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Closed-vortex configurations in classical field theory are investigated here. It is shown in detail that in the
Abelian Higgs model such configurations are unstable by collapse. Closed-ring configurations having unit
Hopf index and that explicitly exhibit the features of a twisted vortex are constructed for theories where a
three-component scalar field is present. However, it is shown that in renormalizable theories the Hopf charge
does not ensure the existence of stable solutions. It is proved that a nonlinear o~ model where an interaction
which has fourth-power field derivatives is present has a twisted-ring solution. A lower bound for the mass

and estimates for the radius and mass are given.

I. INTRODUCTION

In the last few years there has been wide interest
in localized solutions of field theories such as the
Higgs and chiral models,'”* which become states
bearing particle properties in the corresponding
quantum field theory.

Nielsen and Olesen? pointed out that vortex solu-
tions of the Higgs model behave classically as
Nambu strings in the strong-coupling limit (see
Ref. 5). Nambu and Mandelstram® proposed mod-
els for hadrons based on finite-energy field con-
figurations built with vortex lines and monopoles.
In this context, a closed vortex can be interpreted
as a Pomeron. Another interpretation for a ring
vortex has been proposed in Ref. 7.

In this paper we study closed-vortex configura-
tions in Abelian and non-Abelian Higgs models and
in the nonlinear o model. We also study the pos-
sibility of the existence of solutions of that type.

The Abelian Higgs model is defined, as usual, by
the Lagrangian

ec(x) = —%Fpuz'* |(8u+ ZeAp)‘I’ |2

}" 2 ‘LZ 2

-—2—(I¢| —27) ; 1.1
where F,,=08,A, -0,A,. In this theory closed-
vortex configurations have no topological charge
associated with them. We give an explicit ring-
vortex configuration [Eq. (2.2)] which, for a large
radius, is like a Nielsen-Olsen vortex curved and
closed by its ends. However, it goes smoothly into
the vacuum of the theory for vanishing radius. The
energy of this static configuration is finite for all
radii. We also performed a variational calculation
of the energy under the constraint of fixed radius
for the ring vortex. The results are plotted in Fig.
1 showing that in Abelian models closed vortices
will indeed collapse classically, because the ener-
gy decreases monotonically when the radius de-
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creases.

In Sec. II we also discuss multiring configura-
tions which have the same instability properties.
Rotating field configurations are considered in Sec.
II and Appendix B. We show that the energy is
bounded from below by l-ilz. However, this does
not ensure stability because angular momentum as
well as energy can be radiated classically in a con-
tinuous fashion.

In field theories where a three-component scalar
field is present, there can be, in principle, field
configurations with a nonzero Hopf index.® This is
the case for nonlinear ¢ model with the Lagrangian.

L,(x) = (8,0.)* + A(x) (0,2 - 1) (1.2)

“2
ng

[where u is a mass parameter and A(x) a Lagrange
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FIG. 1. Energy and magnetic flux of a ring-vortex
configuration [Eq. (2.2)] as a function of the filament
radius c.
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nultiplier| and the SU(2) Higgs model (the Georgi-
Glashow model)

, . i R Y N “_2 2
L0 D) =30 e =)

(1.3)
where
D,Q,= aan tg€ e A ch
and
Fj,=0,A% -0,A0+ g€, ARAS .

As we shall see in Sec. III, a configuration with a
unit Hopf index (@) is a clesed vortex with “twist”
one.? It has the desired toroidal symmetry. We
analyze the properties of this type of vortices, and
we show explicitly that.configurations with Q,=1
and fénile energy exist. Although these vortices
have a nonzero topological charge they are not
stable against collapse in the ¢ model and in the
Georgi-Glashow model with zero gauge field.
Their energy is proportional to the ring radius.
The field configuration goes smoothly into vacuum
when ¢ vanishes in the sense of distribution theory.
On the contrary, the Hopf charge density (pg)
gives a Dirac 6 function in the same limit. This is
due to the fact that p,(T) contains a product of the
field and its derivatives taken at the same point.
As is well known this sort of product is not always
well defined.

In the Georgi-Glashow model, finite-energy vor-
tex configurations with nontrivial Hopf charge and
nonzero gauge field are possible. However, topo-
logical considerations and scale arguments do not
ensure nor exclude the existence of closed-vortex
solutions. We only prove that if a classical solu-
tion with @, =1 exists in that model, it becomes an
unstable particle in the quantum theory because the
“potential barrier” between it and the vacuum may
be only of finite height. We conclude that the Hopf
index does not provide topologically static solutions
in renormalizable field theories.

