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%e reexamine the problem of particle decay within the Hamiltonian formalism. By deforming contours of
integration, the survival amphtude is expressed as a sum of purely exponential contributions arising from the
simple poles of the resolvent on the second sheet plus a background integral along a complex contour I'
running below the location of the poles. %e observe that the time dependence of the survival amplitude in
the small-time region is strongly correlated to the asymptotic behavior of the energy spectrum of the system;
we compute the small-time behavior of the survival amplitude for a wide variety of asymptotic behaviors. In
the special case of the Lee model, using a formal procedure of analytic continuation„we show that a
complete set of complex energy eigenvectors of the Hamiltonian can be associated with the poles of the
resolvent and the background contour I . These poles and points along I correspond to the discrete and the
continuum states, respectively. In this context, each unstable particle is associated with a we11-defined
object, which is a discrete generalized eigenstate of the Hamiltonian having a complex eigenvalue, with its
real and negative imaginary parts being the mass and half-width of the particle, respectively. Finally, we
briefly discuss the analytic continuation of the scattering amphtude within this generalized scheme, and note
the appearance of "redundant poles which do not correspond to discrete solutions of the modified eigenvalue
problem.

The dynamical equations of quantum theory allow
one to calculate the state of a. system at any time,
given the initial state of the system. In particulax',
every state of a system whose Hamiltonian H has a,

purely continuous spectrum undergoes a substan-
tial change in the course of time, On the other
hand, if there exist discrete eigenstates of the
Hamiltonian, these would simply change theix'

phase in the course of time.
In many eases of interest there are "approximate

eigenstates" of the Hamiltonian, which are suitable
normalizable superpositions of the continuum ei-
genvectors. These change in such a fashion that
their overlap with the initial state has an exponen-
tiRl dependence on time to R very good Rppx'ox1IDR-

tion over R large range of time values. Such states
Rx'8 QRturRl models for decRylng stRtes repx'8-
senting unstable particles or, moxe generally, un-
stable systems. Since the Hamiltonian is taken to
be a self-adjoint operator, there can be no eigen-
state which has .a strict complex exponential de-
pendence on time. The notion of a "decaying state"
which has a discrete complex energy is therefore
an approximation within the scheme of eonvention-
Rl quRntum mechanics.

The quest1on naturally ar1ses whet ex it 1s pos-
sible to extend the framework of quantum theory so
that an unstaMe pa, rtlcle cRQ be def1ned 1Q R px'eclse
manner. If this is possibl, we may be able to see
in what sense an unstable state, or more generally
states with complex energies, may be associated
with the physical system and its Hamiltonian.

Aftex all, we do compute lifetimes within the
framework of the usual quantum theory.

%'6 already have. some clues as to the direction
in which a generalization ean be ea.rried out. Using
the standard representation of the unitary evolution
U(t) =e-'0' as the inverse Laplace transform of the
resolvent, 8 =(H- zI) ', the survival amplitude of
the unstable state as a function of time can be ex-
pressed as a contour integral encircling the energy
spectrum, the discontinuity of the integrand being
associated with the spectral energy density of the
unstable state. Under quite general conditions,
this expression can be estimated for various time
domains by deforming the integration contour,
making use of the assumed analytic properties of
'the integrand. Fox' R domain of time va.lues the
amplitude ls dominated by the contx'lbutlon coming
from (one or more) poles in the integrand of the
contour integral. These poles are therefore close-
ly associated with the notion of the unstable states.
We may expect that such RD analytic continuation,
if it can be defined for the state space itself,
should give us the requix'ed generalization. %'6

