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Fermions and vortex solutions in Abelian and non-Abelian gauge theories

H. J. de Vega
Laboratoire de Physique Theorique de l'Ecole Normale Superieure, ~ 24, rue Lhomond, 75231 Paris CEDEX 05, France

(Received 5 October 1976; revised manuscript received 25 January 1977)

The interaction of fermions with an extended vortex solution of the Higgs model is investigated. It is found

that this interaction has a long-range inverse-square tail. It is caused by the coupling of the fermion angular

momentum with the vortex gauge field itself. The fermion-vortex bound states present at the threshold and

the fermion-vortex scattering are studied. The scattering phase shifts and the Jost functions are obtained for

large and small fermion rnomenta as well as the low-energy cross section which diverges at zero momentum.

The quantum field theory in the one-vortex sectors is developed. It is found that, in the presence of fermions,

a vortex with an even (odd) number of flux quanta has a half-integer (integer) fermionic number. It follows

that a two-quantum vortex is stable. Finally, the stable vortex solution of an SU(2) Higgs model is

investigated. The appropriate ansatz for the field is given and radial equations are discussed. It is shown that

the interaction of a vortex with any nonsinglet particle has a long-range inverse-square tail.

I. INTRODUCTION

It has been known for a long time that certain
nonlinear classical field theories possess exact
wave solutions of finite energy. They are interest-
ing in particle physics because they represent new
states in the corresponding quantum field the-
ory."' Qne of the first models of this type was
developed by Nielsen and Qlesen. ' They pointed
out, in analogy with the Ginzburg-Landau theory
of superconductivity, that the Higgs Lagrangian has
classical vortex solutions which behave classically
as Nambu strings in the strong-coupling limit.
The vortex can be considered as an infinitely long
object in three spatial dimensions or as a two-
dimensional finitely extended solution. Qtherwise
one must place sources and sinks of magnetic flux
to get a vortex line of finite length in three-dimen-
sional space."

In this paper we study the interaction of fermions
with a vortex in three-dimensional space-time.
The fermions are coupled to the gauge field in the
usual minimal way.

Jackie and Rebbi have studied fermions in field
theories with bosonic extended solutions. ' They
show the connection between the quantized Dirac
field and the solutions of the Dirac equation in the
external field given by the bosonic solutions.

Thus, as a first step to study the quantum mech-
anics of the one-vortex sectors, we investigate
the Dirac equation in the extended gauge field of
an n-quantum vortex. It can be pointed out that
for small coupling the fermion-vortex interaction
can be shown to be of order one.

In that way, we find that for long distances
(p» p ', where p is the vector-meson mass), the
fermion-vortex interaction has an inverse-square
tail. Because the magnetic field of the vortex de-
creases exponentially (like e "') for long distances,

that long-range interaction is not originated by
the Lorentz force on the fermion. Nor is it the
Aharonov-Bohm effect' because this effect is ab-
sent when the confined magnetic flux is an integer
multiple of 2v/e, like in our case.

One finds that the 1/p' long range fermion-vortex
interaction is a modification of the centrifugal
barrier produced by the minimal gauge coupling of
the angular momentum with the gauge field. At
long distances, the polar component of the vector
field has a nonzero value proportional to the topo-
logical charge of the vortex (-n/e). The topologi-
cal charge ensures the stability of the classical
solution. ' The minimal gauge coupling performed
on the polar component of the momentum reads

p„-p„-eA„(p)~ P, + . n

This shows explicitly that the centrifugal barrier
of the particle is modified in an amount propor-
tional to the topological charge of the vortex. It is
clear that, for all charged particles of any spin,
a 1/p' interaction will be present for p» p '.

At small distances from the vortex line, we find

that the fermion-vortex interaction is of the mag-
netic-moment type. In other words, for small
distances the fermion angular momentum couples
with the magnetic field, whereas for long distances
it interacts with the gauge field itself.

After separating angular and spin dependence
in Sec. II, the Dirac equation is reduced to a pair
of uncoupled second-order differential equations of
the Schrodinger type. The effective potentials
that appear in these SchrOdinger-type equations
are very useful in getting information on the fer-
mion- vortex interaction.

The Dirac equation on the vortex field is exactly
soluble at the threshold. All solutions with energy
equal to plus or minus the fermion mass (m) are
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expressed by quadratures in terms of the radial
function of the vortex gauge field [Eqs. (2.19)-
(2.20)]. There are no bound states with nonzero
binding energy. " We find that normalizable fer-
mion solutions are present, for an n-quantum vor-
tex, with an energy ~=m sgn(n) if

(1.2)

Here Z is the total fermion angular momentum.
It can take any half-integer value (positive or neg-
ative). We see from the preceding equation that
for positive (negative) n the vortex can bind only
fermions (antifermions). There are ~n~-I bound
states at the threshold, each in a different partial
wave. In particular, a vortex with one unit of flux
does not bind fermions.

The presence or absence of bound states at the
threshold can be related to the strength of the cen-
trifugal barrier modified by the topological charge
and to the sign of the magnetic-moment interac-
tion. %'e find that bound states are present when
the magnetic-moment interaction is attractive at
short distances, and the modified centrifugal
barrier is repulsive enough. In this way it keeps
the fermion near the center of the vortex line.

In Sec. IO, we study the scattering of fermions
by a vortex line located at the origin in a partial-
wave analysis. In this context, we investigate the
radial scattering solutions of the decoupled
Schrodinger-type equations mentioned above. We
consider two limiting cases: high and low fermion
momenta k'» p,

' and k'«p, '. For the high-momen-
tum behavior, we find that the scattering phase
shift vanishes like (p/0) for k -~. This is re-
lated. to the regular behavior of the fermion-vortex
interaction at short distances. In the low-energy
case there are more interesting results because
of the long-range nature of the interaction.

