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Structure of the cylintler term in the topological expansion
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We discuss the properties of the cylinder beyond the conventional multiperipheral framework, focusing our
attention on the possibility of a two-singularity scheme. A sort of hybrid model is proposed where both the
usual multiperipheral kernel and the Pomeron singularity are coupled to the Reggeon dipole. We give reasons

for expecting in this case a weak f and co renormalization, even in SU(2). Using dual field theory as a guide,
we discuss several problems related to the cylinder topology: overlap between clusters, daughter exchanges,

signature and charge conjugation, and t cutoffs. Taking the two-particle s-channel discontinuity of the one-

loop double-twisted graph, we show that the production of two overlapping clusters admits a sort of
multiperipheral description where the overlap region is governed by the Pomeron singularity.

I. INTRODUCTION

In the last few years, a serious effort has been
made in the framework of the topological expan-
sion' to reach a semiquantitative understanding of
the main features of strong-interaction physics:
Regge trajectories, exchange-degeneracy break-
ing, Pomeron singularity, Zweig-rule violations,
etc. Using multiperipheral schemes, numerical
calculations have been carried out with very en-
couraging results. ' In SU(2) we have at the planar
level a set of four exchange-degenerate trajector-
ies (p, &o, f A, ). When the cylinder topology (Fig.
I) is introduced, ' the f trajectory is boosted up and

becomes the Pomeron, while the f and A, trajector-
ies remain unchanged. A problem appears with the
~, which is shifted down or can even disappear,
but the situation is improved by introducing broken
SU(S) and realistic fits are possible" with the help
of nonleading trajectories and thresholds.

The Pomeron-f identity implies the so-called
"fextinction", i.e. , we have only one singularity
instead of a Pomeron plus an f. This is not the
most pleasant solution from the point of view of
dual field theorys (DFT) or quantum chromodyna-
mics' (QCD), where in both cases one thinks of the
Pomeron as a new singularity corresponding to a
many- gluon state. Furthermore, as emphasized

FIG. 1. The cylinder graph and topology.

by Veneziano, a the Pomeron-f identity is not a. nec-
essary consequence of the topological expansion
but rather of the multipheripheral hypothesis. In
connection with the expansion in terms of N, (the
number of colors) and Nf (the number of flavors),
Veneziano remarks that the widths of the reso-
nances are proportional to p =N~/N, and shows that
only when p»-1 does one expect the mean cluster
size to be small compared to the mean gap size and
therefore the multi-Regge model to apply. When

p «1 one should rather consider the production of
long-lived objects (massive clusters) cascading
down to light particles. The real world seems to
correspond to p -1 and this suggests that both
multiperipheral and heavy cluster components are
to be taken into account. On the phenomenological
level, the question of whether or not there are two
high-lying I'=0+ trajectories remains controver-
sial'9 and there is no reason for discarding either
of the two schemes.

The object of this paper is to discuss the problem
of the f extinction and of the C =- component re-
normalization going beyond multiperipheral dyna-
mics. We present a systematic discussion of sev-
eral points related to the cylinder topology such as
overlap between clusters, contribution of daughter
exchanges, signature projectors, charge conjuga-
tion, and t;„cutoffs. Both theoretical and pheno-
menological aspects are considered. In the theo-
retical part, DFT is used as a guide because (a)
it provides the only precise formulation of mathe-
matical duality; and (b) it can be regarded as the
limit of some underlying field theory through fish-
net diagrams. But, as the construction of com-
pletely satisfying dual amplitudes remains an un-

achieved goal, we focus our attention on qualitative
features which are considered not to depend on the
details of the theory. In particular, we do not wor-

18 2995



2996 P. AURENCHE AND L. GONZALEZ MESTRES

ry about the precise values of intercepts, the num-
ber of dimensions, etc. We equally neglect loga-
rithmic factors and therefore assume that the dual
Pomeron is a pole. Given the fact that a new sing-
ularity appears, whose intercept does not depend
on the Reggeon intercept, we are mainly interested
in getting a qualitative understanding of the kine-
matical region of intermediate states from which
this singularity is generated as well as the funda-
mental mechanism behind this result.

Section II deals with the phenomenologieal as-
pects: Concentrating on the possibility of a new
Pomeron singularity higher than the f trajectory,
we show that a compensation mechanism is ex-
pected for both the f and ~ renormalization in
which the multiperipheral boost and the repulsion
by the Pomeron (or the C = —Pomeron daughter)
have opposite effects. Section III is devoted to the
more theoretical aspects: Dynamical origin of the
Pomeron in DFT, signature projectors, and charge
conjugation. The analysis of intermediate states
is done in Sec. IV where we study the contribution
nf each two-cluster kinematical configuration (con-
sidering as clusters the s-channel intermediate
particles) to the one-loop cylinder graph in DFT,
especially when both intermediate particles are
heavy and, considered as composite or decaying
objects, overlap in the rapidity plot. We show in
Sec. V that the results lead to a new sum rule for
the rapidity overlap region, which is dominated by
the new Pomeron singularity, and to a new peri-
pheral scheme in which planar clusters are rede-
fined by cutting off the overlap region. To each
of the new planar clusters there corresponds
a finite-mass sum rule (FMSR), so that the
picture looks very much like a conventional many-
cluster scheme, with the peculiarity that now the
"gap" is not empty, but filled by a two-cluster
many-particle state (once the clusters decay). Sec.
tion VI contains the conclusions. We include also
an appendix with numerical calculations associated
with See. II.

II. PHENOMENOLOGICAL ASPECTS

The phenomenological part of the discussion is
done within a simple kinematical scheme: we are
in a four-dimensional world, but the transverse
momenta, although nonzero, are small compared
to the longitudinal ones. This allows the use of
typically two-dimensional approximations without
neglecting the dynamical roles of transverse di-
mensions (which remain coupled through the polar-
izations of clusters and the transverse momenta
of low-mass particles). Moreover, our analysis
of intermediate states in DFT (Sec. IV) leads to
results supporting such a kinematical approach.