shall see that this is indeed the case.
In the usual framework, on quite general

grounds, it can be shown that a strictly exponential
decay is not possible. Both at very short and at
vex'y long times, the decay shouM depart from the
exponential. However, model calculations indicate
that detection of such deviations, if possible at all,
requires measurements to be carried out under
extremely stringent conditions. ' Although to our
kDowledge th1S nonexpoDentlal behRvlor has Qot yet
been vex'1f led expex'1mentRlly, since its deduct1on
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is based on such simple and general considera-
tions, it may be accepted as valid. ' ' On the other
hand, Prigogine and his collaborators' have criti-
cized this conclusion and argued that an absolute
dependence on the "time lived" by the unstable
state is tantamount to not defining an unstable par-
ticle as an autonomous entity. Working in the con-
text of the density-matrix formalism of quantum
statistical mechanics, they have urged the consid-
eration of new objects' which could have purely ex-
ponential dependence on time, despite the fact that
such objects would be outside the framework of
standard quantum mechanics. In this paper, we

give an explicit construction of such generalized
states within the framework of an extended Hamil-
tonian formalism. The rigorous mathematical
treatment of this theory will appear in a separate
paper. '

Even apart from the question of unstable states,
the general theory of analytic continuation of scat-
tering amplitudes and its relation to the theory of
generalized states is of intrinsic interest. Stated
quite simply: Given a scattering amplitude com-
puted within the framework of a standard quantum
theory as the boundary value of an analytic func-
tion, and given an analytic continuation of the am-
plitude which rearranges the branch cuts of the
amplitude from the real to a complex contour, does
there exist a generalized theory from which the
analytically continued amplitude can be computed
directly along with its complex branch cuts'? This
question is answered affirmatively in this paper.

The purpose of this paper is twofold:
1. It deals with the necessary generalization of

quantum theory to associate complex energy eigen-
states to a Hamiltonian which is self-adjoint in a
Hilbert space. Under quite general conditions, the
scheme can be related to the Lee model (Fried-
richs-Lee model). '" The generalized spectra and

the corresponding complete sets of generalized
states of the model associated with arbitrary con-
tours are worked out. It is shown that under suit-
able conditions one or more discrete unstable
states are necessary for completing the set of gen-
eralized eigenstates of the Hamiltonian associated
with a given complex contour. The time depend-
ence of these states is obtained by standard analyt-
ic continuation arguments.

2. We use the time dependence so computed to
make better estimates for the small-time behavior
of the survival amplitude. It is further shown that
in the evaluation of the time dependence of the sur-
vival amplitude only unstable states contribute,
whereas there are contributions to the scattering
amplitude from a set of "redundant poles", which
are not associated with states. These poles origi-
nate from the poles of the form factors. The no-

tions of phase equivalence and redundant poles of
the S matrix, known previously for real energy
poles, "'"are here extended to complex poles.

On the basis of classical probability theory, we
would expect that an autonomous unstable particle
would exhibit a purely exponential behavior. Re-
peated observation, or any other method of de-
stroying phase information, would lead to such a
behavior. This point of view has been investigated
extensively by various authors. "

A related approach to the treatment of reso-
nances and unstable states is based on the method
of dilatation analytic perturbations for N-particle
systems"" which, in the special case of the Lee
model, has been studied by Weder. " 'The differ-
ence between this method and ours is the following.
In the treatment based on dilatation analyticity,
one considers a family of Hamiltonians H(v)
= U(v)HU(v) ', where H is the Hamiltonian of the
system and U(v}, v real, is a unitary representa. -
tion of the group of dilatations. Under suitable
conditions on the potential, H(v) can be analytical-
ly continued to a strip {v

~ ~

Imv
~

& o.j, for some o.
& 0, and Ht(v) =H(v ). If Imv& 0, H(v) is a non-
self-adjoint operator whose continuous spectrum
is along complex contours in the lower half-plane
originating at the (real and complex) thresholds,
and resonant states appear as Hilbert space eigen-
vectors of H(v) corresponding to discrete eigen-
values which are second-sheet poles of the analyt-
ic continuation of a certain family of matrix ele-
ments of the resolvent. In other words, in this
approach, resonant states are associated to ProPer
eigenvectors of an analytically continued non self-
adj oint Hamiltonian. On the other hand, in our
treatment, these states are described by discrete
generalized eigenvectors of the original Hamilton-
ian (compare also Ref. 8). The corresponding
complex eigenvalues Eo iTJ2 (Eo th-e resonant en-
ergy, I', the resonance width} are of course the
same, and in both cases one obtains the correct
decomposition of the survival amplitude as a sum
of exponential contributions plus a background in-
tegral [compare Eq. (4.17) and Ref. 17, p. 157].
Our method bears a closer connection to the ap-
proach of Baumgartel, "who also associates res-
onance to generalized eigenvectors of the Hamil-
tonian.