Then, the phase shifts are found for all values of
m and J for low energies [Eqs. (3.13)-(3.16)]. The
phase shifts at zero energy are nonzero [we nor-
malize them so that 5~(~) =0] but Levinson's
theorem" does not hold because of the long-range
tail of the interaction. It is interesting to note
that, for odd n, every phase shift attains its uni-
tarity limit at the threshold. This phenomenon
produces a Dirac 6 behavior on the forward direc-
tion in the scattering amplitude at (d = rn.

We find that the fermion-vortex cross section
diverges for low momenta, like k ' ln 'k [Eqs.
(3.22)], isotropically. This is due to the zero-en-
ergy resonance in the wave 8=n- —,', clearly pro-
duced by the modified centrifugal barrier. The
study of the Dirac equation in the vortex field
carried out in Secs. II and III is a step previous to
treating the quantum fields in the one-vortex sec-
tors of the theory. This is done in See. IV within

At~(n-quantum vortex) =- sgn(n) .1 —tnl (1.3)

Then a vortex with an even number of quanta has
a half-integer fermionic number. Because vor-
tices with an odd number of quanta have an inte-
ger fermionic number, it follows, from fermionic
and topological number conservation laws, that a
vortex with

~

~ni = 2 is stable.
As in Refs. 7 and 12, we find quantum states in

the theory with quantum numbers which are a
fraction of those of the fields explicit in the I.a-
g rangian.

Finally» we discuss the Dllac-fleM matrix ele-
ments between vortex and fermion-vortex states.
We show that the fermion-vortex form factor has
singularities at correct physical thresholds, in
the case when both bosons have equal masses.

Finally, in See. V, we consider vortex solutions
of a non-Abelian gauge theory. They exist, as in
the Abelian case, if the symmetry breaking is
maximum. In other words, if the vacuum is in-
variant only under group elements which are
mapped into the unit matrix of the adjoint repre-
sentation. ' We work in detail the SU(2) case only,
where there is only one topologieally stable vor-
tex solution. ' %'e give the appropriate isospin
and angular dependence of the fields [Eqs. (5.7)
and (5.8)] which separate the equations of motion.
The solutions of the radial equations [Eq. (5.9)]
admit asymptotic solutions and short-distance
ones, not very different from those of the Abelian
vortex. As in the Abelian case, the energy den-
sity is confined in a disk with a diameter of a few
boson Compton wavelengths.

Subsequently, we study isospin --,' fermions
coupled gauge-invariantly to the gauge and Higgs
fields. Because the non-Abelian vortex solution
is invariant under space plus isospin rotations,
the fermions acquire integer angular momentum

the collective-coordinate method. ' In this context
the fermionie field is expanded in the eigenfunc-
tions of the Dirae equation previously considered.
The lower-energy state in each n-quantum sector
is the vortex state with a mass M„oforder e '.
If n ~ 2 (n ~ -2) the next state is the fermion-vor-
tex (antifermion-vortex) bound state with a, mass
equal to M„+m, at first approximation. Then
there is the continuum of the fermion-vortex scat-
tering states.

Although the theory is invariant under charge
conjugation (8), each vortex sector is not. As it
is clear, an n-quantum sector goes into the (-n)-
quantum sector under C.

We find that the fermionic number of a vortex
is nonzero when fermions are present. For an &&-

quantum vortex [Eqs. (4.20) a.nd (4.21)]
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as in the monopole field. "'" We find a long-dis-
tance fermion-vortex interaction, as in thie Abe-
lian case, because the fermion angular momentum
couples to the gauge field through

p „-p„—eT fl „(p)~ p„—7 (1.4)

This last equation shows that all nonsinglet par-
ticles will interact with the vortex through a long-
range force due to the modification of the centri-
fugal barrier. The interaction strength is pro-
portional to the isospin of the particle.

In the case when the fermions are coupled to the
gauge field only, we find that there are neither
fermion-vortex bound states at the threshold nor
with nonzero binding energy. The modified cen-
trifugal barrier has not enough strength to bind
isospin --,' fermions.

II; can be pointed out that for monopole-type solu-
tions in three-dimensionaL space"" and for the
pseudoparticle solution in four-dimensional
space, "the covariant components of the gauge
field in the angular directions are nonzero at
spatial infinity. Thus, long-range I/r' interac-
tions will be present between any nonsinglet par-
ticle and a monopole in four-dimensional space-
tlnle. The same thing ls true alound a pseudo-
particle solution in five-dimensional space-time
which binds fermions at the threshold" as the vor-
t;ex solutions do in three-dimensional space-time.

II. FERMIONS AND ABELIAN VORTKES: LONG-RANGE

AND SHORT-RANGE INTERACTIONS

We consider the Abelian Ginzburg-I. andau-Higgs
model coupled to spin--,' particles in three-dimen-
sional space-time, with the Lagrangian density

(i$- eg„—m)y(x) =0 (2.5)

(where A,", stands for the classical vortex field)
are self-consistent solutions of the coupled set of
Euler-Lagrange equations of the model, for small
coupling. Qne checks immediately that the ferm-
ionic current

is a higher-order correction to the bosonic one

Now we turn to the study of the solutions of the
Dirac equation in the gauge field of a vortex (al-
ways in three-dimensional space-time). We use
the following two-by-two representation for the
Dirac matrices

'Y = &g) = L(T ) P = -z(T„,2

where o's are the Pauli matrices.
We will seek stationary solutions of our Dirac

equation and also eigenstates of the total angular
momentum

ec(zy-~~) p~(k, p)e ""
~p z(g ) e+1fP l 2

(2.7)

The classical field solution is of order 1/e and
gives the leading approximation to the quantum
theory of the bosonic fields for weak coupling. "'

Now we will consider the leading approximation
for fermionic fields when they are coupled to the
Abelian Higgs model.

