that the Hermitian adjoint has in a positively
normed space. It is the only adjoint that needs
to be introduced into the theory, and the norm
(i*~i} is the only one that can be given a meaning-
ful interpretation. A self-contained algebra can
be based on this adjoint and norm. " In a positive-
semidefinite-metric Hilbert space k a(k) and its
adjoint could not commute, since such commuting
adjoints imply the existence of non-null state
vectors with vanishing norms. In that case (i.e. ,
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and

D(o) =
(2w)' '

dk
, [k a(k, 0}p(-k, 0)

k a~(k, 0) p(k, 0)] (19)

D(x ) =e "oD(0) e ' "o

D(x, ) was used to generate the pseudounitary
transformation

(20)

k a (k, x,) =exp[D(x, )] A(k) exp[-D(x, )] . (21)

In the limit xo- —~, A(k) is its own limit, but

D(xo) and k a(k, xo) approach no limit. We will,
however, use Eq. (21} to write

k a "o'(k) = exp (D'"') II exp(-D""), (22}

even though the time-independent limits k a'"'(k)
and D'"' do not exist, so that we can identify
our operators with Zwanziger's. We will extend

in a positive-semidefinite-metric space) a
relationship such as that expressed in Eq. (16b)
would lead to non-normalizability for the

~
v)

when the ~n) are normalized. But in QED Eqs.
(16) are the ones that express the correct re-
lationship between the elements of the Fock spa, ce,
n), and the states that satisfy the GB condition,
v), in charged as well as in the neutral sector.

D is a nonlocal operator and its nonlocality is
transmitted to the states it defines. We therefore
have the option of representing the states

~
v) in

a space defined by the ~n), in which case they
involve nonlocal superpositions of ~n) states,
but then the equations of motion a,re local. Or
else we may use a Fock construction for the states
~v) directly, but then the equations of motion
are nonlocal. Both versions are discussed in
Ref. 6. These nonlocalities are not faults or
difficulties but are necessary for a nontrivial
@ED 15

In Ref. 1 Zwanziger recommends the use of a
substitute subsidiary condition,

[k a'"'(k)+(2w) ' 'f (k)]
~

(("))=0 (18)

(where f is some c-number function) in place of
the GB condition. When ~-0 thenf-Q, and Eq.
(18) is designed to be consistent with the infrared-
coherence condition. Earlier in this note we
pointed out that such a device is not necessary.
The question to be discussed here is what effect
the substitution of Eq. (18) for Eq. (13) has on the
theory. In Eq. (18) we are again faced with the
question of how to interpret k a'"'(k), since the
"in" designation presupposes the existence of
limits as t- —~ that do not agree with Gauss's
law. We will resolve this question in the following
way. In previous work we defined operators"

this same notation to simila, r transformations in
which other form factors [such as the c number

f (k)] are substituted for p(k).
The set of states that satisfy Eq. (18}can be

related to the set ~n("') that satisfy
k '"(k)I )=0b

~
("' ) = exp (-(f'" )

~

n '") (23a)

where

d(in) 1
, [}l a&"'(k)f( k}

(2w)' ' 4~

k a"" (k)f(k)]. (23b)

And the set
~

$"") that satisfy Eq. (18) are related
to the

~

v"") by

~
(«')) = exp (D' &"')

~

v&'o') (24)

where D' =D —d.
The sets of states that can be related to each

other by pseudounitary transformations give
rise to transition amplitudes for which the following
relation has been demonstrated":

Tf ( Tf ( + (E/ —E( )X+ie Y

Here

(25)

T/ (=(v/I*T
I v(} ~

T is the transition operator

T = (H —Ho)+ (H —Ho)(E( H+i&) '(H ——Ho),

and H, is the operator for which
~ $() (or v,)) is

the eigenstate with eigenvalue E,. X is nonsingular
and Y may have (ie) singularities for wave-
function renorma, lization diagrams, but is less
singular otherwise. Except for renormalization
constants Eq. (25) leads to T/ (-T/ ( for on-shell
transition amplitudes. Equation (25) therefore
guarantees that the iterated S matrix will not
suffer any damage from the substitution of any
other subsidiary condition for the GB condition
provided they are related by a pseudounitary
transformation. Since Eq. (24} establishes that

[k a(k) (-(2w) ' ' p(k)]'"'

exp ( (Din)))[k. a&(n) +(2w)-o/of(k)] exp(Di(in))

(26)

the use of Zwanziger's substitute subsidiary
condition qualifies as one of the harmless sub-
stitutions. However, the situation changes when
one considers the set of processes for which
Zwanziger believes that his formulation is of
particular importance, because in those cases
more information is necessary than on-shell S-
matrix elements can provide, and the conventional
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resolution of the infrared-divergence problem will
not suffice. Such processes include, for example,
collisions or decays in which the finite-time ef-
fects are important and the on-shell condition is
modified in a nontrivial way by the time-energy
uncertainty relation. " e have previously shown'
that for these processes the use of the correct
form of the GB condition is essential and errors
even in lowest-order calculations can result from
the use of a substitute subsidiary condition that
would be harmless to on-shell S-matrix elements.
In fact, in these cases the use of the correct "in"
and "out" states is important.

Note added in proof. Zwanziger's remarks do
not disprove the claim that I have made above.
Zwanz iger continues to represent the "in" and
"out" limits of the Heisenberg field A& as though
the latter had no long-range components. In so
doing he ignores my argument that, when the Gup-
ta-Bleuler subsidiary condition is imposed in
Lorentz-gauge QED, the theory must be consistent
with Gauss's law at all times, even in the asymp-
totic "in" and "out" limits. Zwanziger is of course
correct that in his Eqs. (13) weak limits are in-
dicated and that momentum-space operators must

be defined with test-function packets. But these
remarks have very little bearing on the issue
here. The essential point is that when the Gupta-
Bleuler condition is imposed, Gauss's law fol-
lows, so that A~( and A„'"' cannot be entirely
detached from currents. Formal details, beyond
those in this Comment, are given in my Refs. 6
and 12. Zwanziger partially obscures this issue
by restricting his model to a c-number current
which is largely contained within a finite region
of space and cannot correspond to electrons par-
ticipating in a scattering event. His A& and A~~'"'

are therefore always evaluated in regions remote
from the current. Zwanziger seems to have
chosen the so-called "natural" infrared coherence
condition because it does couple the A„and A„'"'
to currents. He then infers that this is incon-
sistent with the Gupta-Bleuler condition because
he incorrectly maintains that the latter precludes
that kind of coupling.

The author is indebted to Professor A.S. Wight-
man for some illuminating conversations, and
to the Aspen Center for Theoretical Physics for
its hospitality in the summer of 1976.
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