Finally, we would like to remark that in the con-
text of Lee-Friedrichs'" or Wigner-Weisskopf"
model Hamiltonians, an exact exponential decay at
all times for the survival amplitude can be ob-
tained only in the so-called weak-coupling (or Van
Hove) limit, corresponding to vanishing coupling
constant g-0 and rescaled time r=g't (Ref. 21)
(or by essentially equivalent limiting procedures
leading to a singular Hamiltonian""). This result
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is a particular case of a more general theory of
quantum Markovian master equations. " Z or

II. THE DYNAMICS OF DECAY

Let H denote the Hilbert space of states of a
quantum-mechanical system with self-adjoint
Hamiltonian H. For simplicity, we assume its
spectrum to be Lebesque and nondegenerate. The
temporal evolution of the states of the system is
described by the family of unitary operators

FIG. 1. The contour C.
- jgg 1 -iztU(t) = e-'"' =—. dze-"'

H- zI' (2.1}

where the integration is along a contour to be
specified below. If

I
M) is an a.rbitra, ry normalized

state, its spectral energy density is defined by

t (~) =—&»IF. IM} =&»I ~)(~
I
M} = I(~ I

») I', (2 2}

where F~ is the spectral family of projections of
the Hamiltonian

tion P(z} is analytic in the plane cut along the posi-
tive real axis, it is f ree of zeros there, and its
discontinuity across the cut is given by

Lim[P (,".+ te) —l3 (X —te)] = —2~zp(X) . (2.8)

Hereafter we will drop the limit symbol with the
understanding that "sic" will a,lways designate the
two appropriate sides of a cut and e -0, . The in-
verse function

1 dF, = ~
I

~)(~
I
d~ (2.3)

The function p(X) is non-negative, integrable to
unity, and vanishes outside the spectrum of H. -'4

Since the latter is purely continuous,
I M) is non-

stationary, and its survival an, plitude is given by

a(t) =(MI e '"'I M) = e ' 'd(M
I F„IM)

e-'"'p(X)d1, (2.4)

where the integration extends over the spectrum of
H which may be taken to be 0& X& ~ without loss of
generality. (Note that if one so chooses, without
much effort one can also allow for the presence of
a finite number of point eigenvalues cor responding
to discrete eigenstates of the Hamiltonian. ) The
survival probability is

(2.9}

! y(z) —z+;n
I

= const x z6,
)g} ao

(2.10)

with 6 & 0, then it ha, s the integral representation

is analytic and free of zeros in the cut plane by
virtue of the non-negativity of p(X).

So far, p(X) can be any normalized non-negative
function, as no restriction has been placed on the
sta.te

I
M). But in order for

I
M) to represent a

resonant state, one usually requires the analytic
continuation of the function y(z) through the cut in-
to the lower right quadrant to have a zero near the
real axis. If we assume y(z) to have the asymptot-
is behavior

Q(t) =
I
e(t)

I

2 = e '"'p(x)dx
0

y(z) =-z —m+—
A —z

with

(2.11)

As long as H is semibounded, it is easy to show
that q(t) cannot have a strict exponential depen-
dence. For a systematic study of thi. s question,
see for instance Refs. 1, 2, and 4.