There exist closed-vortex solutions in the ¢ mod-
el modified by adding to the Lagrangian (1.2)
fourth-order terms like

£ (x)= _gxl(apca)zjz —gz(auoaapcb)g ’ (1.4)

where we assume g,>0, g,+g,2 0. In Sec. IIl we
prove the following lower bound for the mass of a
twisted-vortex configuration:

32my,  Q,° . 8m .2
Q) ¢ N@g
where I and N remain bounded for ¢ going to zero

and infinity, respectively. An estimate on the
mass and radius of the solution gives for @, =1

E(¢) >

cQy 87, (1.5)

1/2
c=hkg(g,)"/?u™" and E:pkz%—, (1.6)

where R, and k, are numerical coefficients. Thus
the mass of the toroidal soliton in units of p may
be small or large depending on the ratio (g,)'/%/g.

At the quantum level it is possible that time-de-
pendent classical vortices correspond to particles
or resonances, even if the classical configurations
are not stable. Vortices oscillating radially seem
good candidates for breather-type solutions.® The
monotonic increase of the vortex energy with its
length provides an inward force preventing the
spreading of the field configuration. In this
scheme, it seems possible that for each radial
mode there exist a set of rotating modes with in-
creasing angular momentum and energy [see Eqgs.
(2.5) and (B4)].

II. ABELIAN HIGGS MODEL

A ring-vortex configuration of large radius (c¢)
can be easily constructed by taking an infinite-vor-
tex solution of Nielsen-Olesen type, curving and
closing it. Thus the magnetic field will be local-
ized in a ring of cross-section O(m ~2) (where m
=eun/VYX), and the Higgs field will differ apprecia-
bly from its vacuum value only in a core of section
O(1™%). Furthermore, for mc>1, a magnetic flux
(2m/e) will flow around the ring. For all nonzero
¢, this configuration is topologically different from
the vacuum because the Higgs field vanishes on the
center of the core (the “filament”). Because the
vacuum manifold is U(1), the Higgs field configu-
rations that vanish on a closed line (not interesting
with itself) are classified by the homotopy classes
m,(T?)=Z XZ.'° Here T? stands for the two-dimen-
sional torus. This implies that the more general
closed-vortex configuration is characterized by
two integers in this model. They give the phase
change of the Higgs field (in units of 27) when one
describes a closed path on a toroidal surface that
surrounds the filament. The first integer corres-
ponds to a curve like A in Fig. 2 and the second one
(m) to a path like B in Fig. 2. For mc>1, the
values of n and m also give the magnetic flux (in
units of 27/e) flowing around the filament and

FIG. 2. A ring-vortex configuration.
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through the hole encircled by it, respectively. If
m#0, the Higgs field must also vanish on a line
passing through the hole, otherwise it would be
multivalued there. In other words, a configuration
with n#0#m corresponds to two vortices of types
(n,0) and (m,0) interlocked. For a (1, 0) configu-
ration, the boundary conditions read as follows,

in toroidal coordinates (see Appendix A):

A(T) =—‘Z—EC’ (coshn —cosp) + O (exp[ﬁg’ﬁb»
@(?):We‘5{1+0(exp[—@%7}>} ,
(2.1)

and
%ilgc;‘:('x"ho , %Lngené(?)=const<w .

These are necessary conditions to get a finite en-
ergy. Although the vortex discussed above is top-
ologically different from the vacuum for ¢>0,
there is no topological charge associated with it.
There is no obstacle to continuously deform (vary-
ing ¢) a closed-vortex configuration into the vacu-
um, as is shown by the following field configura-
tion:

D§

&, (F)=e'? [1 - exp <—Bg ——Clz—rl—;—g—> } ,

-4 5 -om( )]

where
E=m@?+c? - 2rcsind)/?,

(2.2)

(2.3)

B=2cosf [tan" (—:—) __;_r_:l +tan™ (—————2:22?2’9 )
Here (7, 0, ¢) are spherical coordinates, and
B,D,E are positive constants. For all nonzero c,
(2.1) describes a vortex of type (1,0) and finite en-
ergy. The magnetic flux through the half-plane y
>0 (or x>0) varies continuously from (27/e) to
zero when ¢ goes from « to zero. The energy also
vanishes in the ¢ -0+ limit.

We also performed a variational minimization of
the energy by constraining the vortex to have a
toroidal symmetry and a filament of fixed radius c.
The results are plotted in Fig. 1 showing that the
collapse of the vortex ring is indeed energetically
favorable. Actually, this collapse has been experi-
mentally observed in type-II superconductors.'!
However, it must be noted that the time evolution
of such vortices is not described by the relativistic
Higgs model.*?