One can easily prove that the Dirac equation in
the external classical field given by the vortex has
solutions of order e'. More precisely, the solu-
tions of

Z(x) = —,'- r.„'+[(S„+i',)4 ~'-+ —,
'

p, ,'~ 4 ~'

--,' A
[
4' ~'+ tt(i P —eg - m )g, (2.1}

where k =+ (uP —m')'~' and J can take any half-in
teger value (positive or negative}. The radial
functions verify the following equations:

(2.2)

A(p) = z n-X„pp,—
p

BA BA 1 dX„
H(p =

Bx By ep dp

(2.3)

(2.4)

where F„,, = B„A„—B„A„.At the tree level the
masses of the scalar and vector bosons are p. ~
and p=ep, ~/vY. We consider p, ~

~ p but A=0(e'),
which corresponds to type-II superconductivity. "

As it is known, in the ahsence of fermions this
model has classical vortex solutions. '" For these
vortex solutions, the total magnetic flux through
the xv plane is quantized in units of 2~/e. An n

quantum solution, located around the origin, has
the following form:

d J—n+ 3C„P)
(p,'(0, p) =i((u+ m}(p,'(0, p) .

These equations differ from the free Dirac ones,
only in the terms + PC„(p)—n]/p in the left-hand
side. From this fact and the boundary condition
of the classical gauge field at infinity [X„(~)=0]
we get a first result on the fermion-vortex inter-
action. We see that for long distances (p» p ') the
Dirac equation in the field of the vortex is like a
free one, but with a factor (7 —n} instead of Z. In
other words, at long distances from the vortex,
the fermion "sees" the interaction as a modifica-
tion in the strength of the centrifugal barrier.

The system of radial Dirac equations [Eq. (2.8)]
can be decoupled into two Schrodinger-type equa-
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tions for the functions y~(}t,p)

, +O' —U'„~(p) op~(k, p) =0.
dp

Here the functions

(2.9)

p~ ( )
Z(4+1) (2.11)

%e also consider an interaction potential which
only takes into account the fermion-vortex inter-
action

1''„z(p)= U'„z(P) Uo g—(P)

1 dX„(n-K„)(281K„—n+ 1)
p dp p

(2.12)
In Figs. j. and 2 we plot this interaction potential

for A, = 8 pg= I, and 4=+ 2 and eJ= -2 respectively,
from the solution given in Ref. 18.

It can be pointed out that the Schrodinger-type
equation (2.9) for the upper component is formally
identical to a radial (three-dimensional) Schro-
dinger equation with a half-integer orbital angular
momentum l=J —1 (f=-7} if J & —,

' (J&--,'). The
same thing is true for the lower-component equa-
tion with /=Z (f =-Z- 1) if J o- -,' (8 ~ --,').

From the boundary value of the gauge field vor-
tex solution at long distance [Eq. (A2)] one ob-
tains, for the asymptotic behavior of the effective
potential,

,
( )

(J- )(Zn- +n1)
( „)

p
(2.13)

Comparison of this formula with the effective
potential for a free fermion [Eq. (2.11)]explicitly
shows the centrifugal barrier modification pro-
duced by the gauge field of a vortex line. This
implies that the interaction potential V„'z(p}de-
creases like p

' for p» p,

At short distances from the center of the vortex
line, the fermion-vortex interaction is regular.
The interaction potential, for small values of p,
can be written as

V'„,(p) = -e(Z+ —,')a(0)

+ I 'I(d", u P)'+ d l [»+ (2n+1)](pp)""')

+ 0((~p)2In1+2) (2.14)

where we have used the short-distance behavior of

1 dK„[Z-n+3C„(p)](J—n+3C„+1)
p

(2.10)

play the role of effective potentials. In the case of
free fermions, one would find only a centrifugal
term for the effective potentials

FIG 1. Interaction. potentials V; &~& and V, &~. between
a fermion and a one-quantum vortex in the wave J=;.
The potential has peen obtained from the Abelian vortex
solution given in Ref. 18 for A. =e~ and it is plotted in
units of p. ~.

the classical vortex solution [Eqs. (Al) and (2.4}].
One sees clearly that the fermion-vortex interac-
tion near the vortex center is entirely due to the
magnetic moment.

The second term in Eq. (2.20) can be recast in
a more familiar form by using the well-known
fact that the canonical momentum of a charged
particle in a magnetic field is the sum of its
mechanical one plus eA„. In our case only the
azimuthal canonical momentum differs from the
mechanical one. It is given by

P„=p, + eA„=p, + n —X„(p), (2.15)

where p, is the mechanical momentum (which is
not conserved).

Although our wave function [Eq. (2.7)] is not an
eigenstate of

FIG. 2. Same as Fig. 1, but for the wave J= —2'-.

theirupper andlower components are indeed eigen-
functions of it with (Zw 2) as eigenvalues. Then



p„=z-n+x'.„(p)+—,'. (2.16)

The second term of Eq. (2.17) has the form of the
ordinary centrifugal barrier. Then, one can inter-
pret the long-range 1/p' interaction as coming
f

lorn

the minimal gauge coupl1Qg performed on
the centi lfugal bR1rier.

Let Us Qow coIlsIder the radial solutions of the
Dirac equation 1Q the vox'tex f1eM. Qfe normalize
the regulRr wRve functions such that, Rt small
dlstanc es,

Taking into RccoUQt this Rnd the express1OQ fox'

the magnetic field [Eq. (2.4)], the effective poten-
tial can be written as

1

U'„,i(p)=+ e&(p}+ ', ~

The wave functions corresponding to Z sgn(n) « ——,
'

[Eq. (2.20)] are not normaiizable.
Thus, vortices with positive (negative) topologi-

cal number n bind only fermions (antifermions) at
the threshold. The total number of bound states is
~n~ -I in both cases. For ~n~= I there are no nor-
malizable solutions. If n= 2 (n=-2) there is only
one at ~ = m (&u = -m) with 4=-,' (8= --,').

