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A theory isoutlined in which n scalar field interact in a way that is invariant under all real, nonsingular
local linear transformations of the mesons among themselves. The energy of the system is positive. The
symmetry spontaneously breaks down to a compact subgroup of GL(n,R) and the gauge mesons of the
broken symmetry become massive. Their longitudinal components are supplied by the derivatives of an
internal metric tensor with which no physical particles are associated.

This paper is about a theory that possesses max-
imal internal symmetry. It is a gauge theory of
n real fields ¢, whose Lagrangian is invariant un-
der the local action

1(x) =a,,(x)$,(x) (1)

of the general linear group of all real, nonsingular
nxn matrices, GL(n,R). Such a theory is more
symmetrical and less arbitrary than one whose in-
ternal-symmetry group is a compact subgroup of
GL(n,R), as is usually assumed.'+?

In what follows a suitable Lagrangian will be pro-
posed and the equations of motion and conserved
currents that follow from it will be derived. It
will be shown that the Hamiltonian is non-negative.

The theory exhibits an interesting kind of Higgs
mechanism. The vacuum cannot be symmetric and
the symmetry group GL(z, R) breaks down spon-
taneously to a subgroup that is similar to SO(n).
The gauge mesons associated with the noncompact
part of GL(z,R) become massive. A symmetric
internal metric tensor supplies the needed longi-
tudinal components.

In order to make objects that are invariant under
the general linear transformation (1), it is nec-
essary to introduce a metric tensor g”(x) that is
symmetric and positive and that transforms as

g0 =[a"' )] 8,0[a )], - 2
In matrix notation Eqgs. (1) and (2) become’

¢’(x)=alx)$(x) ®)
and

g§'l)=a"'T(x)glx)a(x), 4)

where the T means transpose. Evidently the form
¢T(x)g(x)p(x) is invariant. The tensor g, plays
a somewhat similar role to that of the metric ten-
sor in general relativity and contributes to the field
equations terms not present when the gauge group
is compact.

A suitable covariant derivative for ¢ is

Plx);, = o), , - A, @) o), (5)

where the subscript comma mu means 8/8x* and the
nxn matrix of Yang-Mills fields A (x) transforms
as

Alx)=alx)A, (x)a (x) +a(x), ,a™ (x). (6)

This transformation law for the gauge fields A,
ensures that the covariant derivative d);u trans-
forms like ¢,

[p(x);,]"=alx)ox);,. M
The curvature tensor F ,(x) is

F,)=A,0),-A,®),, +A,&),AK)] (8)
and transforms as

F/,(x) =alx)F,,(x)a™ (x). (9)

A suitable covariant derivative of the metric ten-
sor g is

gx),, =glx),, +g)A, (x) + AT (x)g(x), (10)
which implies that g;  transforms like g,
[gt);,]'=a" T (x)g(x); 0™ (x). (11)

Similarly the covariant derivatives of ¢, F™,
and g'¥ are

o =9 A, B, (12)
F{ =FT +[FT, A ], (13)
giL=glLrg A, tALg Y. (14)

The Lagrange density
L=-(2e)?tr(FI, gF"*g™)
+(2/)?tr(g;, & g g ™) + 30], g ' ¥
-3V(¢Tg9) (15)

is invariant under the gauge transformation (1).
The numbers e and f are independent coupling
constants. The variational equations of its inte-
gral over space-time are
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$in g g, HH V90, (16)
Fur=[Fw g g, | +edpinopTe - (e2/f)g g,
. . R 17
git=g, g'gu+(f?/2%)g[g ' FT g, F*"] an
+figpiudl g —figoV eTg, (18)
where V'’ is the derivative of V. The u=0 com-
ponent of the equation for F*" isa constraint, which
may be called Gauss’s law.

In the usual way, the antisymmetry of F*” im-
plies that the matrix of »® currents

JH= [Fuuig-lg;v—Av] +ez¢;“¢>rg
- (e?/fP)g 'gi® (19)
is conserved, J# =0.
By using Gauss’s law, one may write the com-

ponent T° of the canonical stress-energy tensor
as the sum of

H=(2e)?tr(FT gF, g+ () tr(g; , 87g;,8™")

+307,80;,+ 3V (20)
and the total divergence
D=e?tr(g"'FI,gA%) . (21)

Thus apart from surface terms, the Hamiltonian
may be taken as the integral of the density H.
Now H is non-negative as long as g is symmetric
and of non-negative signature. [The latter con-
straint may be enforced by the device of writing
g=hTh. The field equations for k, which may be
chosen to be symmetric, are those that result from
the substitution of hTh for g in (18).] The energy
is therefore non-negative.

The metric tensor g,; participates in an inter-
esting variation of the Higgs mechanism.® If the
potential V assumes its minimum value at ¢Tg¢
=0, then in the lowest approximation the (super-)
vacuum expectation values of the fields ¢ and A “
vanish, while that of the metric g is a positive
symmetric matrix g,. By expanding the fields

about these vacuum values with

g=(1=-egy(1-¢), (22)

one may identify the quadratic part of the Lagran-
gian (15) as

L,=—(2e)*[tr(E, E*)+ tr(GﬁvG““)]
+f (W W) + 30T, g0

-3V"(0)¢7g,9, (23)
where E , is the curl W, ,—-W,  of the symmetric
combination

Wu = %[gollz(Au - €:u)g(’.l/2
80 HAL - €108, 7] (24)

while G, is the curl C, - C, , of the antisym-
metric combination

C,=2(g0 /"A, 8, /" - gy PAL g 1®). (25)

The mass spectrum of physical particles is clear
from the structure of L,. There are n(n+1)/2 vec-
tor mesons W, of mass M=V2(e/f). The longitud-
inal components of W, are contributed by the
n(+1)/2 components of the symmetric metric
tensor g. Thereare n(rz— 1)/2 massless vector mes-
ons C . There are n scalar mesons of mass
w=[V’(0)]*/2. There are no physical particles
corresponding to the metric g.

If the potential V assumes its minimum value
at Tg¢ >0, then the usual Higgs mechanism comes
into play as well. The particle spectrum becomes
sn(n+3) -1 massive vector mesons, $n(n-3)+1
massless vector mesons, and 1 massive scalar
meson. Thus for n=2 there are no massless par-
ticles, while for n=3 only one gauge meson is
massless.

It is perhaps worth emphasizing that the gauge
mesons W, are massive even in the absence of the
scalar mesons ¢. They generate the noncompact
part of GL(n,R), while the gauge mesons C gun-
erate the compact subgroup SO(n).
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