We can then handle the problem of overlapping
clusters and discuss the phenomenological impli-
cations of non-multi-Hegge effects in the overlap
region, which, as we shall discuss, are related to
nonlead ing excha.nges.

Roughly speaking, we can distinguish two kinds
of objects exchanged or produced. One is the lead-
ing trajectory and the produced resonances with
J = o.(s); the other is the nonleading exchanges and
some "background" which in mathematical dual
amplitudes is described by resonances with J
& o.(s) Ie.t us represent the first kind (leading ob-
jects) by a full line [Fig. 2(a)] and the second kind

by a full line accompanied by a doited line [Fig.
2(b)]. In a quark model language, the dotted line
would correspond to something like a radial exci-
tation which increases the mass leaving the angu-
lar momentum unchanged. Although conventional
finite-energy sum rules (with only leading objects)
are a reasonable approximation for several pheno-
menological applications, it is well known since
the detailed work of Ademollo et al. ' that the lead-
ing Regge trajectories cannot bootstrap them-
selves. In particular mathematical duality re-
quires not only leading objects but also nonleading
ones, so that the duality equation can be repre-
sented as in Fig. 3 (with sums understood). At fin-
ite energies both kinds of objects add coherently
and cannot be separated.

Analogously, a complete calculation of the box
diagram implies putting both leading and nonleading
objects in all internal lines. For instance, one has
to include not only Fig. 4(a) (which contributes to
the two-cluster multiperipheral term) but also Fig.
4(b) (in which the clusters exchange nonleading
trajectories) or Fig. 4(c) (in which a "radial excit-
ation" goes around the loop without being absorbed
or produced by any vertex). The multiperipheral
approximation amounts to neglecting Figs. 4(b) and

4(c).
When applied to production amplitudes the multi-

peripheral (multi-Regge) hypothesis permits a
simple description in terms of clusters and gaps.
Using quark diagrams, typical events are repre-
sented in Fig. 5(a). The quark lines emit particles
or resonances which are ordered in rapidity and
clusters are defined as groups of final-state ob-
jects between two consecutive crossed gaps. The
rapidity gaps are supposed to be large enough to
neglect nonleading exchanges, and the multi-Regge

FIG. 2. (a) Propagation of leading-trajectory states.
(b) Propagation of daughter-trajectory states or, in
general, nonleading objects.
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X /
FIG. 3. Duality equation in terms of produced and

exchanged leading and nonleading objects.
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amplitudes are such that E,„effectssuppress
events characterized by mRsslve ovel lapping clus-
ters (see, for instance, Chan et g/. , Ref. 2). In
the unitarity sum, the multiperipheral states de-
fined Rbove build Qp the cylinder topology and
since the crossed loop acts as a twist operator on
the quark lines of the t-channel Reggeon, the two-
cluster term will be proportional to the charge-
conjugation operator in the t channel (see Chew and
Rosenzweig, Ref. 2). This means, once we write
FMSR for clusters, that the Reggeon dipole will
have equal weight and opposite signs for C =a.
Consequently, in a world with SU(2), it is not pos-
sible to promote the fwithout lowering the + tra-
jectory. But crucial to this feature is the fact that
in the multiperipheral approach the cylinder ampli-
tude does not carry any "signature projector", un-
like what happens in DFT (Refs, I1 and 12) as
will be discussed in Sec. III.

In the J plane, one usually associates with the
Reggeon propagator a factor gs/(J- as) where n„
is the t-dependent Regge trajectory, and the cylin-
der is described by a factor k times (within the
multiperipheral assumptions) the charge- conjuga-
tion operator. After ite ation one has

where C is the charge-conjugation, quantum number,
i.e., the parity under the exchange of quark and anti-
quark lines. A way of attenuating the & depressionbe-
forebreaking SU(3) is to give a suitable' dependence
togaandk. Indeed, if gak isafunctionof J with
positive slope in the region of interest, we can in
principle make compatible an important f promo-
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(a.) (4) (e)
FlG. 4. Some graphs contributing to the whole one-

loop planar diagram. (b) contains "radial excitations"
propagating along internal lines between particle 1 and
particle 2, between particle 2 and particle 3, and between
particle 3 and particle 1~

(a.) (l)
FIG. 5. (a) Conventional multiperipheral description of

the I-particle intermediate states in terms of quark
lines, clusters (C;) and gaps (6&). (b) An event which
does not fit in the conventional scheme. 0 is the over-
lap region between particles emitted by both quark lines
and the dotted line is a "radial excitation" traveling
from particle a to particle b. (c) DFT description of the
shadow of event (b).

tion with a moderate w lowering, and there are
several ways of obtaining such a behavior for g„
and A.

One can, for example, modify the FMSH for
clusters introducing daughters. This, together
with SU(3) breaking, was used by Dash' to make
compatible a Pomeron at 1.07 with an w at 0.48,
but it required very strong couplings for both the
daughter trajectory and the leading ~~ state. An-
other way" is to add to the FMSR a. low-energy
term associated with high orders of the topological
expansion, but the result achieved is not sufficient.
Still R different w'ay within the multiperipheral
framework is proposed by Chan and Tsun and Vfeb-
ber, ' who suggest that the mixing with qqqq states
coming from baryon amplitudes cRn boost Qp the
~ trajectory.

An alternative approach is to assume that the
cylinder graph generates by itself R new singularity
with definite signature which dominates the ex-
change of vacuum quantum numbers. A nonleading
C = —component can also be included, following
the results of DFT. Pinsky and Snider' attempted
a fit along these lines and even neglected the usual
multiperipheral terms. They obtained reasonable
results in broken SU(3), with an output Pomeron at
1.06, an f at 0.40, and an f' at 0.12. In order to
have 0. —e~ &0, the Pomeron daughter was as-
signed negative residue and thought of as a cut
rather than Rs a pole.