The condition (2.22) that ensures the presence of
bound states can be physically understood by an-
alyzing the strength of the modified centrifugal
barrier and the magnetic-moment interactions (at
short distances).

The centrifugal barrier, modified by the direct
coupling with the vector potential [Eq. {2.13)] can
be written as

&P, («~P)=P, 1 —
2(1 2)~() + O(P )

(2.18)

(2.23)

If there are bound states at the threshold, for the
case n & 1, we find from Eq. (2.22}

whet'e *J & '-.

The regular solutions for w=+m Rx'e given by

(Z-n+-,')'--,'~ —,
' and (Z-n--,')'--,'& —,' .

(2.24)
z(0 )

z nfn(p-

p, (0, p) = 0 if + g ~ —,
'

y, (0, p) =2m[iL „p~"f„(p)]"

y~(0, p}= ~ „",, for wZ~-,'.

4pf„(p)== exp —,X„(p')
p

(2.19)

(2.21)

Fol Pl ~~ -1 one x"caches slmllax' conclusions~
~e conclude then that bound states at the thx'es-

hold are present if the magnetic-moment interac-
tion is attractive and if the modified centrifugal
barrier is repulsive enough in order to keep the
fermion near the center of the vortex line.

%e wish to make a final remark about the gauge
invariance of our preceding analysis. It is clear
that the particular form of the effective fermion-
vortex potential [Eq. (2.10)] depends on the gauge
chosen. However, the long-range p"' interaction
will be present in all gauges because A, (p = ~, p)
cannot vanish identically after any regular gauge
transformation.

—,
' «Zsgn(n) «~n~--,'. (2.22)

Of course, the set of negative-energy solutions
can be obtained by charge-conjugation of the set
of positive-energy solutions.

All the solutions at the threshold given in Eqs.
(2 19)-(2.20) are regular in the sense that they
are locally square-integrable. Among them, those
that decrease sufficiently fast for p -~ are also
bound states. The asymptotic behavior of the
functions y~{0,p) can easily be obtained from
Eqs. (2.19)-(2.20) and the Appendix. We there-
fore find for n~ 1 (n « -1) that the positive- (neg-
ative-) frequency radial function given by Eq.
(2.19) ls normallzable if

III. SCATTERING OF FERMIONS BY STATIC VORTEX

In the small-coupling limit, the scattering solu-
tions of the Dirae equation in the gauge field of
a vortex [Eq. (2.5}]describe the quantum scatter-
ing of fermions by a vortex line located at the
origin. This follows from their relation with the
Dirac-field matrix elements between a vortex
state and a vortex-plus-one-fermion state (Sec.
IV). Recoil effects from the vortex will be ne-
glected, which is consistent with its large mass
[O(1/e')].

%e consider positive-energy fermions inciding
along the x axis with momentum k. Then the
asymptotic behavior of the wave function must be



(3.1)

where f(P) are the scattering amplitude and
id=+ (k +)n ) ~ 1«an be pointed out that in two
dlxneDsloQR1 spRce the spin 18 Qot 3' independent
degree of freedom fox a fermion. The quantum
state of the fermion can be completely specified
by its momentum and sign of the energy.

It is convenient to expand the scattering solution
lDto pRrtlRl mRves

&»(P t) = .
kspkp

( 1)(z-i/2)i)(-7) e-i y/2 z(k p)
~ g j [g y- t)I /+5 J ( A') j

-m "' 0

g-w co ( y)(ir+ g/2)g(~irwl) + j/P /2 J I
(8', balf integex') yk g&+~ x r p y, pg

Here p, ,(k, p) are radial solutions of Ec!. {2.9), regular at the origin and with asymptotic behavior

Ii,~(k, p) ~ sin[kp-[ )J'] —8(+8)]-,' v+ 5~(k)$.

The scattering amplitude can also be expanded in pax'tial maves

I
f(W)-

{2
eizy(e2i5g()) I)

The scattering solutions !i~(k, p) are of course
proportional to the regular solutions )p~(k, p) de-
fined in Sec. II [Eil. (2.18)]. The proportionality
factor can be related mith the Jost functions mhich
axe defined as the follomlng %ronsklans"

&x/2-] J'-x/2I
(k) = i

klan-i/2)-i/2

(128- 1!)!!

This is a convex'gent integral because of the
propex'ties of' the intex'action potentia1. For 3;-' —~
Rnd 3 fixed, one cRQ approximate this expx'ession

by the simpler one

Oi)

6a~' (k) = —2„V„'~(p)/fp

Here f~{k,p) is the lost solution (irregular) of
the radial eiluation (2.9). It verifies

lim e '"f~{k,p) = 1.
Thus, me ean mrite the folloming relations:

2 )+)
(2I + 1)!!=- I'(I+ —,'),

%'e have consider ed the radial solutions for tmo
llmlting ca,ses: k && p, RDd k' && p. . +e x'ecRll
that the order of magnitude of the fermion-vortex
interaction is given by V„~-p.'.

In the high-energy region the phase shifts can be
GbtR1Ded by the Box'Q Rpproxixnation, mhlch lQ oux'

tmo-spRtlRl dlBlenslon cRse gives

{3.'/)

(3.3)

gfe conclude that, fox' high energies, the phases
shifts tend to zero like p, /k.

