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The role that instantons play in the determination of the partition function for a double-mell anharmonic
oscillator is studied.

I. INTRODUCTION

The discovery of nontrivial minima of the Eu-
clidean action (instantons) for the SU(2) Yang
Mills field theory' has stimulated an incredible
amount of activity in theoretical physics over the
past fern years. However, the experimental
implications of these instantons remain some-
what elusive. Whether such modes necessitate
the axion' and whether they (or their immediate
descendants, merons} give rise to quark con-
finement are, obviously, exciting possibilities.

Most of the previous theoretical work has con-
centrated on the role that instantons play in
elucidating the vacuum structure. However, if
instantons are to be interpreted as maximal tun-
neling amplitudes between otherwise degenerate
vacuums, 4 then they should affect more than just
the ground state. By considering an ensemble of
Yang-Mills particles at a nonzero temperature
(T), we can possibly learn about the level struc-
ture in the presence of instantons. Ultimately,
the extra freedom embodied in the instanton
should become manifest in the thermodynamics
of the Yang-Mills gas.

A first step in this program mas realized in the
proof that finite-temperature instantons (called
"calorons*') do exist in the SU(2) theory. ' An ex-
plicit realization was found and a first estimate
(equivalent to the dilute-gas approximation) of the
partition function in the presence of calorons was
made. 6 However, to reassure ourselves and to
better understand the role of calorons, we under-
take here a study of a much simplified theory,
that of a single scalar field in one time and zero
space dimensions. The Langrangian is

and of havijlg a knomn partition function in the
low-temperature (p =1/kT - ~) limit, '

(1.3a}

Eo =v 28'p/2, (1.3b)

aZ = V 2)I p, (16& 2iI'/IIm )I~'exp(-2&2', '/3Xa ) .

(1.3c)

We shall reproduce these results by use of a
dilute gas of celorons in the low-temperature
limit. What is novel about our approach is the
delay in the P ~ limit. We mork mith modes
[the analog of Eq. (1.2) j that are explicitly tem-
perature dependent so that our methodology is
applicable away from zero temperature. Addi-
tional advantages include:

(1) There is no need to patch together a kink
with an antikink' since we are morking with
periodic solutions.

(2) Tl'R1181RtIQIIRl lIIVRI'iRIlce ls explicitly
maintained so me avoid the use of a quasizero
eigenvalue.

(3) The breaking of dilatation invariance is

mhere p, ', ~ &0. The double-mell, anharmonic
oscillator possesses the dual feature of having an
instanton, the kink that connects the tmo wells of
Fig. 1,

a/2

q„(f)= ~ tanh p, f/v2, (1.2) FIG. 1. Potential for the double-well anharmonic os-
cillator.
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elucidated.
(4) The approximate instability of the basic non-

linear solution at any nonzero temperature is
made manifest.

(5} A limiting temperature, above which no

periodic solution exists, becomes evident.
%e begin our presentation in Sec. II with an ex-

plication of the methodology to be employed in the
determination of the quantum partition function.
In particular, we emphasize the natural appear-
ance of Euclidean functional integrals and the ad-
vantage of including the full phase-space mea-
sure. Section III on the harmonic oscillator il-
lustrates the latter point as well as prepares us
for the more involved calculation of Sec. IV.
Here, the double-well anharmonic oscillator is
considered in detail and the partition function is
calculated in the low-temperature limit. Finally,
in Sec. V, we consider some of the unsolved prob-
lems and directions for future research.

II. QUANTUM PARTITION FUNCTION

As is well known, ' the partition function for a
scalar field (t)(x, f) described by the I.argrangian
g((t), pp) is given by

where

is, 2] f=2
0

(2.5)

(2.8)

while q(l. ) and p(T) each have period p:

1 pO

q(v}= ~ q, +v2 Q [q„sin(2]ill~/p}
P

—2 cos(2sn /P)]I,
(2.7)

p(c)=WpIp, +Ms+ ]p„cos(2ni/p)
ff= 1

+P „~'n(2 n /P)]/2snI.