The motivation for going beyond multiperipheral
schemes comes from the intermediate states with
large multiplicity and small rapidity gaps. At
small gaps nonleading exchanges become important
and the Regge approximation is not a good descrip-
tion of such events. More precisely, let us con-
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sider the diagram of Fig. 5(b). We see that there
is a region where we cannot organize the produced
particles in planar clusters separated by reason-
able gaps. In this region of the diagram it is not
possible to neglect daughter exchanges such as the
radial excitation circulating between particle g and

particle b, whose shadow, in the language of DFT,
would lead for the one-loop amplitude to the pro-
cess depicted in Fig. 5(c). The most natural way
of treating Fig. 5(b) is perhaps to consider two

planar clusters (C, and C, ) and an "overlap region"
0 where both quark lines emit particles. For C,
and C, one would write Reggeon sum rules while
to the "overlap" 0 one has to associate, besides the
conventional multiplipheral term, a new object
whose properties cannot be determined from a
multiperipheral scheme. This would also have con-
sequences for signature and charge conjugation.
For instance, let us consider the structures of
Figs. 6(a) and 6(b), which both lead to the cylinder
of Fig. 6(c), and the structure of Fig. 7(a) leading
to the cylinder of Fig. 7(b). In Fig. 6(a), the two
planar clusters exchange a leading Reggeon while
in Fig. 6(b) they are separated by a, two-cluster
overlap. Figure 7(a) is similar to Fig. 6(b) and

leads to the cylinder structure of Fig. 7(b). Figure
6(a) can be included in the conventional approach
with FMSR and Reggeon exchanges. Figures 6(b)
and 7(a) correspond to something new. In particu-
lar, if we write their contributions to the shadow
scattering in a completely factorized way (cluster
& overlap & cluster =Reggeon & new object P, && Reg-
geon), we get a Reggeon dipole times some new
function of J which accounts for the structure of
P0 In the limit where such a factorized descrip-
tion would be correct, Figs. 6(b) and 7(a) would

contribute with the same weight to the Reggeon di-
pole. This is what happens in the approach used by
Hong Tuan"' for the Pomeronsingularity, whichis
based on this kind of diagrams. In such a factor-
izable limit, the new dipole term has identically
C =-+ as can be seen adding the quark contents of
Figs. 6(c) and 7(b), and is an acceptable candidate
for carrying the Pomeron pole. If one wants to be
more accurate and relax the factorization condi-
tion, one can add a nonleading C = —component and
we get close to the Pinsky-Snider scheme. In Secs.
III and IV, we shall give precise theoretical argu-
ments based on DFT which justify this kind of ap-
proach provided that the new C =+ singularity is
higher than the Reggeon.

In fact, a complete approach should take into ac-
count both the new object P0 and the multiperipher-
al component. In DFT, they come from different
critical points in the integral expression of the
twisted box diagram and correspond to different
kinematical regions of the s-channel intermediate

I
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states. These points will be discussed in detail in
Secs. IV and V. It is then natural to write for the
cylinder

K =Ck+
ec

where C' is the charge conjugation, a, = n~, and z
0

= o.~ —l. 5, and 5 are the couplings of the Reg-
0

geon to the Pomeron and to its C = —daughter.
For k, 5„5positive and ep & nR, and assuming

0
exact SU(2), we note the following: For the f re-
normalization, the multiperipheral component is
positive and the Pomeron mixing is negative. The
opposite happens to the ~: The multiperipheral
term tends to depress it while, because e —a~

0
+1 is positive, the Pomeron daughter pushes it up.
In particular, both the f and the &u trajectories re-
main unrenormalized if one has

~+ =(~~ —~s)k I

=(I+ os —&r )k.
0

(3a)

(3b)
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FIG. 7. (a) Another possible nonmultiperipheral con-
tribution to the Pomeron dipole. (b) Topological and
quark-line description of the shadow of this event (omit-
ting holes).

(c)
FIG. 6. (a) Multiperipheral contribution to the Pomeron

dipole. (b) Nonmultiperipheral term carrying the same
internal quantum numbers. (c) Topological and quark-
line description of the shadow of both events (Omitting
holes).
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This result remains true in broken SU(3). For
the residues, the derivatives of K' at J = o.„will in-
duce renormalization effects. In broken SU(3), both
f' and p will receive a component with nonstrange
quarks (thus allowing for Okubo-Zweig-Iizuka rule
violations), but the f and &u poles will remain free
of mixing if Eqs. {3a) and (sb) hold true In. gener-
al, Eqs. (3a) and (3b) have no reason to be sa,tis-
fied but the tendency towards a compensation be-
tween the multiperipheral and the Pomeron com-
ponents will always give a smaller f renormaliza-
tion than if we have only the repulsive Pomeron
mixing. Something similar happens to the +. Note
also that if one wants to obtain n &o. , it, is enough
to take k &5 /(I+ o'.s —a~ ) and the residue of the

0
Pomeron daughter has no reason to be negative.

Both components of the cylinder come from the
same set of graphs of DFT and we expect them to
have the same behavior in terms of N& and N, .
More precisely, following the analysis of Ref. 8,
one has

N~~p — I for p g($
N,

(Ref. 19) seem to require heavy clusters decaying
into six to eight pions in order to obtain a good
fit.'0 There have been also claims in favor of two-
cluster schemes" which are compatible with data
at present energies. But the question remains open
and we do not want to make any statement here.