Let us nom study the behaviox for small enel-
gles. IQ order to obtain the phase shifts and jost
functions for small k, me mill consider the regular
radial solutions first. They mill be obtained as a
Born series axound the exact solutions.

The knomledge of the regulax solutions in pomers
of k' ls not sufflelent to get the pha. se Shifts. Hom

ever, we know that for large distances (p, p &. I}
the effective potentlR1 cRIl be apploxlmated by the
modified centrifugal barrier [Eq. (2.13)]. Then
the x'RdlRl Solutions cRQ be approximated by the
solution of the folloming equa. tion:

d', (Z-n)(Z-n —1)"
, + k2—, )i '„k,p} = 0,

dp P

(3-9)

mhlch ls exRctly solvable ln tel ms Gf Bessel func-
tions. This function p, ~~(k, p) differs from p, , (k, p)
1D quantities of oldel 8 fox' lax'ge distances.

The final step to obtain the phase shifts and Jost
functions consists in matching the regular solu-



tions for )lp» 1 and (fixed) small k with the func-
tions )l (k, p) for small k and fixed p."

Let us now return to consider the regular solu-
tions. The radial differential equation (2.9) plus
th{-: boundary conditions are equivalent to the fol-
lowing integral equation (for Z~ —,):

u'(&, &)=q'" :" -&*J 2,(an )'t&'p )4p,
'

(3.10)

where e(p —p') g~(p, p') is the Green's functio~ of
Eq. (2.9) at k = 0. It can be written as

f„(p)f„(p')
gz(p) P ) =

( I)n-z [pn~-nf (pn)]2

By iterating Eq. (3.10}, we get

(3.12)

Vk2(n-Z)+)22(Z-n) n
3( (p)dp((:)--

2 I( l Z)Z( 2 Z) [ J f(n)]2[ o( )] o --2~

,:,..)= i ~ ., ;. , „„„„,.n(s &I.
p' "f.(p), ', f.(p') ' ' &p"

Ln o -& p' P nP

By partial integration from Eq. (3.12), one can easily get the large-distance behavior ()lp» 1) of the
reglar :radial solutions at fixed (small) k, taking into account the Appendix and Eq. (2.21). Then we
can use Eq. (3.5) to relate the behavior for )lp» 1 of these regular solutions with the solutions p~(k, p)
taken at small k and fixed p.

After some algebra, me reach the following results for the phase shifts:

&)k2(n-&&-&22(1-n&+&[I+ O(k2)]
2

' r( ' Z)r( ' Z)f [ "f( )]'X(f

= ))v ()(/2) [I+O(k'ink)]
2 ln(2/k) —C —2 j"(lnp/p} f (p)'3(: (p)dp

'

)) &( )(k" "'"J,"[p "f„(p)]'K„(p)1p[I+O(k'}]
2 2"' "'I'(Z —n+ —,'}I(j' —n+ —')

(3.14)

(3.15)

(3.16)

for J = n+ . Here C Stands for the Euler-Masche-
roni constant. We have taken the normalization

r (oa) —() (3.1V)

In the process of the derivation of Eqs. (3.13)
(3.16) we have used the relation between the phase
shift at k =0 and the small-energy behavior of the
Jost function

&,(0) =-," &(q if 0'~(k}=k'(ink)' for k-0.
The modulus of the Jost function has a simple

physical interpretation. '~ It gives the ratio between
the flee %'ave function and tile wave function in tile
presence of the interaction at the origin, i.e. , the
center of the vortex. For this reason

1
Ir,(k) I'

ls called the enhancement factor. We find for the
enhancement factor at lour fermion momenta

J&-p

fermion near the center of the vortex is reduced
for Z((n —1)/2 [A ~(0) =0] and enhanced for Z) (n
—1)/2 I~,(0) =-].

From the results given in Eqs. (3.13)-(3.16) we
can get some conclusions on the fermion-vortex
scattering at low fermion momenta. For Z~ ~
we can resume the lour-momentum behavior of the
5' matrix as

e2 p 2ln- J'-Sga{ 7&/2I
&2((&g(n) ( 1)n+Dn

x p.

x [1+O(k')],

where the coefficients D"J(e'h) can be easily ol)-
tained from Eqs. {3.13)-{3.16). For the case
Z=n ——,', it follows from Eq. (3.15) that

zw

ln(A„/k) + O(k' ink)

(3.20)

y2{n-2 J 1 }
A~(k) =

k -"ln '(k/A„), 8'=&2 ——',
(3.18) A„=2)l exp -2 f„(n}23C„((2)da—C

" lncy

(3.21}

%e see that the probability of finding a low-energy It must be pointed out that for odd n all phase
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shifts attain the unitarity maximum at k =0. This
produces a 5-function behavior in the forward scat-
tering amplitude. In other words, we have a zero-
energy resonance in all partial waves.

For pc 0 the scattering for small A is dominated
by the Z= n ——,

' wave. From Eq. (3.19) we see that
all other partial amplitudes decrease faster for
k2-0. More precisely, the absolute value of the
difference J —n determines how fast the phase shift
attains its value at k =0.

Finally we find that the cross section diverges
when the fermion momentum goes to zero as

with C= y'y' and where we have used Eq. (2.19).
N„~is a normalization constant. %'e recall that
$„z()l„z)are positive- (negative-) energy eigen-
functions. Thus, the coefficient of $„zin Eq. (4.2)
is an annihilation operator and the coefficient of
q„~in Eq. (4.3) is a creation one. These opera-
tors annihilate and create fermion-vortex (anti-
fermion-vortex) bound states at the threshold for
n ~ 2 (n c -2). They verify the relations

{a„,a„',,]=6„., {a„„a„)={at„a„',,)=O. (4.6)

Then for pg o 2

IV. FIELD-THEORETICAL ASPECTS

(3.22)

(=-!(x),=-.() ))= g (!,(K)(.,(F),

and we have an analogous relation for n ~ -2.
The second piece of the Dirac field in the n-

quantum vortex sector [Eq. (4.1)] verifies

(4.7)

In this section we consider the quantum fields in
the one-vortex sectors of the theory when fermions
are pl esent.

