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It is shown that the recently proposed Fisk-Tait spin-3/2equation which remains causal even when
interactions are introduced is a “barnacled” wave equation, and when the barnacles are eliminated the
resulting equation is the same as Hurley’s “doubled” spin-3/2 theory with 4(2s + 1) independent components.
The Fisk-Tait equation has therefore the undesirable features of Hurley’s equation, viz., parity doubling and

negative energy.

I. INTRODUCTION

It is well known that the relativistic field de-
scription of particles with spin greater than unity
in interaction with prescribed external fields is
beset with difficulties both in the second-quantized
formulation® and at the more basic c-number level
itself.?2 The pathologies of high-spin theories came
to light for the first time in the study of the famil-
iar Rarita-Schwinger equation for spin-£ parti-
cles® coupled to external fields: The anticommu-
tators depend on the external field and are not
always positive,! the propagation of the (c-number)
field is noncausal,® and in a constant magnetic
field there occur “normal modes” whose frequen-
cies cease to be real when the magnitude of the
external field exceeds some critical value.* One
could hope to avoid these pathologies by adopting
a different wave equation for the description of
spin-% particles. The restriction to spin s =£ in
the scheme of Hurley® for “doubled” spin-s rel-
ativistic wave equations provided one alternative.
The word “doubled” refers to the fact that these
equations had 4(2s +1) independent components
as compared to the usual 2(2s +1) independent
components. However, the Hurley equation of
this form avoided the Velo-Zwanziger (VZ)
pathology at the cost of having parity doubling
and negative energy in the theory.® Thus the
search for another equation becomes worthwhile.
Recently Fisk and Tait proposed a spin-3 rela-
tivistic wave equation which was shown to be
free from the VZ pathology™?® and had normal
modes with real frequencies in a constant mag-
netic field.® Though it has 16 independent com-
ponents corresponding to two spin-3 particles,
the representation of the Lorentz group under
which the 24-component tensor-spinor of the
Fisk-Tait equation transformed was different
from the representation under which the Hurley
equation transformed.

We will not directly show that the Fisk-Tait
equation has the same difficulties as the doubled
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Hurley equation; the statement proven in this
paper is much stronger than that. We will show
that the Fisk-Tait equation has “barnacles,”®
and that when these are removed the resulting
equation is exactly the Hurley equation for spin 3
with 4(2s +1) =16 independent components. This
means that the two theories are equivalent, and
all the difficulties, as well as the advantages, of
the Hurley equation will persist in the Fisk-Tait
equation. Alternatively the Fisk-Tait equation is
a more or less trivial extension of the Hurley
equation.

Before we start, a brief word is necessary to
give a meaning to the word “barnacled.” This
structure in the Fisk-Tait equation occurs in a
very simple way, so we will give a simple def-
inition of barnacled equations. The most general
definition that preserves these features is given
elsewhere.'’'!? Suppose we have a relativistic
wave equation (=¢I'+8 +m)) =0 transforming under
a representation 7(A) of SL(2, C). Suppose further
that T(A) can be decomposed into two pieces,
T(A)=T,(A)® T,(A), where both T,(A) and T,(A)
are representations of SL(2, C). If with some
such splitting the I', (or actually only I'y) can be
rewritten as

T,(A) T,(A)

F,ﬁ(B“ Xu) T,0)
Y, 0/ 1,0)

where either X, =0 or Y, =0 (or both are zero)
then the equation (-« 8 +m)y =0 is called barna-~
cled of type I or type II (or simultaneous), re-
spectively. Splittings of T(A) always exist, how-
ever, they should exist in such a way as to induce
a splitting of T',, of the above types, before the
wave equation can be called barnacled. When this
happens the wave equation (=i’ +m)) =0 and
the smaller equation (~¢8°9 +m)¢ =0 lead to
practically identical theories.

In Sec. II we rewrite the Fisk-Tait equation in
the standard form (=iI'+d +m)y =0 and determine
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the properties of I'j, We then show in Sec. III

that a first-order wave equation with these proper-

ties for I';, and having a wave function ¢ trans-
forming as in the Fisk-Tait equation, is a barna-
cled “doubled” Hurley equation. Thus the Fisk-
Tait equation is equivalent to the Hurley equation.

II. FISK-TAIT EQUATION

The wave function is a 24-component antisym-
metric tensor-spinor ¢4" =-¢4” and transforms
according to the representation

(1)

of the Lorentz group. The equation of motion is
given by

=2y " =5y D Vg =7 Ve85 )9°°
+3(0 Poge =7 Pagh =D Ve gh +D Ve85 )P’
+mo*’=0, (2)

Arranging the elements of ¢** in a column as

lp :col(¢01, <POZ, ¢08’ ¢23’ ¢31’ ¢12), (3)
it is easily deduced that (2) can be put in the form

(Tep=-mpy=0, (4a)
where I'; is given by

r,= (A 0) (4b)

0 A
with
EY AR % o il

A= | 7t B0 2. (4c)

1 2,,0

Y WYY Sy

0,3 (1,3
3/2 3/2 1/2 1/2
f' a

L a f!

0,2 (30 (31 (30
3/2 3/2 1/2 1/2

It is immediately obvious that
rl=r
4] 0 (4d)
r2=r,,
and I'j has eigenvalues +1, -1, and O with each
occurring eight times. In fact A =y°P,,, where
Py, is the projection matrix to the spin-2 part
of the wave function and so the nonzero eigen-
values of I'; correspond to spin-3 particles.

III. REDUCTION OF THE FISK-TAIT EQUATION

We will now show that any wave equation of
the form (4a) consistent with the properties of
the Fisk-Tait equation, as expressed and deduced
in the last section, will be a barnacled “doubled”
Hurley equation for spin-3. Hence the Fisk-Tait
equation will be so related to the Hurley equation.