We conclude this section with a comment on bar-
yon loops. As before we will have a multiperipher-
al and a Pomeron component. The former is ex-
pected to renormalize both the f and the &u up-
wards'4 whereas the latter will give two differnt
C =+ and C =- components, as for the meson loop.
From the point of view of rapidity space a pure
multiperipheral scheme would be even less justified
than for meson loops, since in that case a rough
estimate of the average gap size will give

1(y') --( y ')
0' 'baryons ~ 2 ~ + g

' 4' 'mesonsf 8

(n& and os are the conventional renormalized f and
the baryon trajectories, respectively) while the
average cluster size is, just as for mesons,

k -5, -5 -1 for p»1. (4b)

For p -1 (which seems to happen in the physical
world), the situation is intermediate between both
limits. It is then likely that the parameters under
consideration will have moderate values and the
compensation mechanism will favor weakly renor-
malized f and ~ trajectories, even without the help
of broken SU(3) {or with small XK components when
the third quark is introduced).

Vfhat other experimental consequences would
such a picture imply' The absence of multiperi-
pheral constraints leads to the production of heavy
clusters whose effect should be detected by particle
correlation measurements, especially in high-
multiplicity events. Measurements of two- particle
semi-inclusive correlations at ISR energies in pp
reactions" allowed the determination of the ratio
A„=(m)„/(m(m- 1))„ofthe first and second mo-
ments of the charged multiplicity distribution of
the cluster decay as observed in events of fixed
charged multiplicity pg, . The most popular models
for particle production favor low-multiplicity clus-
ters with a narrow decay distribution leading for
A„ to a flat or slowly rising n, dependence. The
da/a follow this picture for n, &1.5 to 2(n,) but show
a much more rapid rise in pg, above this value.
This is compatible with the production of heavier
objects becoming important in high- multiplicity
reactions. Heavy clusters could also be looked for
by analyzing the rapidity interval distributions"
with a fixed number of particles in the interval.
Data for pp scattering between VO and 200 GeV

which strongly increases the frequency of events
with overlapping clusters and in general enhances
the corrections to the Regge approximation.

III. THEORETICAL ASPECTS

In DFT,' we have the mell-known infinite set of
four-vector operators g&"', pg ~ I which, when
coupled to the external momenta, generates the
wave function of the N-particle intermediate states.
The successive powers of a„"'generate the ex-
change-degenerate leading trajectory, while the
a„'""s,n ~ 2 carry radial excitations which increase
the mass of the produced particles and originate
in this way the daughter trajectories required by
mathe matical duality.

Using the integral representation, we can write
the box-diagram amplitude for four external par-
ticles as

1

E(p„pm,p„p4)= dx, dx2dxsdx4

da x, "&" 'T x, , p, ),

with

T(x, , p, )=TrIx, "V(p, )x, "V(p, )x, "
x v(p, )x, "v(p, )], (5b)

where the p,. 's are the momenta of the externa, l
particles, the 4,."s are the squared momenta of
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internal lines, J dk means integration over all di-
mensions of space and time, V(p,.) is the vertex
opel R'tol' fol' pRI'tlcle Iq RIld H = IIO+Q „~IIgIq" ap"

ho is a mass operator related to the mass of the
ground state. For more details, we refer the
I'eadex' to Ref. 6.

Expl'ess1011 (5b) col'1'espotlds to tile plRIIRI' dlR-

gram of Fig. 4. When twists are introduced as in

Fig. I, the only difference is that twist operators
appear in the trace. A common feature is that
radial excitations which go axound the loop as in

FIgs. 4(c) 01' 5(c) induce powel'8 of (d =xIxmxsxd ln
the integrand of (5a). When the sum over all oscil-
lation modes is performed as in Ref. 22, one gets
a factor f(~) ', where

f (&u) = II (1 —(u")
ff =1

and d 1S the number of space-time dlmenslons.
Actually, in models with gauge identities one gets
f(~) 'd 8', where E is the number of decoupled di-
mens1ons [E=2 for II(O) =1, d=25l. In the non-
planar case one obtains besides of this factor, a
power f(&u) "'where the slope of u(f) is half of the
slope of the input Regge trajectory. The exponent-
ial divergence of f (u&)

' near + =1 gives the well-
kIIOWI1 divergence Of 'tile plRIIRI' loop (wlllCll llRS 'to

be removed by an adequate renormalization pro-
cedure"), while in the double-twisted diagram the
f dependence of the exponent of f(ar) gives rise to a
new Regge trajectory. In both cases we have a col-
lective effect of all daughter trajectories which
propagate along a/l internal lines, so that if we
select leading Reggeons in just one of the internal

FIG. 8. X-particle one-loop cylinder diagram Q = r
+s).

lines (and, in particular, among the objects ex-
changed between clusters), we are automatically
cutting off any phenomenon of this kind.

One of the most important featux'es of the new
slngulaI'1ty ls that 1t carries 81gnature projectors,
which allow it to be interpreted as the Pomeron.
Such projectors where alxeady found at each criti-
cal point by Alessandrini, Amati, and Mox'el" in
the calculation of the asymptotic behavior of the
four-particle double-twisted box diagram. Also
Cxemmer and Scherk" found signature projectors
in the X-particle operator formalism they con-
structed to factorize in the g channel the residues
of the new poles. Here we shall discuss the as-
ymptotic behavior at fixed t of the N-particle am-
plitude (K=4 is not enough because we would miss,
for instance, the C =- component).

The cylinder amplitude corresponding to the
topology of Fig. 8 is given by'2

E, ,, d(ql f dqq ' &'"=l(q) I dq fll dqlldq, ,.

xlIy, (e+e, +q, ) '"'I'",

cos28+ gtt)(g) = Sln(9 J g (~ 2 ) 2
ff = I

I —2g cos2g + g4r (8)=PJ, (1 2e) 2

O=jg~ ~6)2 ~ ~(9„~F, O=p&4+2~'''~p ~7T

f =(PI+P2+ ~ ~ ~ +P„)2=(0, +42+ ~ ~ ~ +k,),
lnq = 2lt '/Inqdq.

h(q) is related to f(~) and is such that II(q) —1 behaves like q' in the limit q-0, i.e., ~-I. a' is the slope
of the input Regge trajectory a(t), and n~(t) the dual-Pomeron trajectory. We do not worry about intercept
problems here. For the 8 variables and other details, see Refs. 6 and I2.
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If we are interested only in the leading singularity and the first daughter, we can expand in powers of q
and make some approximations:

y(g) -sing,

pr(8) - exp(-2q cos28 —2q2 cos228+ 3q'),
h(q') -1, q-0.