Making use of the resolvent It(z) =(H —zI) ', we
define

I j(x) I"=—.[y(x+fe) —y(x —te)] .
1

(-' 12)

On the other hand, if 0& 6&1, then y(z) satisfies a
once- substracted dispersion rela, tion,

P(z) =-,»!II(z)
I
M) =- "p(~)dt y(z} =z —E, +y(E, )

Then the survival amplitude is given by
(z - E) "

I j(&) I'd&ir, (q z}(~ E,)
' (2.13)

a(t) =— e "'P(z)dz,
C

(2.7)

where the contour C is shown in Fig. 1. The func-

Notice that a.s long as 5 &1, from (2.7) and (2.9) by
deforming the contour C, one can easily check that
a(0) =1.
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f(E) (El a, IM). (2.14)

This same survival amplitude is obtained in the
Lee model with a discrete state

I
M) and a contin-

uum of states
I E), 0 & E & ~, with a "free Hamil-

tonian" H, and an "interaction Hamiltonian" Hz,
which couples this discrete state to the continuum
by a perturbation of strength f(E). The nondecay
amplitude for the state

I
M) is expressed by the

contour integral (2.7), with the function

p (2.20)

where

1 . , dn
gp g &yy / p wltll Qp

Rp) 0

and

(2.20a)

The normalized solution, when it exists, is of the
form

Therefore we may consider this model as a gener-
al example of resonant amplitudes.

The model may be stated precisely as follows.
The Hilbert space of the system is defined as the
set of vectors of the form 4 =(«tz)), where t' is a
complex number and Q(E} is a complex-valued
(measurable) function defined in 0& E & ~, such
that

Q E v EdE&~, (2.15)
0

where o(E) is a positive (measurable) phase-space
factor to be defined below. The inner product is
given by

with

and

g*(x)o')'(x)
a(X+ i&)

y„(E)=a-"'() )6()( E)

The continuum solutions have the form

(2.20b)

(2.21)

(2.21a)

(4
I
c ') =g*g'+ (E}Q'(E)a(E)dE . (2.16)

The Hamiltonian H is defined by

"( )a*( )r( ) ~ (0 „)(221b)
(X E i+)ae(X i&+)

'

So

a=a+a =o+ (E) Eb(E —E') (2.17) They satisfy the orthonormality relations

((,('+j (y, (F)( rr(E)sz (', =
0

(2.22 a)

(f) E' E(f) E (2.17a) &,*|' + 0;(E)0,(E)n(E)dE =o,
0

(2.22b)

I
y EP

8 (z' ()z(')v(z')dz')

g(E)t. (2.17b)

f„*K,+ 0;(E)e.(E)o(E)dE = o,
0

)~os„,+ p„*(E)(t)„,(E)o(E)dE =6(X —X'),
0

(2.22c)

(2.22d)

It is convenient to define the function

" Ig(E) I'o(E)dE
E —z

(2.18)

Here n(z) corresponds to the quantity y(z) in (2.9)
with the asymptotic behavior of (2.10) assumed
here. If the integral (2.18) does not converge, one
may express n(z) in terms of the once-subtracted
dispersion relation as given in (2.13), so as to ad-
mit the asymptotic behavior with 0&5&1.

If n(z) =0 has a real solution at z = )(., [which is
negative, provided f(E}does not vanish for 0 &E
& ~], a discrete eigenvector exists for the eigen-
value equation

(2.19}

Otherwise there are no normalizable eigenvectors.

which may be rewritten as

(2.22a)

(222b}

(2.22c)

(2.22d)

((,)((. +J" (,)((,lax ), =

which has the componentwise expressions

(2.23)

(2.23a)

Moreover, these solutions are complete in the
sense that
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y (E')g*+ y„(E')g*d~=0,
0

(,(()'),+f (((,)'),a~ =o,
0

(2.23b)

(2.23c)

( ()) )('('&)+f (.(& )(;(&')&' ()(& =)l)~''-(&).

(2.231)

These relations can be easily verified by contour
integrations. The actual calculation is a special
case of the more general treatment given in Appen-
dix A. The essential step in the calculation is to
convert the integration with respect to z (or &)

from 0 to ~ into a contour integration in the com-
plex plane making use of the relation

1 "F(x')
y(z) =z —m+—,dx'.

g X ~ 8
(3.3)

For the Lee model,

tation for the survival amplitude has a dominant
contribution of the form e '@0 e ro~~~ together ~jth
a "background integral". The latter is important
for very large times (in this domain it is responsi-
ble for the t ' ' behavior) and for very small times.