All the above discussions about Abelian vortices
can be repeated without essential changes for a
closed-vortex configuration in 2n SU(2) Higgs mod-
el obtained by closing the infinite-vortex solution

described in Ref. 13.

For a rotating (i.e., nonstatic) field configuration
a lower bound to the energy can be found. We take
the z axis in the direction of the rotation axis.
Then the orbital angular momentum of the gauge
field is

sz d*xp(E,H, —E ,H,) ,

where (2.4)
p=(x2+y?)'/2, E,=F% H,=%¢€,,,F* .

Then using
3, =3(E2+H> |[E,H, -E H,|

and the Schwarz inequality for the functions (GCM)‘/ 2
and p|E, H, - E,H,|'/?, it follows that

L2

Pu=f D i

(2.5)
The integral on the right-hand side is convergent
because of (2.1). In fact, lower bounds for the en-
ergy of rotating configurations can be found in any
field theory (see Appendix B).

For rotating-vortex configurations, the bound
(2.5) does not ensure their stability (classically)
because they could, in principle, radiate their en-
ergy as well as their angular momentum until they
collapse.

III. CLOSED VORTICES AND THE HOPF CHARGE

In this section we present and discuss field con-
figurations bearing nonzero topological charge and
having the structure of closed vortices. They ex-
ist in theories where a scalar field with three
components in internal space is present. The top-
ological charge is given by the Hopf index.®

The Hopf index classifies mappings from S° to S?
(more generally from S2"~! to S”, n even). The
field on S* will be denoted by

(F)=(3,(F), $o(T), 5(F)) , (3.1)
with

2 [BDF=1.

Here T<R®, and we assume that the limit of ¢,(T)
as 7 -« is independent of #. There are several
mathematically equivalent definitions of the Hopf
index. It can be introduced in the following way:
If $° is some fixed point on S?, then ¢(T)=¢° is
the equation of a closed curve Z° on §3. If =°is
some two-dimensional closed connected surface on
$3 having Z° as border, then (%) maps 2° on the
whole sphere S%. Then the Hopf index Q4 of (%)
can be defined as the number of times $(¥) maps
Z° onto $%. More precisely, @ is the degree of
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the mapping ¢(T), restricted to =°, from =° to S2
Hence @ is an integer. It can be shown that @, is
independent of the point <13°€ S? chosen. The fol-
lowing integral also gives @:

Q,,=j;oﬁ-dc7=féoi-df, (3.2)

where }'1, the “flux density,” is given by

- A

- 1 A - A
b= 6 V6, X VO, (3.3)

and

h= curla(y) .
1 +dG is the normalized surface elements of 5
mapped by $(F) to S®. This shows immediately
that (3.2) indeed gives the Hopf index as defined
above. A topological charge density can be intro-
duced as

pu(F) = =4(F) - h(¥) , (3.4)
then®
Qy = f py (B . (3.5)

The normalized field J)(Y‘) can be identified with the
o field in the nonlinear o model (1.2). In the
Georgi-Glashow model one can take ¢,=Q,/(Q,)"2,
where @, is the Higgs field in the isovector repre-
sentation. In the latter model i and & are not gauge
invariant, but the Hopf index is. This can be ex-
plicitly shown by first recalling that I is related to
the ’t Hooft magnetic field'®

- a 1 SR
B=¢H, _'E:T'Qabc(baD(Pbeq’c (3.6)
through

-

- ~ 4w
B=curl(¢,A,) + —g—h

~ > 4r
=curl(¢>0Aa+——a> . (3.7
g
Then we can write the Hopf index as

.8 = X . £ B.
T ¢“fzoA“ al+ P j;OB ds . (3.8)

Under an infinitesimal gauge transformation the
second term is manifestly invariant and in the first
one we get an exact differential which vanishes
upon integration on Z°,

A field configuration with unit Hopf index is given
by

~

¢S =cosb(n) ,
(3.9)

BE(T) +id5(F) = sino(n)e’® =9,

where (1, 8, ¢) are toroidal coordinates of radius ¢

(see Appendix A), and 6(n) is a differentiable func-

tion of n with the boundary of
6(0)=m , 6(«)=0.