The kinematical limit of interest is

2e'pj ~ k, = ajar, s+ +jl, s — and ej, 5„uj,fixed

with

(9a)

e,. =P g, =o. (9b)

The product of the g~'s can then we written as
I

stir( 8+ 8+ qi)
2 ~t &-exp 2qg [cos2(8+8,. +&p, )+qcos 2(8+8&+qi, )](e&Ei,s+w&, )

j, l j, l

-e" $ + —S (9c)

with

i«c. os2(8+gi+%i) a Zi. i ~i&icos 2(8+gf+&Pi)S, =1 and S = p.
p cos2(8+ ff) p' cos 2(8+ g)

+g

where we have made the change of variables

g = 2qsP cos2(8+ 98.

p(g„qi,) and p(8, , qi, ) are defined by:

p cos8 = Q e(5 i cos(8( + qii),

p sing = p e,.5, sin(8,. +qi, ).

(10a)

(10b)

We then obtain

F„,-g(t)[R, s&"' +R s ~"' ],
where

(11a)

S

dg. dy, sin g,. —g&) j ~ »n cp —pl)
j=2 l =2 j &9 l&m

x dp, p, &~ ) e" dgcos2 g+g) & S
0 0

(11b)

The expression cos2(8+8) is periodic in 8 of period
m and changes sign under the transformation g - g

a v/2. To do the 8 integration we split the interval
into iwo pieces: one-half period where cos2(8+8)
is positive, the other half period where it is nega-
tive, which yields the phase e '" &'". The net re-
sult is the signature factor (1+e '" &'") which pro-
jects out positive signature for S, and negative
signature for $ .

When SU(N) is introduced via the Chan-Paton
procedure, charge conjugation corresponds to the
twist operator. Assuming that the external scalar

particles belong to a multiplet with C =+, the parity
under twist is equal to the parity under charge con-
jugation provided the Chan-Paton formula is used.
It is then easy to see that the relevant transforma-
tion for expression (7) is

g+g, +y, - 9+gj —y,
inside the lt)~ functions, the rest of the integrand
remaining unchanged. This gives P'(8, , qi, )
= p (g„-(pl)which, for p, , is enough to ensure
positive charge conjugation at all t, taking into ac-
count that one has to integrate over both signs of
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cos2(8+8). Integrating over d8 and using (9b), the
term proportional to t&' in &) disappears at o.'&, (t) =2
and contributes only to C=- for other values of t.
The term which contains the (d&,.'s gives a mixture
of both C's and the C =+ component is related to
the timelike component of the leading term in the
E channel.

The residue of the Heggeon dipole can be ana-
lyzed using the same procedure. For this, one has
to consider the limit in which all 6), and all y, tend
to zero or n. The result is consistent with the
residue obtained in Ref. 11, which has the form

7r 1

z(t) =~g' de dqq ' "~«&t,(q')

2
I

l

V,

FIG. 9. Kinematics for the factorization ln terms of
bvo-massive-particle (or bvo-cluster) intermediate
states. Sl and s& are the squared masses of the inter-
mediate objects, and Q1 and Q2 are the momenta of the
exchanged twisted Heggeons. All external momenta are
taken to be incident.

with

xg(e, t)v(q, e) s"&,

V(q, 6)) =-2 ~m, ~ cos2m(9 (12b)

and, considering the zeros of V(q, 8) in the integra-
tion region, we can see that, in fact Z(t) splits into
two separate residues, one for each signature:

1

Z, (t) =yg' dqq ' &«&hs(q')t&. ,(q, t), (13a)

where plus signature corresponds to C =+ and
minus signature to C = —.

Daughter trajectories are also important in the
planar loop: omitting them one eliminates a, part
of the leading-trajectory renormalization and per-
haps of the massive-cluster contribution. But in
this ease the integration over the g variable does
not play the same role a.s for 2;(t) and we do not
expect signature projectors to appear.

~, tq, () fdel('=(q, 9)l" '"ate, (I

&& (8[v(q, 8)] ~ e[-v(q, e)]), (»b)

IV. THE STRUCTURE OF THE INTERMEDIATE STATES

The four-particle nonplanar orientable one-loop
amplitude can be written ase

)"(& (&&.) =f'&Qp(~. s„(,),

"12&~(!) n) I tt)(~ )) + ~ tl)
(1 —~"} exp o. 's g (-1)" ' +„' ' f(u, , v„t),

n=l

where ~ =«,u, &&, U, . f(«, , &)~, t) contains factors irrelevant for our purposes and we set it equal to a constant.
The notations are defined in Fig. 9: The u,. variables correspond to the (untwisted} cluster lines which car-
ry momenta P,. and squared masses s, , while the v& variables are associated to the twisted Reggeons of
momenta Q& and squared momenta g, The integration is made in the region

0 «+ V1V2 ~«~,

ln~ «lnvl —Inv2 « -ln.
The overall energy squared is s =(p, +p, )' and we are only interested in the case when the overall momen-
tum transfer squared t=(p, —p, ) is 0 so that &&&, =Q, =&&& and t, =t, = t. As already mentioned in Sec. III we
do not specify the number of transverse dimensions since the calculations wiB show it is not important for
our conclusions, o,'(t) and a~(t) are the trajectories of the Reggeon and the Pomeron, respectively.