We now proceed to look more closely at the res-
onance behavior of the survival amplitude using
contour deformation and the analytic continuation
of the discontinuity function. For definiteness, we
consider explicitly the case where y(z) satisfies a
dispersion relation of the form

a(z + ie) —o((z —iz) = 2)Ii
~
g(z)

~

'cr(z) . (2.24) E(x) = )I
i g(x)

i
'o(x) . (3.4)

For this system, in view of the completeness rela-
tion, we expect no other solutions. If the parame-
ters of the theory are such that the equation o((X)
=0 has no solution, then there is no discrete solu-
tion Po: The continuum eigenvectors form a com-
plete set by themselves.

III. THE SURVIVAL AMPLITUDE

The survival probability of the "unstable parti-
cle" was defined as the squared absolute value of
the survival amplitude

We assume that F(x) is analytically continuable and
denote the unique continuation by E(z).

To explicitly "expose" the zero (or zeros) of
y(z) as its "second sheet", say at z =X„were-
place the line integral in (3.3) along I'I for x' from
0 to ~, by contour integrals on the second sheet. "
In particulaI, as shown in Fig. 2, the relevant con-
tours are related as follows:

(3 5)

So for any z in the region bounded by I",and I' on
the first sheet of y (z),

e-'"dz
a(t) =—

2)I o y(z)
"z- z'

~ g(E) I'c (E)dE
( y(E+ie) )' (3.l)

y(z) =yr(z) -=z —m+—,dz'1 E(z ')
z

1 F(z')„,
F ~Z —8 (3 6)

This is a general expression, but if me so wish,
we can specialize it to the model considered in the
preceding section. For very long times, the be-
havior of a(t) depends on the small-energy behav-
ior of the phase-space factor o(E), provided the
form factor g(E) behaves smoothly for small E.
fn this case, since o(E) ~E't' for small E, by us-
ing Et as the integration variable. one can easily
shoe& that for P-~,

To arrive at the right-hand side expression, we
have assumed the asymptotic behavior of E(z) to be
such that

—,"d"=0. (3.7)
c z' —z

The function yr(z) is defined by the integrals on the

a(t) - const x t 't ' . (3 2)

The behavior for small t is model dependent: %'e

shall discuss this in detail later on.
In most cases of interest, there is a large do-

main of values of t for which the behavior of a(t)
is dominated by a complex exponential. This cor-
responds to a resonance behavior of the amplitude
and implies that the analytic continuation of the
integrand through the cut into the second sheet en-
collll'tel's a sllllple pole at z =E() —tI o/2 = Xo with E()
» I', &0. Under this condition, the above represen-

FIG. 2. The contours I'&, 1", C„,and s. s; a.n:f S~ de-
note the locations of I'(g) singularities.
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right-hand side of (3.6).
Next replace the S integration by integrals en-

closing the individual singularities S„S„.. . of
F(z) (see Fig. 2). This gives

Z or

1 F(z ')
y (z)=-z —m+—,dz'

7T r Z Z

lp F(z ')
f7Tl CZ Z

(3.8)

0

Le r

dz'=-2iF(z)+ —,dz'. (3.10)
7T S~Z —Z 7T S Z —Z

From (3.9) and (3.10) we get the expected result:

1 F(z ')dz ' 1 F(z '}

dz'=2iF(z).1 F(z ')
7T r Z Z

1

Next consider the survival amplitude-

e-kZt
a(t) =— dz .

o r(z)

Denote

(3.11)

(3.12)

z
ar(t) =— dz,

2e o y(z)
(3.i3)

where C, designates the clockwise contour enclos-
ing the tth singularity of F(z). Denote the domain
bounded by I', and I' on the second sheet of y(z) by

Notice that yr(z) is well defined in this domain.
So yr(z) now provides a unique analytic continua-
tion of y (z), originally defined by (3.3), into this
second- sheet domain.