Consider the most general manifestly Lorentz-
covariant wave equation transforming under (1)
and satisfying the following two conditions:

(i) The wave equation

(=T 3 +m)P(x)=0 (5)

describes a unique mass m, and spin § with
4(2s +1) =16 independent components.
(ii) The I', satisfy the algebra

Z (rurv—guv)rx =0
o(uva)
or (6)
I"o(l"o2 =1)=0.

This is one of the two conditions of (4d). We
will consider only the I'; matrix since the T;
matrices are completely fixed once I'j and T'(A)
are specified'®!4;

3/2(0, 3)
3/2 }(1, )
1/2
1/2(0, )
3/2(3, 0)
3/ 2}(&—, 1)
1/2
1/2(3,0)

(7
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Equation (7) represents the most general T, that
admits an equation (5) transforming under (1).
The complex numbers a, b, ¢, d, f, and g are
not a priori related toa’, b’, ¢’, d’, f’, and g’.

Now, I'; can be put in another basis and repre-
sented as

3/2
Foz(ro 1“16/2) . (8)

where 1"(3,"a (I‘f,/z) represents the connection of
only the spin-3 (3) pieces in I'y:

a
res = b, (%a)
bI
a' c’
—-3c d
ryz= g . (9b)
_%cl gl
dl f’
According to Eq. (6), we obtain
(T2 =(132), (10a)
(T¥)[(r¥22 -1]=0. (10p)

In order to have unique spin 3, T'¥2 has to be
made nilpotent, but then

Det[(T¥2) —I]=£1#0, (11)

so [(I‘},’z)2 ~1I| can be inverted and (10b) implies
that I'V2 =0,

The numbers ¢, d, g, f, ¢, d’, g’, f' are all
zero. This means that the (1, 3) and (3, 1) rep-
resentations decouple and the (0, z)@ (3, 0) appear
as simultaneous barnacles,'* and will therefore
not affect the resulting theory in either the free-
field case or in standard interactions with an
external field.

Since there are 4(2s +1) independent compo-
nents, the numbers a, b, a’, b’ are all nonzero.
Equation (10a) requires that aa’ =bb’ =1, Without
any significant loss of generality a, a’, b, b’ can be
taken as real and all equal to 1. Alternatively,
one notes that the most general I‘é’z is

0 0 0a)

pe [ 0 0 b0} (12)
0 1/6 00
1/a 0 00

The T', of Eq. (7) with these considerations now
becomes, by putting the different irreducible
representations of SL(2, C) occurring in T(A) in
a slightly different order,

3 3 L33 1L L1
2 2 a 2 2 2 2 2

r a 30,3
3

b 2(1, b)
1
2

1/b EYEN)

r,- / :<2, ) e

1 3

/a 2(4,1)
1
2

(0, 3)

L Jis0

Now, there exists a nonsingular linear transfor-
mation V, such that [V, T(A)]=0, for all
A eSL(2,C) and

VI V™1=T},
1 -
1/b
1/b
V= 1 , (14)
a
a
1
1
-
-
i 1
1
= R (15)
1
L1 J
rp= (B O\ 1), (16)
0 0/T,A)

where in the last equation T,(A) and T,(A) are de-
fined by

T,(A)=(0, 2)(z, 0),
TA)=T,(A)p T,(A).

The existence of such a V establishes that all
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theories satisfying conditions (i) and (ii) with T'(A)
as in (1) can be written as follows, using the I']
of Eq. (15):

(=i’ 3 +m)P(x)=0
[,/ 82 0\, mO)]q)(x)]
0 0 0 m w (%)
=0 (1
or

(=iB*3+m)p(x)=0, w(x)=0. (18)

The B in Eq. (18) comes from the B, in Eq. (16),
hence Eq. (18) is the Hurley equation. We are
saying that the Fisk-Tait equation can be put into
a form where a part w(x), of the original wave

[T e 8 +m +B(I",f)][¥(x)=0,
G Cele
0 o0 0 m 0 O Q (x)

or
[<iBcd+m+b(I",f)]e(x)=0, Q(x)=0 (21)

where b(B,f) is the same type of an external-field
interaction of the Hurley equation (21) as B(I'’,f)
is of the Fisk-Tait equation. As a specific example
if B(I'",f)=eI',A"(x), say a minimal coupling to
an external electromagnetic field for the Fisk-
Tait equation, then the form (20) will follow and
b(B,f)=eBu A" (x), leading to the equivalence of
the minimally coupled Fisk-Tait equation to the
minimally coupled Hurley equation. In other
words, the extra components of the Fisk-Tait
equation w(x) never contribute. The range over
which such equivalence, Eq. (19) to Eq. (21),
exists is therefore vast.'?> The Fisk-Tait equa-
tion is the Hurley equation in disguise and as

function ¥(x) is identically zero and the remainder
of the wave function satisfies the smaller Hurley
equation. This is a Lorentz-covariant decompo-
sition.

In standard external-field interactions this
structure will persist, and the two theories will
be identical. In general, consider the standard
external-field interactions of Eq. (17) as

[=iT’*d +m +B(x) ¥ (x)=0, B(x)=B(I’,f)
(19)

where B(I'",f) is a notation signifying that B(x)
is constructed from products of I'),’s contracted
over external potentials f. Due to the nature of
I’/ in Eq. (17) one can see that an interaction
B(I'',f) of Eq. (19) is

} =0, (20)

such does not lead to a new theory. This com-
pletes our assertion. As already mentioned, the
equation of Hurley suffers from difficulties of
parity doubling and negative energy and these

are therefore unavoidable in the Fisk-Tait formu-
lation also.
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