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It is shown that the recently proposed Fisk-Tait spin-3/2equation which remains causal even when
interactions are introduced is a "barnacled" wave equation, and when the barnacles are eliminated the
resulting equation is the same as Hurley's doubled" spin-3/2 theory with 4(2s + 1) independent components.
The Fisk-Tait equation has therefore the undesirable features of Hurley s equation, viz„parity doubling and
negative energy.

I. INTRODUCTION

It is well. known that the x'elativistic field de-
scription Gf pR1'tlcl, es %'1th 8pln gx'6Rtex' thRQ unity
in interaction with prescribed external, fields is
beset with difficulties both in the second-quantized
formulation' and at the more basic c-number level,
itself. The pathologles of high-spin theories cRme
to light for the first time in the study of the famil-
iar Rarita-Schwinger equation for spin-3 parti-
cles coupled to external fields: The anticommu-
tatox*s depend on the external field and are not
always positive, ' the propagation of the (c-number)
field is noncausal, ' and in a constant magnetic
field thex'e occur "normal modes" whose frequen-
cies cease to be x eal when the magnitude of the
external field exceeds some critical value. ' One
coul, d hope to avoid these pathologies by adopting
a different wave equation for the desex'iption of
spin-2 particles. The restx'iction to spin 8 =~2 in
the scheme of Hurleys for "doubled*' spin-s x'el-
ativistic wave equations px ovided one a,ternatiVe. .
The word "doubled" refers to the fact that these
equations had 4(2s+1) independent components
as compared to the usual 2(2s+ 1) independent
components. However, the Hurley equatj. on of
this form avoided the Velo-Zwanziger (VZ)
pathology Rt the cost of hRv1ng pRX'1ty doubl1ng
and negative energy in. the theory. ' Thus the
search for another equation becomes worthwhile.
Recently Fisk and Tait proposed a spin-~ rela-
tivistic %'Rve equRtlon which %'Rs Shown to be
free from the VZ pathology7'8 and had normal
modes %jth rea, l frequencies in a constant mag-
netic field. 9 Though it has 16 independent com-
ponents corresponding to two spin-~ particles,
the representation of the Lorentz group under
which the 24-component tensor-spinor of the
Fisk-Tait equation tx'ansformed was different
from the representation under which the Hux'ley
equation transformed,

%6 will not directly show that the Fisk-Tait
equation has the same difficulties as the doubled

Hurley equation; the statement proven in this
papex is much Strongex than that. We will show
that the Fisk-Tait equation has "barnacles, "'0
and that when these axe removed the resulting
equation is exactly the Hurley equation for spin ~
with 4(2s + 1) = 16 independent components. This
means that the hvo theories are equivalent, Rnd

all the difficulties, as well Rs the advantages, of
the Hurley equation mill persist in the Fisk-Ta, it
equation. Alternatively the Fisk-Tait equation is
a more ox less trivial extension of the Hurley
equation»

Before%6 start, a bx'ief word is necessary to
give a meaning to the word "barnacled. " This
structure in the Fisk-Tait equatj. on occurs in. R

very simple way, so %6 mill. give a simple def-
lnltion Gf bRX'QRcled equRtioQs. The most genex'al
definition that px"eserves these features is given
elsewhere. "'" Suppose we have a relativistic
wave equation (-iI' &+m)/=0 transforming under
a representation T(A) of Si (2, C). Suppose further
that T(A) can be decomposed into two pieces,
T(A) =T,(A)@ T,(A}, where toth T,(A) and T,(A)
are representations of Si (2, C). If with some
such splitting the I'„(or actually only I'0) can be
rewritten as

where either X„=O or I'» = 0 (or both are zero)
then theequation(-il ~ S+rn)/=0 is called barna-
cled of type I or type 11 (or simultaneous), re-
spectively. Splittings of T(A) always exist, how-
ever, they should exist in such a way as to induce
a splitting of I'» of the above types, before the
%ave equation can be called bax'nacled. When this
happens the wave equation ( iF.S+m-)/=0 and
the smaller equation ( iP &+m)@-=0 lead to
practically identical theories.