It is instructive to demonstrate that within the
domain n. , the second-sheet function of y (z) de-
fined by z r(z) and its corresponding first-sheet
function have the correct discontinuity. In par-
ticular,

yll(z) —yl(z) = yr (z) —y(z) = 2iF (z) .
To see this, we make use of the relation (3.5). It
gives

F(z'), 1 F(z') dz' 1 F(z')
Z ~ Z 7T r Z ~ Z 7T Ss Z ~ Z

1

(3.9)

Here S is identical to the original S contour illus-
trated in Fig. 2. The prime indicates that the con-
tour now encloses the pole at z'=z, which occurs
in the domain ~. The first sheet function y, is
identical to that obtained by moving z into domain

b, from above, with S appropriately deformed to
avoid the crossing of the pole at z'=z. Thus there
is the relation

C r
FIG. 3. The curves I'& and I' and their corresponding

contours C and Cz.

+ (terms due to cuts in F) . (3.i4)

Technically speaking, the last term may also in-
clude the essential singularities. We will not ex-
plicitly mention them below. Notice that poles in
yr(z), do not give rise to poles in the survival am-
Plitude. On the other hand, cuts in the analytic
continuation of F(z) do give rise to extra terms on
the right-hand side of (3.14). We shall also ignore
these cuts in the discussion below.

Although up to this point we have only treated the
case where y(z) satisfies the unsubtracted disper-
sion relation, Eq. (3.14) is valid also for the case
where y(z) satisfies the once-subtracted dispersion
relation. For this case, in analogy to (3.7), one
assumes

F(z') (3.15)
(z'- z)(z' —Es}

» (3.14), each term in the summation may be
associated with an unstable particle, which behaves
as if it had the complex energy X, =E,—ii', /2,
which is the complex zero of y(z). In the context of
the Lee model, since g(z) is a measure of the
coupling strength, as ~F(z)

~

-0, the coupling tends
to zero, E,- rn, and I', -0. In this limit, the only
zero of y(z) is z =m and it is easily identified with
the discrete state which becomes unstable as the
coupling is turned on.

On the other hand, the poles of the form factor
are independent of the coupling strength and have
a geometric significance. Although these poles are
absent in the decay amplitude, they are present in
the scattering amplitude and are generalizations of
"redundant" poles known in scattering theory for
some time.""In the latter part of this paper, we

where the contour Cr is shown in Fig. 3. Deform-
ing the line integral from T', to I we arrive at the
expression

e- i)to t
a(t) =ar(t)+

&r ~o
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~-izt
a(t) =— dz,

2v cy(z)
(3.16)

will discuss these poles and contrast them with the
relevant "dynamical" poles coming from the zeros
of the denominator function y(z).

Now we turn to the small-time behavior of the
survival amplitude. Here we need to specify the
asymptotic behavior of y(z) more explicitly. Start-
ing with the integral representation

0

/((

C'

C

and assuming the asymptotic behavior

~y(z) —(z —m)
~

—const x z', -1 & 6 &1

we proceed to consider first the case —1(6 & 1.
For sufficiently large ~z ~, we assume that the

function y(z) has the asymptotic expansion

CO z6
y, (z) =y(z) = z —e( —q, g c, ,e

"(' ", (3.1 t)
iaO

z'
z —in» ~c, ,

e" " -cz
'(z —&2() ' (3.18)

Divide C into C, plus C~ as shown in Fig. 4 and
rewrite

i 1 1
a(t) =— — e "'dz

2(( c y(z) y, (z)
~

~-iz t+- dz.
2(( c y, (z)

(3.19)

The first term on the right-hand side can be ex-
panded in powers of t in the form b, +ib, f. +O(t'),
with 5y real. On the other hand, the second inte-
gral can give rise to a term with a fractional
power of t for small t. We now proceed to look at
this in detail.

where q2=sgn (6). The phase factors ensure the
reality of y(z) along the negative z axis on the phy-
sical sheet. The factor —g6 is introduced so that
the contribution of the l =0 term to Imy(z) along the
cut is positive-definite. Also, we chose L to be
sufficiently large so that for

~

z
~

&I.,

FIG. 5. Deformation of the contour C into contours
C„C',and C„.

