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The contribution of nonlinear fluctuations (instantons) to the thermodynamics of the Yang-Mills gas at high
temperature is estimated.

I. INTRODUCTION

In the canonical approach' to the study of the
thermodynamics of the Yang-Mille gas, small os-
ciilations about a single (A„=0) vacuum state are
considered. How&ever, the existence of a multiply-
degenerate vacuum introduces additional quantum
fluctuations, the instantons. While the former
IQodes Rx'6 geneLRlly txeated Rs independent linear
oscil. lations in momentum space, the latter modes
are highly nonlinear vibrations and are usually ex-
pressed in (Euciidean) position space. It has been
demonstrated' that these nonlinear modes persist
Rt a finite temperature, '@here they Rx'6 16fex'x'ed

to as "calorons. " Despite the vrell-known difficul-
ties Rnd subtleties of the thermodynamics in a
highly non1. inear system, me begin here such a de-
termination. By so doing, me hope also to shed
some light on the mechanism whereby quarks may
be liberated at high temperature.

We begin in Sec. II vrith a review of the degen-
eracies of the caloron solution. Particular em-
phasis is placed on the scale factor X, since dilata-
t'o 'n a 'R e 's pl' tly b ok by the te pe a-
ture T. The physical picture vrhich me shall use
is indicated in Fig. 1, with the scale size 1,irnited
by P= I/AT, where 0 is the Boitzmann constant.
As the temperature is raised, the maxirnurn al-
lovrable scale size is decreased„ i.e. , the large-
scale ca1orons are squeezed out of the physical
regs, on. ' But, 1f GDly SIQRll-scR16 sizes remalnq
then because of asymptotic fx'eedom the dilute-gas
Rppl'OxlnlRtlo11 (DGA) CRll tie 1'eiiRbiy llsed, Rnd

mRny of the CGIQplicatlons due to the nonllneRl"ities
cRD be Gvex'come.

In Sec. III, me assume that the temperature is
sufficiently high that the physical effects of the
DGA are calculable. 6 Furthermore, the integra-
tion over scale sizes becomes fully specified. For
smRll A. , RsyIQptotlc fx'eedoIQ ensures R finite con-
tribution, vuhile for laxge X, p acts as an infrared
cutoff. That the temperature should act as a dis-
ordering effect for long-vravelength correlations
is not at all surprising„having been observed in
the ease of linear fluctuations about the A„=0 va-
cuuIQ. %6 shovg thRt the DGDJ. inear modes cRD con-

H. CAI.ORON: ZERO MODES

The functioI1al integral for the partition function
can be written as'

whel'6 Z&(p, 8„$}is tile EuciideRll Lagrangian fol'
the generic, periodic field p(x, I'),

p(x, r) = p(x, I'+ p) . (2.2)

Since me wish to calculate the physical. effects
of finite-temperature 1118'tRlltolls (CR101'oils), the
I.agrangian of interest is that for the non-Abelian
SU(2} gauge theory of quarks and giuons called
quantum chromodyDamlcs. Ho%ever, %6 adopt
here the view that the dominant dynamics is de-
termined by the gluon fieM, whose structure mill
decide, e.g. , %hether confiDeIQeDt is preseDt. Of
course, the presence of massless quarks could
drastically affect this assumption. 6' To further
simplify the discussion, me shall use initially an
SU(2) Yang-Miiis theory for the giuons.

%'6 assume that the dominant contributions to

FIG. 1, Temper atux'e (T) lignite caloron scale size
(A, ):A,~P = j/4'T.

tribute a significant fraction of the t;otal pressure
(or internal energy, specific heat, etc. ) in a re-
gion where the calculation can be considered re-
liable (p,p-0.2-0.4, where p. is the renormaliza-
tion mass). For higher temperatures, the caiorons
are Degl. igibl. e, while for lmver temperatures the
nonlinear effects cannot be reliaMy calculated.

In Sec. 1V me Dote that since the temperature
x'ange of interest is -10~~ 'K, applications mould
be limited to theories of the early universe and
models of high-energy collisions. A mechani. sm
fox' quax'k liberation in this temperatux'e range is
postulated.
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the partition function come from field configura-
tions that minimize the Euclidean action I and obey
Eq. (2.2). By expanding around the trivial mini-
mum A„=0 and keeping terms up to second order
in the fluctuation about this minimum, one obtains
an ideal Bose gas for each degree of freedom.
Here we shall follow the same procedure, but now

expanding about the gontrivial minimum,

g„=j()„„8„in/,
where

(2.3)

y =1+(xx'/p ix -x, i)

sinh(2wP ' Ix -x, I)
cosh(2xP ' Ix -xo I) —cos2vP '(r —7'0)

'

(2.4)

[For notation see Ref. 11, while for details of the
classical solution, Eq. (2.4), see Ref. 2. ] Note
that the solution is parametrized by its general-
ized position x„v,and by its scale size X. There
are also gauge degrees of freedom v&(x), where
the gauge transformation is effected by the SU(2)
matrix 0= exp[iwi(x)o&/2], with o& the Pauli ma, -
trices.