In Sec. II%6 x ewrite the Fisk-Tait equation in
the standard form (-iI" ~ S+m)g =0 and determine
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the properties of I',. We then show in Sec. III
that a first-order wave equation with these proper-
ties for I'„and having a wave function P trans-
forming as in the Fisk-Tait equation, is a barna-
cled "doubled" Hurley equation. Thus the Fisk-
Tait equation is equivalent to the Hurley equation.

It is immediately obvious that

(4d)

and r0 has eigenvalues + 1, -1, and 0 with each
occurring eight times. In fact A =y'P~„where
P@, is the projection matrix to the spin-2 part
of the wave function and so the nonzero eigen-
values of I', correspond to spin- —,

' particles.

II. FISK-TAIT EQUATION

The wave function is a 24-component antisym-
metric tensor-spinor Q""= -Q"" and transforms
according to the representation III. REDUCTION OF THE FISK-TAIT EQUATION

T (11) = (o, -') q3 (» -')9 (o, -')6 (-', o)e (-' I)8 (-' o} We will now show that any wave equation of
the form (4a) consistent with the properties of
the Fisk-Tait equation, as expressed and deduced
in the last section, will be a barnacled "doubled"
Hurley equation for spin--,'. Hence the Fisk-Tait
equation will be so related to the Hurley equation.

Consider the most general manifestly Lorentz-
covariant wave equation transforming under (1)
and satisfying the following two conditions:

(i) The wave equation

of the Lorentz group. The equation of motion is
given by

--'& P0"" 3r '—P(r'V g." r"r —g.")0"
+ 3 (r"Ppgp Y Ppgp P Vpgp +P Yagp )1t1

+m41""=0. (2)

Arranging the elements of Q"" in a column as
(6)(-ir ~ 6+m)g(x) =0

= col(F01 y02 y03 y23 4
31

4 12)

describes a unique mass m, and spin 2 with
4(2s + 1) = 16 independent components.

(ii) The r„satisfy the algebra

it is easily deduced that (2) can be put in the form

(I' P -m)/=0,
where 10 is given by

(r„r„-g„„}r,=o(~ oi
0

&0 xi
g( p, v i)(4b)

(6)or
with I', (I",' -I) = 0.

This is one of the two conditions of (4d). We
will consider only t,he I', matrix since the I';
matrices are completely fixed once I', and T(A)
are specified' ':

(4c)

(0, —,') (1, —,') (0, —,'} (2, 0) (2, 1) (-,', 0)
3/2 3/2 1/2 1/2 3/2 3/2 1/2 1/2

a 3/2(0, 2)

/ (1 1)

1/22

g f 1/2(0, 2)

3/2(2, 0)
r =

0
bl

(-' 1)
1 2

a' C

I I-2C g
d' f' 1/2( —', 0)

FISK- TAIT EQUATION FOR SPIN-3/2 PARTICLES
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Equation (7) represents the most general I", that
admits an equation (5) transforming under (1).
The complex numbers a, b, p, d, f, andg are
not a priori related to a'p b'p c'p d'y y'$ andg'.

Now, Fo can be put in another basis and repre-
sented as

The I, of Eq. (7}with these considerations now
becomes, by putting the different ix'reducible
representations of SL(2, C) occurring in T(A) in
a slightly different order,

3 3 1 3 3 1 I
2 8 3 2 2 3 2

k(0» 2)

where I"0+ (I', ) represents the connection of
only the spin- —,

'
(&) pieces in I',:

'(1, k)

k (o, k)

k(a, o)

(Qb)

Now, there exists a nonsingular linear tx'ansfor-
mation V, such that [V, T(A)] =0, for all
Ae SL(2, C) and

Vl"OV ~ =I"0,

{1oa)

(10b)

0 0 Oaf
o e b e

0 4

0 I/& 0 0

I/a 0 0 0

(12)

According to Eq. (6), we obtain

(ZIS/2)8 (pS/2)

(I x/2)[(1 x/2)2

In ordex' to have unique spin ~, 1"~~ has to be
made nilpotent, but then

Det[(I' a)' —fj =~ 1 ~ 0,
so [ I'{~0)' IJ can be-inverted and (10b) implies
that X'0 = e.