Denote

Z
~-ized

a(t) =— dz
2(( c y, (z)

=g ~-i zt
dz

7T c z —m

c z'1+~6 0 g il'6+ z'
z —2&z, , (z —m)"'

(3.20}

a (t) = a, (t) + a '(t) + a „(t), (3.21)

where the right-hand side terms are contributed
by the contours C„C',and C, respectively. One
can easily check that a„(t)=0.

We state here an identity which is proved in Ap-
pendix B. For small t,

f e "'u' (- ib)"' '((r(I+ e)
(u —tb)' sin(((E —p)r(p)r(E+ 2 —p)

dent

—t' ' 'I'(1 —p+ z} ]
I+ O(t)] (3.22)

From (3.20)—(3.22), the term with the leading
fractional power of t is given by

1 ~g Qf c ~6
a'(t) =— "' ', e '" """sin(((b 1)

(u —ib)'

(3.23)

Notice that the cut of y, (z) is explicitly given. It is
associated with a branch point at z =0. We may de-
form the contour in the manner indicated in Fig. 5

and write

Since a(0) =1, we have

t

0

q c e ((f/2)(6 j)
a(t) = 1+ ' ' t'-'+ iD, tI' 2 —6

+ ~ ~ ~ (3.24)

where D, is real. For small t,

FIG. 4. The contours Cs and CL, .
2c, I sin(((6/2} I

t' '
Q(t =Ia t

I
-1 —

r(2 6)
(3.25)
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)
2c, I sin(w 5/2) I

r (1 —5)
(3.25)

1 "F(z')
y(z) =z —»&+ — —,' —dz'.

7T 0 8
(3.2 "I)

This expression for the special case of 6 = —,
' was

obtained earlier in B,ef. 1.
To conclude the discussion on this topic, we now

look at the case where 6 =-1. Here we may write

of H, we observe that a continuum of solutions of
the eigenvalue equation can be associated with the
san&e Hamiltonian form and any arbitrary eo~nPlex
contour l" beginning at 0 and ending at infinity in
the lower fourth quadrant. In order to show this,
%'e consldeI' the space of analytic functions Z which
are holomorphic in the domain AUD*, where 6 is
the domain bounded by I and the positive real line
I', and such that the integral

g +(z +)y(z)&&(z)dz

(3.23)
exists. Furthermore, we I equire these functions
to vanish fast enough as lz l

-~ inside 6, so that

with 5'». »en (3.2~) i&up»es that » lz I--
l
y(z) —(z —»& )

l

—const && z (3.29)

1 " F(z)
«(t) =— . — . e"'*'dz .

&&, y(z+ie)y(z —t&)

From (3.27), as lzj-

(3.30)

The corresponding 8urvlval amplitude 18 given by

Q* z* Q z cr z dz = (It) E 'O'E dE. 4.2
r 0

»en the space A of vectors of the form P =(~&&,&),
where t' is a complex number, &t&(z) belongs to Z,
and z is taken to run along I", is a pre-Hilbert
space. For two vectors 4 =(~&&,&) and X =(„&&,&) the
1nnel pI'oduct ls

y(z+ic) —z (t lx) =K*K+ 4*(z*)~(z)&&(z)dz . (4.3)

y(z —te) =y(z+ iz) —2iF(z) —z .

So, for 6'&0, in the small-t region we have

(3.31) Under suitable conditions on I', the completion $C'

of A can. be identified in an obvious way with the
original Hilbert space K of our system by means
of the isometry

a(t) = 1 —i C, t —C.,t'+ R(t), (3.32)

where C, &0, C, is real, and as I, approaches 0,
the remainder R(t) approaches 0 faster than t'.
Thus for small t,

Q(t) =l«lz=(1 —C,t')-'+C, 't'+. . .