(2.8)

The coefficients in the expansions of Eqs. (2.7)
and (2.8) are chosen so that the action operator
for special canonical transformations have a
simplified form" and so that, , with

Z =N 4 Q exp dq Qxg~ff (Q, Q 2.1

y„=ft]y(%,l.)/el. (2.2)

where N is a P-dependent normalizing factor and

g,ff contains j* and any necessary ghost and gauge-
fixing terms. Also,

q(l. ) = g q„q„(l.),

we have

8

(fT q„(~)q (7) = 5„
0

(2.9)

(2.10)

while (I)(x, l) obeys the periodicity condition

y(X, T) =(t)(x, t + p). (2 3)

It should be noted that the r dependence of q(l. )
and p(l. ) is a particularly quantum effect. This
can be seen by defining y,

To determine the partition function we look for
modes which dominate the Euclidean functional
integral, Eq. (2.1). Such T-dependent modes which
obey Eq. {2.3) and reduce to instantons as p- ~
are known as calorons. In the dilute-gas ap-
proximation, one assumes that the various z-de-
pendent and y-independent modes contribute non-
overlapping contributions to g.

If the normalizing factor in Eq. (2.1) is ignored,
then even in the simplest cases, the partition
function is ill defined. By a judicious redefinition
of the functional integral (known as the g-function
regularization' ), one can circumvent this diffi-
culty. Here, however, we prefer to evaluate N
which will obviate the necessity of introducing a
regulating procedure. To this end, we follow
Schwinger" in writing the partition function for a
single quantum degree of freedom,

~= /ft, (2.11)

alld looklllg at Eqs. {2.4) and (2.5) ill the lllgll-'telll-

perature (P- 0) limit. First, we have

j. g lt 2i,p]=f —.'pp* ps] p pp(), (2.12)

p )/(p)fsls] soi &]sl]=-(2.13)

and then when p- 0, any y dependence in q will
lead to a large e [q, p], i.e., from Eq. (2.5) a
small contribution to the partition function. Thus,
the classical limit involves just the qo and po
mode s.

However, we can easily go beyond this classical
approximation and exactly include all the momen-
tum modes. Performing the Gaussian integrations
yields

g= dQyp exp ~ gtp (2 4)
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1 c0

lV(P) = —g (2xn/P)'
P n= I

(2.14)
l.e.,

8 d'
1,[q]= ,' -dTq(T) —,+U (q, ) q(T), (3.6b)

0 I

dqI [q]= dT — — +U(q)
2 d7

(2.15)
and where

Q(T) =q(T) —q, (T) (3.7)

III. HARMONK OSCILLATOR

When

U(q) = —,
' (u'q', (3.1)

The exact evaluation of Eq. (2.15) for the case of
a harmonic oscillator is briefly considered in the
following section while an approximate evaluation
of Eq. (2.15) for the case of a double-well anhar-
monic oscillator is considered in Sec. IV.

We are implicitly assuming a single solution to
Eq. (3.4b). If there are many solutions, then, in
general, it is quite difficult to estimate the over-
lap in phas~ space of the contributions that each
gives to the partition function. The dilute-gas
approximation applies when the overlap can be
ignored.

The quadratic form in Eq. (3.6b) is diagonalized
by letting

we can immediately diagonalize the quadratic form
in Eq. (2.15) so that

Q(T) = g c„Q„(T),

where

(3.6)

Z = [2 sinhp(u/2] ' = Q e '+"""
n=O

For the sake of fellow pedants, let us consider
another, more generally applicable, approach to
this problem. We begin by functionally expanding
I [q] about a typical periodic minima q, (T):

(3.3)

5q(T), , („)
l.e.)

Z = —g (2wn/p)' —g [(2IIII/f}P+ Id'] '. (3.2)
n= 1 n=l

The factors I/P and I/~ arise from the po and q,
integrations, respectively, and together form the
classical limit. The quantum oscillations em-
bodied in the infinite product ean be evaluated in
closed form to give the canonical result

d—„.+U"(q, ) q„(T)=~„'q„(.). (3.9)

Momentarily assuming that ~„'&0)we find for
t e partition function

z =x(p)e-"" ' 1

lln&n

For the harmonic oscillator, the Volterra
series expansion vanishes beyond I, so that Eq.
(3.10) is exact. In this case, Eq. (3.4b) reads

OO

q'c=(O &c) (3.11)

which has one periodic solution, namely the
trivial solution q, =0. For this solution the action
likewise vanishes. Finally, the eigenvalue equa-
tion corresponding to Eq. (3.9) reads

q, (T) = U'(q, ), (3.4b) 2 ++ @n ~ ~n @n ~ (3.12)

where the dots refer to derivatives with respect
to y and the prime refers to a derivative with re-
spect to q, . The "classical field" q, (T) is a mis-
nomer when it is actually 7 dependent.