The fact that we no longer have dilatation invari-
ance is manifest in the solution Eq. (2.4). A
change of scale x- px is not equivalent to a change
in X. Rather, the combined transformation x-~,
p- pp is equivalent to X-X/p. Though the Euler-
Lagrange equations are dilatation invariant, the
boundary condition, Eq. (2.2), is not.

Despite the lack of dilatation invariance, there
still exists a family of independent solutions, pa-
rametrized by X, which generates a zero mode in
the calculation of the quantum fluctuations about
the classical 'solution Eq. (2.3). This can be seen
as follows: Let the parameters of the caloron be
collectively denoted by

(2.8)

and a trace over the SU(2) indices is implied.
However, by a gauge transformation, we can re-
write Eq. (2.8) as

J, = d'x(zc')' (2.9)

where f d'x is used as a shorthand for f~d7'f coax

The self-duality of our solution implies that

(2.10)

so that J, is independent of P (as calculated in Ref.
2):

(2.11)

The temperature independence of the Jacobian
associated with a change in X is not as obvious.
One may in fact show that J„is independent of p,
where

J,= jd'K ( (2.12)

But

e bI eA„'
8&0 bAif, Act(x ) bA„bAu Ac (x ) ~+0

0 0

so that SA„"/Sx,is an eigenfunction with zero ei-
genvalue of the kernel in the quadratic term of the
expansion around the classical solution.

The number and general form of the zero-mode
eigenfunctions thus remain unchanged at finite
temperature. The similarity with the zero-tem-
perature results is even more striking when one
calculates the Jacobians associated with the change
to collective coordinates. Typically, one wishes
to determine J, 'i", where

X,-=(x„r„X,cubi(x)).

Then since

(2.5) A

or that J„=1 for all p, where

(2.13)

bAu A Ac&(x )u

we have

=0

bI
bA„Aci(x )xp

a bI, . 1
= lim

Ac&(x ) ~xo +0 e Ac (x +hx )xo 0 0

(2.6)

J„(p-~) = 16m'.

After some tedious algebra, we find

(2.14)

The usual gauge transformation '"which greatly
simplifies J„is not periodic in v and therefore in-
applicable here. The denominator of Eq. (2.13) is
easily evaluated by using the four-dimensional ro-
tational symmetry of the solution in the zero-tem-
perature limit,

(sinhx siny)'+(1 —coshx cosy —[(sinhx)/x](coshx —cosy)}Z„-3v LIP dy dx
[coshx —cosy+ 2(vX/p)'(sinhx)/x]' (2.15)
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Though at first glance this appears to be a rather
complicated function of X/P, we have explicitly
verified by numerical. integration that J~= 1, inde-
pendent of X/p.

T( T2

T( & T2 &T3

III. THERMODYNAMICS

Assuming that the dilute-gas approximation is
valid, the contribution of the calorons to the parti-
tion function in an SU(X) theory is determ)wed by'

-jx

(3 1)

where several remarks are in order:
(1) The factor of 2 comes from equal caloron and

anticaloron contr ibutions.
(2} C„is a group-theoretical factor, where C,

=0.26 and C, =0.1.'
(3) VP comes from integrating over the transla-

tional zero modes.
(4) The integral over X reflects the degeneracy

in scale sizes of cal.orons while the X ' ensures
that lnZ is dimensionless (one factor of X ' for
each of the five translation-dilation zero modes).

(5) The factor of (1/g)'" comes from the normal-
ization of the zero-mode Jacobians, of which there
are 4N-5 from the gauge degrees of freedom.

(6) The exponential factor is the renormalization-
group improved result of the lowest-order contri-
bution to the action using A„".

(7) Since the previous factor contains only the
temperature-independent quantum oscillations
about the caloron, the remaining contributions are
lumped into the weighting function I/(P, X).

The explicit form of s)(P, X) is not known, though
presumably determinable in a lengthy calculation
generalizing to finite temperature the consistent
perturbative expansion about an instanton. ""
Before embarking on such a project, it seems pru-
dent to obtain an order-of-magnitude estimate of
ealoron effects. We do this by referring back to
the intuitive picture of Fig. 1 (see also Ref. 5)
which implies that N)(P, X) can be approximated by
a step function, i.e. ,

0.5
X

).0

FIG. 2. Integrand of Kq. (3.4) vs x =~@, showing that
increasing temperature decreases the caloron's con-
tribution (available area under the curve) to the thermo-
dynam ics.

Specializing to the case of SU(3), we now have

J'= -p ' lnZ,

the internal energy

(3.6a.)