The Dirac field in a one-vortex sector can be
appropriately treated by introducing a collective
coordinate' R associated with the vortex position
and its canonical conjugate P, which corresponds
to the vortex momentum.

Then, the fermonic field can be expanded in the
eigenfunctions of the Dirae equation in the classi-
cal field of the n-quantum vortex solution. This
set of eigenfunctions contains a discrete part
(if

~

n
~

~ 2) formed by the bound states at the thres-
hold and a continuum part corresponding to the
scattering solutions.

Thus we write the Dirac field" in the n-quantum
vortex sector as

n-3 2

=„(x)= a„~(„~(x)for n& 2,
J'=l 2

(4.2)

lnl-3 2

"~(x)= Q„~YJ ~(x) for )2 ~ —2 ~

Z=l 2

Here the normalized bound-state eigenfunctions
are

$„~(x)= „~„„(e for n 2~;(z .i,),
N~ p" ' 0

(4.4)

'a. (x)=&V„,,(x) « - -2 (4 5)

(4 1)

Here the first term contains the discrete eigenfunc-
tions and the second one corresponds to the con-
tinuum states. Explicitly,

It can be expanded in the scattering solutions of
Dirac equation (2.5)

(4.8)
The operators b„(k)[d„(k)]correspond to anni-

hilation [creation] of fermion-vortex [antifermion-
vortex] scattering states. These operators verify,
as usual

{b„(k),bt(k')]={d„(k),d„(k'))= 6(k —k'); (4.9)

all other anticommutators vanish. The anticom-
mutation relations (4.6) and (4.9) together with the
completeness of the eigenfunctions of the Dirac
equation ensure that the canonical equal-time anti-
commutation relations for the Dirae field hold.
The wave function )))(-'„)in Eq. (4.8) corresponds to
a scattering solution of Dirac equation (2.5) for a
fermion with incident momentum k. The P„'=„'are
negative-energy scattering solutions of Dirac
equation (2.7) with incident fermion momentum
(-k).

The quantum field theory is invariant under
charge conjugation. Under this discrete sym-
metry

e y(x)e-' =cy(x) +,
(4.10)

(4.11)

ex „(x)e-'= -a„(x).
Because n goes in (-n) under 8, the n-quantum

vortex sector must go into the (-n)-quantum sec-
tor. Then, it must be true that

ea„~t'.'=a „~,
eb„(k)e'=d „(k),
(.d„(k)e'=5 „(k).
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Now let us consider the charge-conjugation pro-
perties of the fermion-vortex states. An n-quan-
tum vortex-fermion bound state, with angular
momentum J, can be written as

(»P~f ~»P}=--,' d'x(»P~:-„(x}:-t(x)~»P)

—-z. d'x (~ x )qx
J=l /2

(4.12)

C;
i
»p&') = a'„,C.

''
, I;P}= a'„,I», P}=

i
—I, P, J}.

(4.13)

I
» R'}= a'„I

i
» P) .

ifere ~»P) stands for UI »-quantum vortex state
of Momentum I . Then by chax'ge conjugation) an
p-quantum vortex- fermion bound state becoxnes
a (-»)-quantum vortex-antifermion bound state

1 —n= ——if n~ 1.

Hex'e we have used the relation

d'xnP jx j'x

(4.18}

One can easily calculate the energy of the fer-
D11AQ-vortex and antlfel'IQlon-vortex bound states
at leading order. The fermio»ic part of the Ham-
iltonian can be mritten as

ID a slmllRI way) we find fox' a fel m1on-vortex
bound state

HF(t)= I
d'-x:,~~'(x)[ (r (iV-+~ eA)+ma, ](~i(x):.

(4.14)
= (3 —n)/2, (4.20)

E~~„=E„(P)+»I (4.16}

as effected. This energy value will be corrected
by higher-order contributions. It is not clear
whether that shift will be equal to the quantum
corrections to the vortex mass. IQ othex words,
higher-older quantuIIl cox'I'ectlons pex'haps may
spliI; the fermion-vortex bound state from the fer-
mion- vortex threshold.

Fel"mlonlc nuYDbel' ls a coQsex'ved magnitude ln
the quantum theory considered here. Thus, it is
interesting to know what its value is for the quan-

rn .tat~s
I
Pn) and I P»Z}.

As it is well known, if we agree to assign zero
ferrnion number to the vacuuID state, the fermi-
onic vacuum operator can be written as

X„,=,'- d'x(l{'(x)tt(x) —(~(X)l{l'(x)]. (4.17)

Thus, the fermion-vortex or antifermion-vortex
bound-state energy is given at leading order by

E~~ == (» PZ
~

H
t(n M)

=(»Pi.„,H.'„,i.P &

=- E„(P)+{a„~,[H„,at~] j, .

where H is the total Ha. miltonian RIId Z„(P}the
energy of an n-quantum vol tex with momentum
P at leading order. The anticommutator in the
pl eced1ng equal:Ion can easily be evaluated using
Eqs. (4.1)-(4.8) and the Dirac equation for the
solutions at the threshold. One gets the same re-
suit for a positive as well as for a negative n

where Eq. (4.19) has also been used. For the
fermion-vortex bound states we find that N~ is one
plus the result for a vortex, as expected.