Next, we keep only terms to second order in
the Volterra expansion (equivalent to the one-loop
appl'oxllllatloll), l.e., we say

Id„'= Id'+ (2IITI/P)'.

This immediately leads us back to Eq. (3.3).

(3.13)

The eignefunctions Q„(T)are just trigonometric
functions with eigenvalues,

z = ~lp) ""'$d[q] -'*"',

8

f2[@]= g dTdT dT
0

6'ilq]
6 ( ')6 ( ")

ac&& )

(3 5)

(3.6a)

IV. DOUBLE-WELL ANHARMONIC OSCILLATOR

The methodology presented at the end of the
preceding section can now be applied to the po-
tential of Fig. 1, i.e. , to

U(q} = —(q'- i '/). )'. (4 I)

To clarify the nature of the weak-coupling ansatz
that we shall make, let us rescale the position,
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(4.2a)
((o„')'= 2+ (2vn/g)' (4.12)

with a corresponding scale change of the momen-
tum,

since the period of the g„(t)is [j, . These simple
harmonic oscillators contribute Z, , respectively,
to the partition function, where

P. y l/2

P (4.2b)
Z, = (2 sinh p, /~2 (4.13)

and also let

Then the partition function becomes

1Z=% cf Q exp —,I {I)

where

(4.2c)

(4.3) (4.14)

and where "~"is related to the modulus "k" of
the elliptic function,

In addition to the trivial solutions p, = 1, there
are other, explicitly z dependent, quantum modes
which satisfy Eq. (4.8). The most general such
solution is parametrized by the two constants +
and t„andean be expressed as +()(,(f), where

y, (f) = [2(1 —n')]" su[a(f - f,)]

1
GX= 2' gp,

2 (4.4)
a' = (1 + 0') ' .

Thus Eq. (4.14) can also be written as

(4.15)

while the "coupling" g is given by

g= (&/[ ')",
and the action f [p] is simply

f [el=f «['i" '(e-' 1)-'1-

(4 5)

(4.6)

(4.7)

The constants + and f, represent a modified scale
invariance (the amplitude changes under a dilata-
tion) and translational invariance, respectively.

The elliptic function sng is odd in g and oscil-
latesbetween y1 (as does sins, the limit of snx
as k 0) with a period of 4K, where

Here the dot refers to a derivative with respect
to "t" The resc. aling has emphasized [through
Eq. (4.3)] that the approximation of dominating
the partition function with modes which minimize
the action works best when the coupling "g" is
small.

The field configurations that dominate the action
in Eq. (4.7) obey

(4.8)

There are two, trivial, periodic solutions of Eq.
(4.8), namely,

ff(i') =
~/2 d6)

(1 —k' sin' g)'~' {4.17)

is the complete elliptic integral of the first kind.
Since the period in ] of our solution is p, , we have

g = 4K(1 + 1[')'~' (4.18)

i.e., the modulus of the elliptic function is set by
the temperature. Thus, the temperature removes
the remaining modified scale invariance.

So as to better understand the periodic nature of
this solution, let us consider the first integral of
Eq. (4.8):

4[, (f) =1, (4.S) (4.19)

for which the action vanishes. These configura-
tions will give separable contributions to the par-
tition function provided the temperature p

' is
small compared to the energy barrier [(, /4y (see
Fig. 1), i.e. , when

where periodic motion will ensue provided that
the integration constant e is bounded (see Fig. 2),

The temperature fixes not only Q' but also g, for

p, //4g» 1 . (4.10) +'= (1 —2I «I")/(1+ 2l ~l")- (4.21)

d'
+2 Q„t= u„g„t. (4.11)

As in Eq. (3.13), we have for the eigenvalues,

Expanding the action about either of these solu-
tions and retaining only quadratic contributions
leads to the eigenvalue equation [using Eq. (3.9)]

It is evident from Fig. 2 that e determines the
amplitude of (}[,(t), i.e. , unlike linear oscillations
the amplitude and period are linked.

Two interesting temperature limits occur for
the extremes of q. %hen &-0, k'- 1 so that K
-~, i.e. , from Eq. {4.18), P ~. On the other
hand, when e - ——,', 1['-0 and K - v/2 so that P
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[dett(I/g2)( d 2/df2)]l/2z
gg (det(1/g ')[- d /dt'+ U" (p, )]]'/2

x exp (4.25)

Thus the partition function is given by

2 [det'(I/g')(- (I'/df'))' '
[det(1/g')[-d'/dl'+ U" (p, )])'"

Idet(I/g ')[-d'/(ff'+ U"(4(, )]p
( det( I/g')[ (I'/d-t'+U"(@, )]j'"

x exp (4.26)

FIG, 2. Inverted double-well potential, The dashed
line represents a fixed "energy" in this well.