(3.6b)

the pressure

The integrand in Eq. (3.4) is shown in Fig. 2. Note
that as the temperature is raised, the caloron con-
tribution (area under the curve) is decreased. At
very high temperatures (pP «1), degrees of free-
dom are being "boiled away". Also note that, ac-
cording to Callan, Dashen and Gross, ' the DGA
should not be trusted above p,P- 0.2-0.4. Keeping
the leading term in Eq. (3.4), we find that

lnZ, = a Vp, '( pP)' ln'(1/pP),

where g =5.1 x10'. The neglected terms would
slightly increase the caloron contribution.

From Eq. (3.5) we can immediately obtain the
thermodynamic functions, such as the free energy

This ansatz also removes a glaring defieieney of
Eq. (3.1), namely, that with an appropriate choice
of p, the X integration need not be extended out-
side the region of applicability of asymptotic free-
dom. More specifically, we have'

and the specific heat

(3.6d)

8v'/g'(1/Xp) = (llew/3) 1n(1/Xp)
Xv«l

for all X in the region of integration (X ~ (8}.

(3.3)
Our results are summarized in Table I, where
they are compared to the corresponding ideal SU(3)
Bose gas contributions.

For illustrative purposes, the ratio of the pres-
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TABLE I. Contributions of calorons and ideal bosons
to the internal energy U, the pressure P, and the speci-
fic heat C. Here a-5.1 &&104, p-200 MeV, p=l/kT.

SU(3): Caloron gas SU(3): Ideal Bose gas
2-

U

P
C

-8«p (pP )'«'(1/pP)
ap4(p P )Yln6(1/p, P )

56a V/3 gP )8~„6(1/~P)

(871' /15) VP +
(8~'/45)P ~
(32~'/15) VP ~ pc

sure due to the caloron P, to that due to the ideal
Bose gas P, is displayed in Fig. 3 [for the SU(3)
case]. Note that

P /P = (2.9 x 10 )( pP)" ln'(1/ pP) . (3.7)
0

0 0.5 I.O
Again, one should keep in mind that p,P-0.4 is to
be considered an upper limit on the validity of the
calculation, so that the peak which occurs at pP
= 0.58 is not to be taken very seriously. It is in-
teresting to note that the peak occurs at precisely
the same point for SU(2} though the ratio rises to
only 1.1 for SU(2) [as opposed to 1.9 for SU(3)].
Of course, the numerical values given by Eq. (3.7)
should only be regarded as qualitative estimates,
since the cutoff function, Eq. (3.2}, has not been
rigorously determined.

IV. CONCLUSION

We have shown that for p.P «1, the degrees of
freedom represented by the caloron (finite-tem-
perature instanton) are not effectively activated.
However, when p,P

- 0.2-0.4, the caloron's con-
tribution to thermodynamic functions cannot be
neglected. Throughout this entire range, the
scale-size X is so bounded by P that the requisite
scale size for the disassociation into merons is
not reached. It has been argued that merons, re-
sulting from a phase transition of large instantons,
are responsible for quark confinement. If P de-
termines the maximum scale size, then for high
enough temperature (P small), the instanton mer-
on gas will be suppressed and cannot therefore
confine quarks.

Of course, these results are only tentative. We
have not included the effects of fermions on the
gluons, we have not precisely determined the
weighting function in Eg. (3.1) and it is not yet gen-
erally accepted that merons are the culprits for
conf inement.

However, the above picture suggests a new look
at theories of the very early universe for tempera-
tures such that p,P-0.2-0.4, i.e. , for T-10" 'K,
assuming p. -200 MeV. Unfortunately, for T&10"

FIG. 3. Ratio of pressures due to calorons and ideal
bosons as a function of inverse temperature P (p, , the
renormalization mass, is fixed- 200 MeV).

(do/der') ~ exp[-P(pr'+ m')' '] . (5 1)

Here P '-110-130MeV, independent of the projec-
tile, the particle with mass m, and the beam en-
ergy. In this temperature region, we expect the
calorons to be important, though we are in danger
of losing the DGA as a guide. In this regard, cur-
rent efforts" to go beyond the DGA are welcomed.

'K, large numbers of strongly interacting particles
are present, vastly complicating life in the first
0.0001 sec. Density effects would also be serious
since the mean distance between particles would
be less than a Compton wavelength. " However,
for T» 10" K, it appears that calorons would be
of no consequence and the corresponding densities
would be such as to ensure the validity of ordinary
perturbation theory of quarks and gluons. "

A more promising observational effect may occur
in high-energy hadron-hadron collisions. " Here
the physics can possibly be described in terms of
the heating of interpenetrating gluon gases which
may lead to excitation of caloron modes. Much
work has been done on statistical and hydrodynam-
ical models of high-energy collisions. " For ex-
ample, it is well known that the transverse mo-
mentum (Pr) distribution of a particle with mass
m and center-of-mass rapidity y= 0 produced from
a projectile scattered off a nucleon target is of the
form"
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