The fermionic number for vortices with negative
n as well as for antifermion-vortex bound states
can easily be obtained by charge conjugation of the
results found for positive n. In a compact notation

N~(n-quantum vortex) = —,
'

I sgn(») —n] . (4.21)

For a fermion-vortex or antifermion-vortex bound
state, one must simply add + sgn(») to this expres-
sion.

It ls no%' cleax' that fermion Dumber conserva-
tion forbids the decay of a tmo-quantum vortex
state (n„=--,') into two vortices, each with one
Ullli of flUZ (»~ = 0). Tills decRy would be Rllowed
by the topological conservation lam and also by
energy conservation in the particular case A = e'. '~

By analogous arguments the vortex state with n= -2
must be stable.

According to the topological and fermionic num-
ber conservation laws, a vortex with 2A;+ 2 units of
flux (0 =positive integer) could decay into a two-
quantum vortex, k antifermions, and 2k one-quan-
tlllll vortices. Ill R sllIlilR1 WRy, R (2k+ 1)-quRI1-
tum vortex could decay into (2k+ 1) one-quantum
vortices and A antifermions.

The Dirac field matrix elements between vortex
states and vortex-fermion bound states can easily
be compared using the collective-coordinate ex-
pressions for the fermionic fields given by Eqs.
(4.1}-(4.3). Then, at leading order in e' and X

TheIj, the fex"IQlonlc nuIIQ)er value fox' an pg-

quantuxn vortex state is given by (4.22)
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where —,
' ~ J ~ n ——', . Qne can also easily obtain one-

fermion matrix elements at leading order:

x g„')(x x'), (4.23)

where ~nP, k) stands for a fermion-vortex scatter-
ing state, where k is the incident fermion momen. —

tum.
Taking into account expression (4.4) the matrix

element given by E(I. (4.22) can be written as

{&P
~
q (x )

~

+PE) e (a x ei ( z-( / 2 ) (()+r / 2 )

(4.24)

Here q=p —p', P is the polar angle of q, and

(4.25)

The behavior of the function f„(p)for large p de-
termines the position of the singularities of the
fermion-vortex form factor as a function of t=-q'.
This behavior is known for the particular case
l(= e' (Ref. 18):

(4.26)

Here e„p„P,are numerical coefficients. This
asymptotic expansion for f„and the large argument
behavior of the Bessel functions shows that the
fermion-vortex form factors have singularities
when t = (s i)',/s = 1,2, 3, . . . .

Finally it can be pointed out that if the fermions
are D ~.ssless, the n-quantum vortex state and the
corresponding fermion-vortex bound state become
degenerate. In this particular case, one can inter-
pret the vortex states in the presence of fermions
i/a Jackiw-Rebbi, ' that is, as a doublet of degene-
rate states with different fermionic numbers. The
fermionic numbers differ by one unit between them.
However, one can still consider the two states like
in the massive fermion case, that is, as a vortex
and a fermion-vortex state of the same mass.
Both interpretations seem plausible up to this lev-
el.

V. VORTEX LINES IN NON-ABELIAN GAUGE THEORIES

Let us consider the topological stability of vor-
tex solutions of a classical gauge theory with
symmetry group 6 and spontaneous symmetry
breaking, via a Higgs field, such that the vacuum
is invariant under a subgroup H of G. Then, in
order to have topologically stable static solutions
in two space dimensions, ((, (G/H) must have more

than one element. ' That is, there must be homo-
topically inequivalent mappings from the quotient
group G/H to the circumference at p=~ in ordinary
space. In the Abelian case" G= U(1), H= ((), then
(/, {G/H) = ),,(U(1))= Z (the set of integers). There
is, in this case, an infinite number of topologically
stable vortices labeled by the integer n. For n =0
we have the vacuum.

By analogy with the Abelian case, for a non-
Abelian gauge field coupled to a Higgs field in the
adjoint representation, we suppose that the spon-
taneous symmetry breaking is maximum. By
maximum we understand that the vacuum is in-
variant only under the unit matrix in the adjoint
representation. Then it will be invariant only un-
der elements of G that are mapped onto the unit
matrix of the adjoint representation. If G = SU(n)
there are only» elements with such a property.
In the fundamental representation they have the
following form:

e2 ft/ 71 f~
—

O (5.1)

(5.2)

and Q, y, A„stand for isovector fields.
In order to get the maximum symmetry break. -

ing, the parameters of the Lagrangian must veri-
fy

(5.4)

which also ensures that the energy is bounded from
below. Qne finds for the minimum energy classical
configuration

where I„stands for the» & n unit matrix. In this
case )(((SU()(}/H) = Z„and we have (n —1) topologi-
cally stable vortex solutions, besides the vacuum
solution. '

In SU(2) gauge theory a triplet of Higgs fields is
clearly not sufficient to get the maximum symmetry
breaking. If one introduces two Higgs fields, say
P and X,

4 such that for the vacuum solution Po is
not parallel to X, in isospace, we have )(,(SU(2)/H}
=Z, In other words, we have one topologically
stable vortex solution. '

We consider the more general SU(2)-invariant
and renormalizable (in four-dimensional space-
time) Lagrangian density
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0, 'xo= o (5.5)

(5.6)

ymptotic solutions

H(P} = g Pp&, (pp)[1+ o(e ")],
f( p) = p„[1+O (e ' ')],
g( p} = X.[1+O(e-" ')],

(5.11)

(cosrP

4(P) = f(p)»ne»
(-8 P)

X(p}=g(p) cosy

(5.7)

ep

The boundary conditions are

(5.8)

Let us now consider the vortex solution. The
appropriate ansatz for the angular and isospin
dependence of the fields is

where p,
=—e(P, '+ X,')' ' is the vector-boson mass.

The preceding relations allow us to make a quali-
tative picture of the field behavior: the gauge field
tensor decreasing with a characteristic length
p ' and the Higgs fields (It) and X increasing with
characteristic lengths (p, )

' and (p„)' from zero
at the origin to their vacuum values at infinity, re-
spectively.