The numbers c, d, g, f, c', d', g', f ' are aB
zero, This means that the (1, &) and (, 1) rep-
resentations decouple and the (0, —,')g (-,', 0) appear
as simultaneous barnacl, es,"and will therefore
not affect the resulting theory in either the free-
field case or in standaxd interactions with an
external field a'

Since there are 4(2s+ 1) independent compo-
nents, the numbexs a, b, a', b' are all nomero.
Equation (loa) requires that aa'=f/f/'=1. Without
any significant loss of generality a, a', 6, 6' can be
taken as real and all equal to 1. Alternatively,
one notes that the most general I'02 is

1,/b

(14)

(15)

I/P, 0'tT, (A)

j, o ojT(A)
where in the last equation T,(A) and T,(A} are de-
fined by

T,(A) =(0, —.*)@(1,-')S(-', l)P(-', o),

T,(A)=(0, )g(-,', O),

T(A) =T,(A)g T2(A).
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theories satisfying conditions (i) and (ii) with T(A)
as in (1) can be written as follows, using the I",
of Eq. (15):

(-iI" ~ 8 + m)P(x) = 0

0) (m 0) P (x)
i+I

0)
(I'7)

function g(x) is identically zero and the remainder
of the wave function satisfies the smaller Hur ley
equation. This is a Lorentz-covariant decompo-
sition.

In standard external-field interactions this
structure will persist, and the two theories wil. l
be identical. In general, consider the standard
external-field interactions of Eq. (IV) as

[-il" ~ 8+m+B(x)]@(x)=0, B(x)=B(I",f)

( iP-8+m)Q(x) =0 &u(x) =0. (18)

The p in Eq. (18) comes from the p, in Eq. (18),
hence Eq. (18) is the Hurley equation. We are
saying that the Fisk-Tait equation can be put into
a form where a part &u(x), of the original wave

where B(1"',f) is a notation signifying that B(x)
is constructed from products of I'~'8 contracted
over external potentials f. Due to the nature of
I'„' in Eq. (17) one can see that an interaction
B(I",f) of Eq. (19) is

[-~i "8+m+B(r",f)]e(x) = O,

I+i i+i
. (P 8 0) i m 0) ~b(p, f) 0) e (x)

&0 i ( o oi

or

[-ip 8+ m+ b(i",f)]4 (x) =0, Q(x) = 0 (21)

where b(p,f ) is the same type of an external-field
interaction of the Hu»ey equation (21) as B(l",f )
is of the Fi8k-Tait equation. As a specific example
if B(I",f ) = ei'„'A, "(x), say a minima, l coupling to
an external electromagnetic field for the Fisk-
Tait equation, then the form (20) will follow and
b(P,f ) =eP„A"(x), l.eading to the equivalence of
the minimally coupled Fisk-Tait equation to the
minimally coupl. ed Hurley equation. In other
words, the extra components of the Fisk-Tait
equation cv(x) never contribute The range over
which such equivalence, Eq. (19) to Eq. (21),
exists is therefore vast. " The Fisk-Tait equa-
tion is the Hurley equation in disguise and as

such does not lead to a new theory. This com-
pletes our assertion. As already mentioned, the
equation of Hurley suffers from difficulties of
parity doubling and negative energy and these
are therefore unavoidable in, the Fisk-Tait formu-
lation also»
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