The crossed dual-loop amplitude has been studied in great detail by Alessandrini et a$.'1 Following pre-
vious works, they first performed the loop mementum integration f d&&& and then showed that the integral in
~,- and v,. could be evaluated by considering the behavior of the integrand at some critical points in the space
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of variables u, , v, . They thus identified iwo pieces: the f-renormalization part corresponding to u,. -1 but
~ -0, and the Pomeron part arising when ~ -1. What we would like to show here is that each of these re-
gions in the u„v,. space is related to a different region of the phase space of the intermediate states. So
unlike previous works we do not perform the loop momentum integration but rather study the integrand (15)
for fixed values of the invariants s,. and t. We consider two separate regions:

(a) the region s, , s-~, s/s, s, =y -~ which, as expected, builds up the multiperipheral f renormalization.
(b) the region s, , s-~, s/s, s -0 which generates the Pomeron.

A. The f renormalization

The limit of interest is s, -~, s2-~ for fixed t. Using standard techniques, we can deform the integra-
tion contour and expand around u, =1 and u, =1. Then, with the change of variables ]],, =-s, (l —u, ), we get

OO

4=Gs, "'",'"' dg, dg, (y, ,g, )
""' ' " '' fd, d, (v, ,) ""' 'exp(- 'yg, u.,(v, ,)/()-, ,)] (16)

0

By analyticity Im4 has the same asymptotic behavior. Because of the exponential damping, only the finite
values of g, are important in the integration, which implies u„u2= 1. For large values of y (which corres-
pond to t;,= 0), and assuming 2n(t) & o((0), the region v„]/,= 0 brings a factor y' ")which completes the
multiperipheral behavior. But, for finite y, the above Regge approximation does not apply while the factor
(s,s, )'"' (which generates the f (d dipo-le when the Mellin transform is performed) is always there. This
gives rise to nonmultiperipheral contributions to the Reggeon dipole.

When y-0 (i.e. , when clusters overlap), an exponential cutoff in t appears (as in Chan et al.'), except
near v, v, =1. This is in fact the region where we expect the new singularity to appear. In order to study
what happens, we come back to the original expressions and change our approximations.

B. The Pomeron

We first rewrite the integrand in Eq. (14) in terms of variables more suited to our purposes. Following
Ref. 6 one finds

(
~i () .

)

""",Z. = (-))"(," .')()—,")()—u. "))exp ~s
(1 '„)

(ln'v, + ln'v, u, u, —ln'u, v, —1n'u v, ) g~(inv, /inc) g~(lnv, u, u, /inn)1 1 1 1 1 1 4 1 4 1 1 (17)
2 in&a g~(lnu, v, /in&a)g~(lnu v, /inn)

where one has introduced the notation

2F'
ln q=

ln~

and the 94's are Jacobi functions.
As in Cremmer and Sherk" one defines the angular variables

lnv, lnu, lnu,8=m 1, y=w 1, and 0=m 6, O~g, y, n(ln ln ln~ '

and writes the right-hand side of Eq. (17) as

q
+ Q le+ s 2 rl g/1nae - a'sV~

where V, is defined by"

(18)

-g, (g/w) g, [(g+ q+q)/w] ~ 1 q'
g [(g )/ ]g [(g )/ ] ~ 1 Pq/ Pq P(2g+']1+%').

V, is regular and vanishes at q=0.
On the other hand one notices that the phase-space integral

(20)

2 2

dq TT v -«t)-1 TT u «st) 1
LL LL/=I i=1

gives a factor e 'I "('~~' which exactly cancels a, similar term in expression (19) thereby allowing the
Pomeron singularity to be generated, in the integration over q, by the q-1/s region. The Pomeron will
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thus come from the values of the invariants 8„82,and t which dominate the phase-space integral. To find
this kinematical region we write

f qdqIlv, '" ' llu, . "'1' '- dqexpLln!v q'+2 —(p, !p —p2q) ~

j=1 i--11
1 2

with s, =(p, +q)' and s, =(p, —q)'. The maximum of the integrand is reached at q =q' with

&V -0 ~~-0 v- (22)

If we go to the center-of-mass frame, the value Q' above has no transverse components, supporting our
previous claim that we do not need to specify the number of space-time dimensions. Keeping only the lon-
gitudinal components we write

and introduce the parameters A. and p, via

Q = (Q„Q,) = p(g, -& ) ~

Then one finds:

8 8
8, =

4 (p, +X)(2 —X+]L), 82=
4 (A —j(j.)(2 —X —

(.~),

q'= —(i1+X)(P, —X), y=
4 " ' s, s, s(X+ i1)(A —p. )(2 —X+ i1)(2 —X —p)

with the kinematical constraints

0 ~ X =-. 2 and j i1 j
~ 1 —

j 1 —Xj .
Equation (22) splits into the following two conditions:

(24)

In consequence, to get the contribution to Eq. (I4) of the kinematical region under study, we evaluate Eq.
(14) integrating over q and g, keeping q and p at the values above. We get, neglecting transverse compon-
ents,

f, (P O P P ) dq Pq d(q ql)|)l'q ql)dgdgd1)d~ g
&P!0) le 2v~f(1 e22&P/lne)(1 e22'g/lag) j

&!0)-1

ds d J ~ + dqdg!f '" ' "' '"' ''h""o' f(1 —e" 2' '"')(1 —e''"o""')j '" ' (25)1 2

where J/s' comes from the integration over q and!p and from the change of variables (q„q„)to variables
(s„s,). d behaves like a constant in the limit s, /s, s./s-0, the exact form being irrelevant for our pur-.
poses. Performing the integration over!/ and keeping in mind that the region q-1/s dominates due to the
exponential factor in the integrand of Eq. (25) we find

F(p„p„p„p,)-— ds, ds2J ~, —2 (n'ssin!p, sinl), } P"'(ll, &p, ) "'" ' dg[cos(2g+!p, +2)„)j"2'"'.1 8 8

0

As seen in Sec. III, the integration over g gives the
signature factor. From Eq. (26) one easily obtains
the discontinuity ImA across the unitarity cut at
fixed s„s,with the definition lmF =j ds, /s, (ds, /
82) lmA. There are several cases of interest:

(b} ~, ~-0,
8 8 8

a ~0~ a g0) a~iQ)I~- 1 2

S1 82 8

(a} —, constant,81 8182

8 8 S
(27)

The two expressions above give the contribution,
to the unitarity equation, of the production of two
massive objects in the limit when s,s2/s-~.