The flux density, the potential, and the Hopf
charge density for the field (3.9) are given by

(3.10)

1  (coshn - cosp)?

h= 4mc? sinhyp [é5 +sinhné,] sin6 6(n) ,
(3.11)

»_ 1 coshp=cosB , o

= Tne sinhy {[1+cosén) e,

+sinhn[1 - cosé(n) s} ,
(3.12)

Py = _anlE_ "‘% cosé(n) . (3.13)
The field (3.9) has toroidal symmetry. The points
« in $* and the filament p=c (i.e., =) are map-
ped into the south and north poles of S?, respec-
tively. Moreover, it is a twisted vortex because
the components ¢, and ¢, turn around the (131 axis
when one describes a path like A o7 like B (see
Fig. 2) around the filament. The flux density h is
analogous to the ordinary magnetic field in super-
conductor vortices. Here, h flows nottonly in the
&, direction but also in the &5 direction precisely
because of the twisting. It is also interesting to
note that fi coincides with the 't Hooft magnetic
field _I§, at least for pure gauge fields.

The configuration given by Eq. (3.9) can be ob-
tained in the following way: If w and z are two
complex variables constrained to satisfy

i+ [?=1,

then f(w,z)=w/z gives a mapping with unit Hopf
index.® By stereographic projection from C to S2
and from S° to R® one arrives at Eq. (3.9) with the
particular choice cosd(n) =1 - 2sech?,. Clearly,
the Hopf index is the same for all continuous func-
tions 6(n) such that Eq. (3.10) holds.

The field (3.9) gives a finite-energy configuration
in the nonlinear ¢ model and in the SU(2) Higgs
model if we assume that

0(n)=0(e™") for n—-<o,
6(n) -m=0(n*) with a>1 for n—0+.

(3.14)

This last condition also ensures that 35)(?) isa
single-valued function. For the first model we find
from (1.2) and (3.9) that
- 27 \2 p2 ® . .
E()= (Tn) % f dn{6(n)?+ [cothn sin8(n) )%} ,
0

(3.15)
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and for the second model from (1.3) and (3.9), we
find that

-~ - 2 -~
Eo(@)= [ o [5FQr +5- 34,

2 (-]
"8 (Q ‘2T> :
Here we have Q,= ¢ (¥)Q(F). We assume that @
(©)=u/(20)/2 and zero magnetic charge, i.e.,
Q(T), never vanishes. It is clear that the Hopf
charge is one and E is finite for many choices of
Q, for example, Q(F)=p/(21)'/2, It must be noted
that the Euler-Lagrange equations associated with
the one-dimensional “action” (3.15) have no solu-
tion of finite action fulfilling the boundary condi-
tions (3.14). It is clear from Egs. (3.15) and (3.16)
that the minimun of the energy is obtained by let-
ting the ring collapse, i.e., ¢-0. This is true for
any finite energy configuration by scale arguments
applied to the Lagrangian (1.2).**

When ¢ vanishes, the field configuration (3.9)
goes smoothly to the vacuum in the sense of dis-
tribution theory and not any configuration of zero
energy (i.e., mass) and nonzero tcpological
charge.’® (Moreover, a static solution with zero
mass is hard to understand as a particle in a Poin-
caré-invariant sense.)

The corresponding Hopf current density and
charge density tend to distributions concentrated
at the origin:

(3.16)

lim pn(‘f) =5(T) ,
c—o+

. oToe18(r)
CIL%L h(T) = _T_’}:——e" y (3.17)
g’r& a(r)=-6(x)e, ,
whereas
c__,rgl_f ¢a( r)= -6a1 ’
and (3.18)

. momg
gg&a(r) =0.

In other words, we find that
Lim py(a(F))# py(=0,) =0 .

This is not a contradiction because the product of
distributions at the same point is not well defined
in general.

If the gauge field is not zero, standard scale ar-
guments'® do not forbid the existence of stable
static solutions. Then let us consider a finite-en-
ergy configuration in the SU(2) Higgs model, where
$ has unit Hopf index, and Ka(f') is not pure gauge.
We can take the gauge field

K0T =0A,(F), (3.19)

and let A vary from one to zero. In this process
Q, does not change and E;(}) is finite, as can be
seen from Eqgs. (1.3), (3.9), (3.14), and the fact
that E;(1) was finite. We return in this way to the
former classical unstable configuration.

If E;()) increases in some interval when A de-
creases from one to zero, the field configuration
for A=1 may be classically stable (metastable
quantum mechanically).

On the contrary, this argument does not apply to
the ’t Hooft—Polyakov'® monopole because a pure
Higgs configuration with nonzero Brouwer degree
has infinite energy.