The coefficient of the large curly brackets has
been evaluated as Z, +Z [see Eq. (4.13)]. We
now calculate the remaining term.

First, the action is given by

(4.27)

where

—(6~ =22r/i/, . In the first case, as we approach

P =+I, both P and P approach zero [see Eqs. (4.8)
and (4.19)] so that the period is extended. Indeed,
in the limit, we spend all our available "time" in

going from one peak of Fig. 2 to the other, i.e. , V=4 dt's, -l. '.
0

Explicitly evaluating these quantities yields

(4.28)

(4.29)

which is just the zero-temperature-kink solution
of Eq. (1.2). In the sense that p, (t) for p finite
traverses a path from negative to positive values
and back again, it consists of a kink-antikink pair.

In the second limiting case, the amplitude for
oscillations vanishes when the temperature reaches
a maximum value, i.e.,

and

T=,,/, [-K(1 —k')+E(1+k')]

3 (I + k2)2/2

(4.30)

kT,„=p, /2w. (4.23)

I

x —
4

(1+2k' —3k')+E(1 +k') (4.31)

As we approach this temperature from below, sng
—sing and the amplitude in Eq. (4.16) becomes
small, i.e., we have linear oscillations about the
bottom of the well in Fig. 2. At the moment, this
limiting temperature will not be an obstacle for
we are primarily concerned with the calculation of
the partition function in the low-temperature limit.

To this end, we wish to determine the contribu-
tion Z, that p, (f) makes to the partition function.
In particular, by rewriting Eq. (4.4) as

where E is the complete elliptic integral of the
second kind. In the zero-temperature limit, we
have the equipartition resultP: T =V=-,'1=2/K'/3. (4.32)

Next, we determine the second ratio of deter-
minants in Eq. (4.26). Note that the eigenvalue
equation (3.9) becomes, for p„

)-ii/2
st= det, —,)gP i- g'

(4.24)

where the prime refers to the deletion of the zero
eigenvalue in the determinant, we can say that

(4.33)

where To = 0 has been chosen for convenience.
Letting

(4.34)
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d Q + [k —I (f + 1)(k sns)'] q = 0,

for j= 2. The five smallest eigenvalues of this
equation are known, as well as the corresponding
eigenfunctions. '3 The latter are quadratic poly-
nomials in the elliptic functions (see Table I). The
remaining eigenvalues occur in ascending pairs
and their eigenfunctions are transcendental in the
elliptic functions.

The first two eigenvalues present difficulties in
the calculation of the determinant for they do not
satisfy the restriction ~„'&0.Let us first con-
centrate on ~,'.

The vanishing of ~o' is the familiar zero-mode
problem, a reflection of translational invariance.
Indeed, the eigenfunction Q, (s) is proportional to
the derivative of p, with respect to g since

d
sns =cnsdns.

ds
(4.37}

In the form of Eq. (3.10), the zero mode is a prob-
lem. However, if one keeps all terms, including
the quartic contribution, in the expansion of I [p],
the functional integral over this mode is well de-
fined. Proceeding in this way, though, would
miss the central point that all translates of p, (f)
should be included on an equal footing in the func-
tional integral. To accomplish this, we employ
the Faddeev-Popov technique'~ at finite tempera-
ture, ' "resulting in

(4.38)

gives

, +(1+k')(I+a„')—6k'sn's g„(s)=0,

(4.35)

which is just the Jacobian form of Lame's equa-
tj on~2

g/(v, . — p(2v) 'i'(2T)'i'. (4.39)

To complete the evaluation of the partition func-
tion in the zero-temperature limit, we evaluate
the ratio p of the remaining eigenvalues,

A= g M„g~„ (4.40)

as P- ~. Writing

v„=e„+2,
(~„')'= (e„')'+2,

where e„'and (e„')'satisfy, respectively,

(4.41a)