Before discussing the meaning of these formulas
we make a comment on the size of transverse
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components. Qr', the square of the transverse
momenta. of the intermediate particles grows, ac-
cording to Eq. (21), with s like

)
~ 2II

y, = V-V~

1
Qz

—— —-1nq —in@,
ln(u

(29)

whereas the masses themselves grow at least like
I/y. This result is consistent with the usual pic-
ture, well supported experimentally, where decay
products of a hadronic mass .EI are emitted with a
limited transverse momentum and with multip1icity
increasing ike ln3I. This point is important to
justify the following discussion in terms of rapidity
variables.

~ 0 y
dL

1

74 ~o

~r
iL

O.a e~
v'epsom

~o~ )

oem',
c E'as-
tev

c

FIG. 10. Rearrangement of effective clusters in the
rapidity pl.ot.

V. DISCUSSION AND INTERPRETATION

I~ -esj (p)+72 (p)+sp p(p) (30)

The analogy with the usual peripheral expression
is obvious: The usual gap between clusters is re-
placedby theoverlapof sizey, and the cut n,„,=2+
—1 by the Pomeron a~. The "clusters" cj and c,
are obtained from the original ones C, and C, by
truncation of the overlap region (see Fig. 10). It
is remarkable that the dual model for the produc-
tion of two stable clusters suggests an interpreta-
tion such as that depicted in Fig. 10. Narrow par-
ticles split without decaying and rearrange giving
a sort of multiperipheral scheme with new effective
planar clusters and a Pomeron dominated kernel
which corresponds to the overlap between the nar-

It is interesting to observe that the results of
Eqs. (27) and (28) have a form similar to a two-
cluster Regge amplitude. In order to make this
analogy explicit we go to the rapidity formalism„
which is convenient to discuss hadronic reactions
where there is a cutoff in transverse momentum.
In this picture, an unstable cluster of mass M, de-
caying into secondaries of mass m, occupies a
certain length in the rapidity phase space defined
by M' ={m'+p~')e', where p~ is the (limited) aver-
age transverse momentum of decay products. In
the graph we considered, heavy particles are sta-
ble, a feature which is clearly unphysical. How-
ever, we saw that their transverse properties are
compatible with those of hadronic masses decaying
into particles of limited transverse momenta. We
therefore feel justified in using the rapidity langu-
age. Dropping the irrelevant (m'+p~') factors we
then associate a width in the rapidity plot to a clus-
ter of mass squared s,. via (see Fig. 10)

Y, = lns&, Y= lns,

while the "overlap" between the clusters is Yp= Yj
+ Y2 —Y= ln(s, s, /s). If we denote y, = Y- I;, y,
= Y- Y„and yp Yp Eq {28)becomes

row particles treated as extended clusters. Even
in the case,V~/N, «1, when widths are small and
one would expect the right picture to be direct
channel production of two overlapping clusters,
formula (28) shows that in fact a sort of multiperi-
pheral order dominates. We can say that the un-
derlying dynamics sees the composite nature of the
produced massive particles, not just in terms of
the many-particle states in which they will decay,
but through something which is already present at
the zero-width approximation (the vector harmonic
oscillators). In a QCD picture, this would corres-
pond to the diagram of Fig. 11 where the dotted
lines indicate the unitarity cut and the intermediate
bare particles (quarks and gluons) are assumed to
be ordered in rapidity. There we have isolated
ladders of rapidity size y, and i„which clearly
generate the corresponding Regge amp1itudes. In
the overlap region, two gluon ladders appear simu-
taneously and, from the t-channel point of view, a
many-gluon state propagates. The relation between
intermediate bare-particle states and the conven-

C
T I

ILe&

:3 5 ~ 4k

FIG. 11. Multiperipheral rearranging of effective
clusters in terms of internal constituents. The dotted
lines indicate the unitarity cut. Straight lines with
arrows represent quarks and wavy lines stand for gluons.
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tional. pg-particle intermediate states appears when
we force each gluon to produce a qq pair. Then
there is an obvious connection between the multi-
plicity all rapidity distribution of the gluons Rnd

the one of produced low-mass particles. We then
expect each end e, and e, of the rapidity plot to
contain only secondaries from clusters C, and C2,
respectively, with a multiplicity typical of that of
planar amplitudes which build up the Regge tra-
jectory e. In the overlap region both clusters con-
tribute with nontrivial correlations dominated by
nonleading exchanges. Experimentally the total
multiplicity in production amplitudes grows roughly
like 2.5lns, giving an average gap between light
particles of about 0.4 units of rapidity which is
small and opens the way to arguments based on
daughter exchanges. Furthermore, when gaps are
small, transverse momentum becomes important
for the local dynamics so that we expect transverse
dimensions to play an important role in the Pom-
eron sector.

In conclusion, we would like to emphasize that
transverse components Rre crucial for the genera-
tion of the Pomeron although the kinematical pic-
ture is best understood in the rapidity variable,
i.e., in a world with one effective space dimension.
It is interesting to remark in this respect, that for
R world with two dimensions no Pomeron appears
1n the strIng model nor In QCD.' Th1s can be un-

derstood since in this case there are no dynamical
degrees of freedom left. In our phenomenological
description in terms of quarks and gluons, this
manifests itself through the fact that there is no
triple-gluon coupling and therefore no "net" of
gluons to fill in the overlap region.