Let us now consider fermions coupled to the bo-
sonic fields considered up to now. For simplicity,
we consider isospin--, ' fermions. We couple them
to the bosonic fields through the Lagrangian den-
sity

2 (x) =$(iP' —',ierP-, —m)g(x)
f(")=@., g(")=x., H(")=0, H(o)=1.

+07.4(g, A. +g, x ), (5.12)
The angular and isospin dependence given by Eqs.

(5.7} can be obtained by imposing to the Higgs
fields at large distances the following condition:

1 8 O3+—', c(v) =o,i 8y 2'
where

where 7, are Pauli matrices acting on the isospin
indices of the Dirac field.

As in the Abelian case, the c-number Dirac equa-
tion in the external potential given by the bosonic
fields of the vortex is related to the small-coupling
regime of the Dirac quantum field. Thus, we look
for the solutions of

C (V) = a P &.4.(P)
Pgaa [i@ —~~ —ki«. &.+ (g,@.+g,X.)r.]4(x) = o,

4(p) I...
in analogy with the monopole-type solutions. "
Also, the ansatz for the gauge fields follows from
the requirement

D@ I.—= Dx I.—= 0.
The equations of motion of the fields are separa-

ted by the ansatz given by Eqs. (5.7), (5.8). After
some algebra one gets

d2f 1 df H(H —2)—
2 +——+ ~ f+ p, 'f x,f' rfg''=0-, -

dp' p dp p'

d2g 1 dg H(H —2)
dp p dp p

~ + — + ~ g'+ p2'g'-x, g' rgf'=0~-
(5.9)

d JI 1 dH
dp' p dp

—e'H(f'+ g') =0.

From the preceding equation we get that a regu-
lar solution must verify

(5.13}
where the g„P„andX correspond to the classi-
cal vortex solution.

Because the non-Abelian vortex solution is in-
variant under space-plus-isospin rotations and
not under either separately, the conserved angular
momentum is given by

1 8
K= —. + -'0 + -'7. .2 g 2 3 (5.14)

Here o,/2 and r, /2 are the spin and isospin gen
erators of rotations around the z axis (ordinary
space) and 3 axis (isospace), respectively. As in the
monopole field, "'"the angular momentum consists
of the sum of an orbital part plus a spin part plus
an isospin part.

We seek for stationary solutions of the Dirac
equation in the field of the non-Abelian vortex [Eq.
(5.13})which are eigenstates of angular momen-
tum. That is

p (p}e
f(P) -

P g(P) PH(P) —-1 P'- (5.10)

for small distances. That is, both Higgs fields
have simple zeros at the center of the vortex line.
As like in the Abelian case, we can write the as-

v, (p)

4.'( p)

W. (p)e'"

(5.15)
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Here (1.2) are the isospin indices whereas + are
the spin ones. K, the eigenvalue of the operator
(5.14), can take any integer value. The spin —,

'
coupled with the isospin —,

' and the orbital angular
momentum have produced an integer total angular
momentum. The m~ular momentum stored in the
non-Abelian vortex field configuration, in the pre-
sence of an isospinor particle, contributes to K."

The Dirac equation for the radial wave functions
can be written as

d ff ——,
' - h( p)/2

= i(ur+m)P', (P) ~ &I'(P)P', (P), (5.16)

d Z+ —,'+ h( p)/2
P2 P

&(P) =g.g(p)+ is,f(p)

h(p)=-1-H(p).

I et us consider the case when the Higgs fields
are decoupled, i.e., g, =g, =o. In this situation,
we see that for large distances (Pp» 1) the Dirac
radial equations [Eqs. (5.16), (5.17)] are like free
ones but with the centrifugal terms modified by
the replacement K-K —T,. In our case T, = ~»
but it is clear that in general the fermion-vortex
interaction at large distances will consist of a
simple modification of the centrifugal barrier ac-
cording to the isospin of the fermion.

This long-range interaction can be interpreted,
as in the Abelian case, as a consequence of the
minimal gauge coupling of the azimuthal canonical
momentum. This long-range interaction will
clearly be present between any particle of nonzero
isospin and the non-Abelian vortex line.

The study of the radial Dirac equations (5.16),
(5.17) is greatly simplified for g, =g, =0. In this
case the isospin is a good quantum number and the
foux -equation system decouples into two systems
of two equations. Each of them can be obtained
from the Abelian radial Dirac equation (2.7) by
the following replacements:

(5.18)

V/e conclude that there are no nox malizable wave
functions for Q' & 0, nor for P' = 0 because the condi-
tions for the existence of bound states at the thresh-
old [Eq. (2.22)] are not satisfied after the replace-
ments (5.18).

It must be pointed out, that fermion-vortex bound
states at the threshold could be present if the fer-
mion isospin was higher than one. This will in-
crease the strength of the long-range fermion-vor-
tex interaction.

Note added in Proof In a .recent paper, E. B.
Bogomol'nyi hasshown [Yad. Fiz. 24, 861 (1976)
(Sov. J. Nucl. Phys. 24, 449 (1977))] that Abelian
vortices with flux n, n ~» 2 are unstable for p.,& p
(in the absence of fermions). This could indicate a
breaking of fermion number conservation if tliis
instability survives when fermlons are coupled to
the vortices.
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APPENDIX

It can be shown that the radial functions or. the
vortex solution [Eqs. (2.2) and (2.8)] have the fol-
lowing small-distance behavior:

82
56.(p)=N -dl () p)'

(Al)

For long distances we find

&„(p) = &„(e'/&)gpss, (pp)[I+0(e "')],
E„(p)= 1+0(e "~').
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