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Unified treatment of the Cherenkov and Ohmic losses of a relativistic charge
in a conducting medium
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Theoretical estimates of the classical part of the stopping power of an Ohmic medium for a fast charged
particle are obtained for the two limiting cases of a strongly and a weakly conducting medium. Conforming
to the fact that any Cherenkov radiation that is emitted is rapidly absorbed and converted into heat in a
strongly conducting medium, there is a single expression for the energy loss, which is Ohmic in nature. On
the other hand, in a weakly conducting medium the total energy loss splits up into a Cherenkov loss given by
the Frank and Tamm expression and an additional Ohmic loss, whose power spectrum exhibits a marked
contrast with it.

I. INTRODUCTION

The Bohr' losses of electrically charged parti-
cles in cloud chambers, photographic plates, scin-
tillation counters, etc. , were summarized by
Price, and their Cherenkov losses ' in a variety
of media' by Jelley. A unified treatment of Bohr
and Cherenkov losses was first given by Fermi. '
The interplay of synchrotron and Cherenkov losses
has recently been studied by Schwinger et al. ,

' and

that of transition and Cherenkov radiation by
DeRaad et al.'

The purpose of the present study is to give a
unified account of the Cherenkov and Ohmic losses
of a relativistic charged particle moving in a con-
ducting medium. Apart from their intrinsic theo-
retical interest, studies of radiation in conducting
media' '" have acquired renewed significance by
virtue of their astrophysical and spatial implica-
tions 12& 13

We prefer to work in the rest frame of the parti-
cle"" in which the conducting medium flows back-
wards with a relativistic velocity. By virtue of its
motion the constitutive matrix of the medium be-
comes quite involved, "acquiring a uniaxial mag-
netoelectric character. "'" Added to this, the con-
ductivity of the medium worsens the situation,
since a conducting medium loses its neutrality and

appears to be charged when set in motion in an
electric field. " All these difficulties are, how-

ever, offset by the considerable simplification
that the fields become static in the rest frame of
the particle, which permits the losses to be de-
rived from only a three-fold Fourier integral.

II. FOURIER SYNTHESIS OF THE FIELD

Let the point charge move with a uniform veloc-
ity Pc along the x, axis in a homogeneous isotropic
conducting medium. (In what follows, we use the

notation of Majumdar and Pal.") The imaginary
parts of the permittivity E, permeability p. , and
conductivity o are assumed to be negligible. The
energy lost per unit path length of the particle is
equal to the retarding force experienced by it:
W=-(eE,),~„.~9 Since the longitudinal component
of the electric field E, is unaffected by a special
Lorentz transformation along the line of motion of
the particle, it proves convenient to work in the
rest frame of the particle, in which Maxwell's
equations take the form

S.D.( „}=et(„},e„„,SP, ( „)=O,

s„a„(,) =o,

e„„,s„H,(x„)=—[J„(x,)+p„p~(g„)],

where e„„,is the Levi-Civita symbol in three di-
mensions, J (x'„)is the conduction current density,
and |3„p~is the convection current density due to
the apparent charge density in the relativistically
moving neutral medium. The static fields can be
resolved into their Fourier components as

D„(x„)= D exp(ik„x„)dk, etc.

The constitutive relations of the moving medium
can be obtained from a Lorentz transformation of
the covariant material tensors T,», (Ref. 15) and

0,.» defined by

1 1
H,

&
= &Tiger Far and J&= zg, »F»,

where H, &, F,&, and J, are the Fourier components
of the induction and field tensors and current-den-
sity four-vector. T«» is the Tamm magnetoelec-
tric tensor connecting (D, H) with (E, B), and e,.»
is the covariant conductivity tensor connecting
(J, p} with (E, B). For an isotropic medium mov-
ing uniformly along the -x, axis, one then obtains
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D, = e,E~, D2 = e+2+ )B3, D, = e+~ —$&2,

and

J, =qE„J,= gE, + 4B„J,= gE, —O'B„

where
Rekg

Py'
(n' —1), goy, Copy, n'=ep.

p

Substituting (2) and (4) in (1), we obtain
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FIG. 1. Configuration of the poles, where Ok
&