VI. CONCLUSIONS

For the one-loop nonplanax' orientable diagram,
the analysis of the s-channel intermediate states
leads to a consideration of two separate kinematic-
al regions: y = s/s, s, »1 and y «1, y -1 corres-
ponding to a transition region between both re-
gimes. For y»1, we have the conventional multi-
Regge dynamics which leads to the usual multi-
periphex'al f—~ renormalization. Fox' y «1, we
have large values of f longitudinal = -1/y but no ex-
ponential cutoff is found. The accumulation of many
resonances with all possible spins and of daughter
exchanges seems to be what cancels the longitudi-
nal-momentum cutoff at work in the peripheral
amplitude, and the fact is that a powerlike behav-
ior appears. The new Pomeron singularity domin-
ates the sum rule for the rapidity overlap region
and the remaining rapidity space is governed by the
usual Regge amplitudes. In this way the Reggeon
dipole appears to be coupled to a kernel which con-

tains the Pomeron pole, as in the multiperipheral
equation used by Pinsky and Snider. e The complete
kernel is a sum of both multiperipheral and Pom-
exon contributions plus eventually some background
term. As discussed in Sec. III, the dipole residue
carries the required signature projectors which de-
couple the (d from the Pomeron and leave only a
Pomeron daughter in the C =- kex'nel. This would
lead to the kind of phenomenological model pre-
sented in Sec. II, which as we have seen favors a
weak f and (u renormalization, even in SU(2). But,
of course, the underlying assumption is &p &I,

8 12which depends on the details of the theory. "
The generalization of expression (28) to configu-

rations with several massive clusters coming from
the many-loop nonplanar orientable amplitude
seems to be straightforward, although fox tecl1nlcRl
reasons we have not been able to check it. This,
together with the multi-Regge scheme for y» 1,
allows a reasonably complete classIfIcation of In-
termediate states with simple rules for computing
their contribution to the imaginary part of the four-
particle amplitude. We. expect that the close con-
nection which can be established between the dual-
loop picture and the multiperiphex al language will
be helpful for the progress of the dual bootstrap.

~oft, After completion of this work we received
a paper by C. B.Chiu and 8. Matsuda2' dealing
with analogous problems. In particular, they ob-
tain a result similar to formula (28) for the produc-
tion of two overlapping clusters.
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APPENDIX: NUMERICAL ILLUSTRATION OF THE

SITUATION DESCRIBED IN SEC. II

We discuss here an almost trivial example in
bxoken SU(3} where the cylinder has both a multi-
peripheral renormalization term and new signa-
tured poles. We use standard one dimensional
techniques. As in the original Chew-Rosenzweig
model, the cpltnder ts taken io be all SU(3) singlet,
the breaking coming from the mass term in the
Reggeon propagator [some SU(3) breaking could
also be put in the cylinder via threshold factors,
but it would only obscure the discussion at this
stage]. As usual, we take a matrix formalism op-
erating on the states (1) = (1/W)(u~+dd) and (2)
= ss. The Reggeon propagator is taken to be
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(Al)

where o., (a ) is the intercept of the planar trajec-
tory built up from ordinary quarks (strange
quarks).

The cylinder operator for the C =+ (C =-) chan-
nel is

pole moved downwards, which is very appealing
phenomenologically. As for the trajectories e, and
o.

„

they can be displaced either way. In particu-
lar, a zero shift can be obtained for e, in both
C =+ and C =- channels if we require Eqs. (3a) and

(3b) to be satisfied. This is different from the
more conventional scheme where the residue of an
unshifted trajectory vanishes and residues are
proportional to shifts. The general solution can be
written as

K' =(~k+ (A2) cos'g, . sing& cosg&

The parameters k, 5„and 6 should be positive
in the physical region and they may depend on J.
For simplicity we take them to be constants. As
suggested by the analysis of Sec. III, the new nega-
tive-signatured pole is the daughter of the Pomeron
so that n =o., —1. Vie ignore the coupling of the
Reggeons to the external particles, because they
just act as overall normalization constants for each
physical process. After iteration of K'R we get
for the full amplitude

+k+6, /(J- a, )
d (d)

sing) cos g~ sin' g)

g, sin g, sing cos g,+ g/
sing, cosg, cos g,

(A5)

where the a"s are the new intercepts. A similar
expression can be written for A .

With the conditions (3a) and (3b), and with the
simple choice 0.~ =0.85, a, =0.5, a, =0.2, and k

0=0.05 (which of course does not correspond to the
best fit), we get

6, =0.0175, e =0.0275

for C =+,

with

r
2

(Z- o', )'
yT

(&- u, )(J'- o, )

2 l1
J- A~ Q~ —Q'~ Q~ —A ]

(A3)

a,'= ay, =0.22, g~' =0.84,

and for C =-,
g, =-6'

a' = —0.33, g 2 =0.25, g =42'

e =0.5, g 2 0.82, g =0'

a@=0.23, g~' =0.82, g~=-9'.

n p, „,„=e,' =0.98, g, '=0.255, g, =23'

a, —n& —0.5, gf —0.78, g&
—0' (A6)

(AV)

J-a, a, —n,

J-e a, —e (A4)

and the residue matrix has to be evaluated at
d'(J) =0, which is the position of the new poles.
For values of e, and n in the spirit of the Harari-
Freund scheme, i.e., a, & ey & N2 & o. , the e, pole
will always be renormalized upwards and the e

Although the Pomeron has a weak coupling com-
pared to the f, such a result in this kind of model
is compatible with data up to ISR energies, as
shown by Pinsky and Snider' provided that e&, „.„

&1, which is not difficult to obtain with a more ac-
curate choice of parameters. If the present choice
already produces the results (A6) and (AV), it is
obvious that a realistic fit would not encounter
serious problems, but this is not the goal of the
present paper.
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