(4.14b)

d —3 sech'(I/~2 Q„(f)= e„'Q„(t), (4.42a)

zero-mode eigenvector.
We are now in a position to understand the nega-

tive eigenvalue ~0, . Unlike the kink, our basic
solution p, (t) is not a monotonically increasing
function of f. Rather, the periodicity condition
produces maxima and/or minima. Thus the
derivative of p, (f) possesses zero (s), i.e. , the
zero-mode eigenfunction has node (s}. There
must then exist an eigenfunction with a lower
(i.e. , negative) eigenvalue. This negative eigen-
value represents the instability of the kink-anti-
kink solution at finite temperature. As in the
case of the zero-mode problem, the difficulty
arises in truncating the expansion of the action
at the quadratic order. The positivity of the
quartic term ensures that the integrals are well
defined. However, to use this term as a damping
factor in the low-temperature limit would be
deceiving. Indeed, as p- ~, we note that both

o~ and Qo appl oach sech g while ~0& ~o = 0.
This indicates that the appropriate evaluation in
the p- ~ limit would be

where the first factor is the length of the integra-
tion region, the second a reflection of an unused
Gaussian integral, and the third the length of the we have

(4.42b)

TABLE I. The five smallest eigenvatues of the Lame equation, with the corresponding un-normalized eigenfunctions.

Qfl(S) Ed~ (k = 1 )

0' 1 —[1 + k —(1—k + k ) 2]sn s

cns dns

sns dns

sns cns

1 —[1 + k'+ (1-k'+ k4)'/ ']sn's

2 [1 + k —(1—k + k ) /2]

1+k2

1+4k2

4+k2

2[1+k2+(1 k2+k4)~»]

1 —jl+ 3[{1—k )/[1+k )]')'

k2/(1 + k2)

3/(1 + k2)

1 + (1 + 3 [[1—k2) /(1 + k 2]2)~ ~ ~

2

2
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R =exp 2 de' p+(e'') —p(c') lng '(e'+2
0

(4.43)

where p'(c') and p(e/) are the energy-level den-
sities for the Schrodinger-type equations (4.42b)
and (4.42a), respectively. In the zero-tempera-
ture limit, we isolate the eigenvalues 0. . &0 Q)g,

and ~,, for separate evaluation (while ~2 is at the
onset of the continuum) so that

f
dic'[p+

(e') —p(e')] =4.
0

Thus

(4.44)

R =4g 'c,
where the constant c,

(4.45)

x 1 + y 4g ln6 exp —2T g )
[ i/.(T/v)'~'] '

(&g ')'

(4.47)

The second term in the braces can be interpreted
as the first contribution of the calorons to the
partition function. Considering a dilute gas of
such calorons implies that what we have in braces
in Eq. (4.47) is just the even part of an exponential
expansion (see Refs. 7, 8, and 15 for further de-
tails). Thus the partition function is given as the
zero-temperature limit of

cosh 2
—(22/2ln6/v)' ' —exp(-2v 2/3g')

sinh(p/2) 2 )

(4.48)

2O

P; 6 '(P ( ') —6( ')]1 (1+ '/22' )I,
0

(4.46)

has been evaluated by Langer" to be ln6. Gathering
these results together gives (for (&- ~)

g = (sinhp, /~2

3 Z/2

6E= —,'(2/21 6/ )'Pp( p( —2/26'/32).

(4.49c)

The numerical coefficient in Eq. (4.49c) is 3.4
compared to 3.8 from Eq. (1.3c).

V. DISCUSSION

By explicitly calculating (in the dilute-gas ap-
proximation) the quantum partition function for a
nonlinear Lagrangian, we have encountered some
novel features whose generality deserves further
study. For example, there exists a limiting tem-
perature in the double-well anharmonic oscil-
lator, above which instantons do not exist. This
is in contrast to theories (such as quantum
chromodynamics) where classical scale invariance
exists and instantons are only gradually squeezed
out of the physical region. In the former case,
the limiting temperature is of the order of the
mass term in the Lagrangian [see Eq. (4.23)]
while in the latter case, the renormalization
mass sets the scale. ' In either situation, for a
sufficiently high temperature, the degrees of
freedom represented by the instanton are not ef-
fectively activated.

We have also seen that the kink-antikink mode
has a negative eigenvalue, seemingly implying its
instability at finite temperature. Much remains
to be done before this instability is understood.
For example, do other instanton-anti-instanton
pairs display this behavior in one or more di-
mensions? Can one reasonably calculate an
imaginary part of the partition function and as-
sociate this with a, complex energy eigenvalue&
Will this imaginary part be related to the lifetime
of the instanton-anti-instanton pair and, from
this, can we learn about their interactions'? We
leave such questions for future consideration.
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