& 0,
G 0& & 0: (1) In a weakly conducting medium for all k 2

for velocities of the charge below the Cherenkov thresh-
old, and for k2 & e~k& for velocities of the charge above
the Cherenkov threshold. (2) In a weakly conducting
medium for k& &a2k&2 for velocities of the charge above
the Cherenkov threshold. (3) In a strongly conducting
medium for velocities of the charge above the Cherenkov
threshold. For k2 &0, k&, the poles remain stationary,
while for k2 &o. k& the poles migrate towards the lmk&
Rxis as k2 ~.

and

oPr(n' I) (1+—P')

2ec(1 —P')

Although the integral in (5) is purely imaginary,
its structure is such that the sum of the residues
at its poles is invariably real. This makes 8' an
essentially real quantity. The integral diverges
in a nondispersive medium, but dispersion (which
is always present in any real medium) provides
the necessary cutoff, as n- 1 for ~- ~. By a
Lorentz transformation of the wave four-vector
it can be seen that the frequency ~ in the rest
frame of the medium is related to the longitudinal
component k, of the wave vector in the rest frame
of the charge by +=Pyck, . We assume the medium
to be temporally dispersive in its rest frame so
that e, p, , and o are given functions of e. These
then become given functions of k, in the rest frame
of the chax'ge, in which the moving medium exhib-
its spatial dlsperslon.

III. EVALUATION OF THE INTEGRAL

The position of the poles of the integrand of (5)
in the complex k, plane depends on the sign of k,
and the magnitude of o. For weakly conducting
media and velocities of the charge below the
Cherenkov threshold (n'&0), they always remain

close to the imaginary axis and on either side of
it (Fig. 1). In the limit as o -0, the poles for
k~&0 and kg~0 merge on the imaginary axis. Ow-
ing to the presence of k, in the numerator of (5),
their contributions to the integral cancel one
another exactly, which leads to a vanishing ab-
sorption and absence of radiation. Two cases arise
for velocities of the charge above the Cherenkov
thxeshold. For k, '& o.'k, ', the poles are close to
the real axis and approach it for small values of

Their contributions therefore combine with one
another and give rise to a finite energy loss even
in a nonabsorbing medium. This loss is identified
as Cherenkov emission. For k2 &a'k, , on the
other hand, the poles revert to their positions
close to the imaginary axis, wherefore their con-
tribution from this x egion of k, integration is cus-
tomarily ignored. In the other extreme of a
strongly conducting medium, the poles lie midway
between the real and imaginary axes for both
k2 ~~ n k, and this demands that both these regions
be considered during the evaluation of the stopping
power.

The k, integral can thus be evaluated by collect-
ing the residues at the appropriate poles. How-
ever, the resulting k2 integrand turns out to be too
involved for arbitrax'y o, containing a radical with-
in a radical. Such a situation obtains in all studies
of the electrodynamics of Ohmic media, as it is
inherent in their dispersion relation itself. 2' How-
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ever, it is possible to extract the asymptotic limits
of the stopping power in the two realistic limiting
cases of a stxongly and a weakly conducting medi-
um. The former would refer to the classical
losses of a high-energy proton coursing through a

metallic slab, and the latter to its losses in a
Cherenkov insulator with conducting impuri-
ties.

In the limit of a strongly conducting medium, we
obtain

where r is the relaxation time ' of the conducting medium and u&„ is the limiting frequency (usually in the
ultraviolet) below which the medium can be classed as strongly conducting. It is important to note that the
conductivity enters expression (6) not only through r but also through ~„.In {6), there is no longer a neat
separation between the Cherenkov and Ohmic losses. This conforms to the fact that any Cherenkov emis-
sion that takes place should now be rapidly absorbed and converted into heat within a short distance of the
order of the skin depth. " Expression (6) gives the total energy loss including this conversion. It is inter-
esting to contx ast the Fourier power spectx um in an Ohmic medium with the Cherenkov spectrum in an in-
sulating medium. ~

In the other extreme of a weakly conducting medium, the energy loss takes the form

p, 1 — » mdco+ 2 1—

where v, is the limiting frequency above which the medium can be classed as weakly conducting. 2

first term of (7) is precisely the Frank and Tamm expression for the Cherenkov losses in an ideal insula-
tor, and the second term can be expected to represent the additional Ohmic losses due to any conducting
impurities.
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