There is a stable-ring solution if we add to the
o-model Lagrangian (1.2) a nonrenormalizable
term like Eq. (1.4). Now scale arguments do not
prevent the existence of nontrivial static solutions.
Moreover, the energy of a configuration with non-
zero @ is bounded from below for all ¢. The
proof goes as follows: Let us consider the tensors

i_ ik 2 iy
Y= € ’ €abcaj¢bak¢c ’
i ~
sa“aiq)a )

i ijh, &5 &
Wa—fabce ! aj‘pbak(i)c ’

and the positive-definite scalar product between
this type of tensor,

(r,s) Efdsxrf,sf, .
Then the Schwarz inequality for this scalar product
applied to 7% and s! together with Eqgs. (3.3)-(3.5)
gives the lower bound

E(§)= [ axlg[(F6)T +£,V5,)7

327
>—-E£L-Q,,2, (3.22)
where
S T
I=_E_fd X a (3.23)

From Eqs. (3.12) and (3.14) it follows that the in-
tegral in Eq. (3.23) converges for all c<w., By
dimensional arguments I is of order ¢° and in fact
I, vanishes in the ¢ -0+ limit [see Eq. (3.18)].

A lower bound for

E () =~2—‘;;27—f d3x (V$,)? (3.24)

follows from the relation
B(VE? P> Wh*(2,$,)° > 6472, .
Then upon integration we have

4rc

- log(F)| _ -
E°/81de3x —”I.E,—/I'V—(Q‘H—;Qﬂﬂ.zg 2 N (3.25)
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where
(3.26)

is a finite number for 0 < c <, Then (1.5) follows
from (3.22) and (3.25). On the other hand, Eq. (3.9)
provides a finite upper bound to E(¢)=E($)
+E,(<13). This completes the proof. By extremizing
(1.5), the order of magnitudes of the exact solution
parameters as given in Eq. (1.6) is obtained.

It seems a difficult task to compute the explicit
exact solution because in toroidal coordinates the
equations of motion are, a priori, not separable
in the SU(2) Higgs model and in the ¢ model.

Finally, it can be pointed out that, in principle,
continuous field configurations with Hopf charge
higher than one can also be constructed.® It has
also been shown that the Hopf charges are addi-
tive.'”

N= T
o pax A (D)

IV. FINAL REMARKS

(1) The fact that the integral I converges follows
directly from the finitness of E; and dimensional
arguments without using the explicit forms given
in Egs. (3.12)—(3.14). A necessary condition for
E, < is that —5q34=0(r'3/2) for v -~ . Thus from
Eq. (3.3) h=0(»"3) and A=0(r"?) for large », which
ensure the convergence of I.

(2) It is known that the ¢ model restricted to
static fields can describe an isotropic ferromagnet
in the Landau approach. ¢, becomes the direction
of magnetization and — f (£, + £,)d%x the free ener-
gy. In this context our field solutions with nonzero
Hopf charge describe metastable defects in the
body of a three-dimensional ferromagnet.

(3) Field configurations with finite energy and
|@4|>1 can be simply obtained by taking 6(n) in Eq.
(3.4) such that («) — 6(0)=nm, where n is an in-
teger.

APPENDIX A

The toroidal coordinates (n, B, ¢) are related to
Cartesian coordinates (x, v, z) through

¢ sinf

¢ sinhp e*? B
~ coshn —cosB

coshn — cosB

X+iy= s s

(A1)

where 0s <, 0sp,p<27, and c¢ is a parameter.
The surfaces n=const are toroids, 8=const are

DE VEGA 18

spherical bowls, and ¢ =const are planes. n=«
corresponds to the closed curve (the filament) x?
+y%=c? z=0. n=0 gives the z axis. Large values
of r=(x2+y2+22%)'/2 correspond to small values of
both 8 and 7. Asymptotically, we have

V2 2
T=*@2—H7§)T2—[1+0([32+n)] . (A2)

Near the filament, we have n>1 and
(x%+y?)1/2 —c=2ce""cosf[1+0(e”M] ,
z=2ce " "ginB[1+0(e™")] ;

the metric determinant is given by

Vg = c® sinhn(coshn - cosp)™3.

APPENDIX B

In this appendix we give a short proof of a lower
bound for the energy of a rotating solution of a
field theory with Hamiltonian

N

30x) =3 2 (2 + (V)2]+ Vg, . - -

i=1

9y, (BD)

where V= 0. The proof goes as follows: The or-
bital angular momentum is given by

N
L= [ o Y nExTy, (B2)
i=1
We also have

K(E)2 4 D [+ (7 X Vy,)?]

> 20 I, 17X ¥ (B3)
i
Then using the Schwarz inequality for the functions
f =[en)/
and
-7 P
g=73-5—2 I | vy /2 < i,

it follows that
(1)

B [ soEes

(B4)

This gives a nontrivial lower bound for E if the
trace of the inertia tensor is finite:

f rZed3x <,
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FIG. 1. Energy and magnetic flux of a ring-vortex
configuration [Eq. (2.2)] as a function of the filament
radius e.



FIG. 2. A ring-vortex configuration.