"
(&& &) (eI &)

(4.4)

In the following, we will also find it convenient to
make use of the bilinear form on left vectors (X l

=('g, X(z)) and right vectors l4) =(~&&,&) defined by

= 1 —(2C, —C„')t', &x l4&) =&)r. + x(z)&(z)c(z)«. (4.5)

where 2C, —C, ') 0 (3.33) If X i.s now taken to be a complex variable also ly-
ing on I", we can define 5(X —z) by

(3.34)q(t) - -2(2C, —C, ')t .

Our consideration here is applicable to those
cases, where as lz l

—~,

&t&(z)6(X —z)dz = &t&(X) .

%'ith this understanding, the eigenvalue problem
associated with the Hamiltonian

F(z) &1/z"', with 5')0. (3.35) (H, +Hz)$ =x&(& (4 't)

For these cases, the second derivative of «(t) at t
=0 is defined. Zeno's paradox'" occurs when the
time derivative of the survival probability vanishes
at t =0. This happens whenever 6&0, including the
case 6 = -1 considered here.

can be written in the form

(4»)

(4.'tb)

IV. GENERALIZED QUANTUM MECHANICS Then the continuum solutions have the form

Despite the completeness of the set of energy ei-
genvectors for energy eigenvalues in the spectrum

(4.())
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with

g*(x*)o' (A.)
nr(X+iz)

(4.8a) (4.13b)

y, (z) =&a'"(X)5(Z z)

a' ~ '(X)g*(Z*)g(z)
(X —z+ ie)nr(i+i&) (4.8b)

Here the point ~ —iE is reached by approaching I'
from the side opposite to the domain 4. A discrete
lef t eigenvector, when it exists, is of the form

4.=(n. , X.(z)), (4.14)

Here we have introduced the function

1 F(X)
nr(z) =z —m+—

~X —z
(4.9)

g, = I/[nr'(X, )]'~' (4.14a)

(4.14b)
where F(z) = gv*( z)g( )zo( )z. If the function F(z) is
analytic in the domain n, (4.9) provides an analytic
continuation of n(z) inside the domain 6 on the
second sheet. The point z =~+i& is reached by ap-
proaching I from the domain 4. Furthermore, if
X, is any value in the complex plane cut along the
contour I' for which

(4.10)

and the condition for its existence is the vanishing
of ar(X,). This is the same condition as that for a
discrete right eigenvector.

We can now verify the orthogonality and normali-
zation relations. They are best expressed in terms
of the bilinear form specified in (4.5) in the follow-
ing manner.

then the eigenvalue equation (4.V) has a discrete
solution corresponding to the eigenvalue X, and
having the form

&t. I tl, }= &4„~t, ) =0,
(4.15)

&0= (4.11)

The completeness relation takes the form

1/[~i (y )]1/2 (4.11a) I [e.)(4, +f e,)g„[a~=z, (4.16)

@ (,) g(z)L.
x, —z ' (4.11b)

p(HO+H~) =A.p . (4.12)

The continuum solutions are of the form

0, =(n„X„(z)),
with

g(~)+ "(&)
nr(X —ie)

(4.13)

(4.13a)

provided nr(X, ) exists. There is a distinct dis-
crete solution associated with each distinct simple
root of the equation nr(X) =0.

Both P, and P„areexamples of "right eigenvec-
tors'" of the total Hamiltonian. We can correspon-
dingly obtain a set of "left eigenvectors'" which
satisfy the eigenvalue equation

where the sum stands for the collection of isolated
simple roots of nr(X) =0 in the cut plane. The ac-
tual calculation to establish the orthogonality and
completeness relations is given in Appendix A.

We note that originally the phase-space factor
o(E) and the form factor g(E) were defined only
for real values of E. We have chosen to consider
them as boundary values of analytic functions
which can be continued in the complex z plane, so
as to be able to define them along the contour I'.

The HamiltoniansH„HI used in this framework
are related to the Hamiltonians Ho, HI used in Sec.
II by a formal continuation through the isometry
(4.4). The spaces of the vectors 4' are quite dis-
tinct, but again are formally obtained by analytic
continuation of the functions from the standard sit-
uation. On the basis of this and the theory con-
stxucted in this section, we are now able to calcu-
late the analytically continued expressions for the
survival amplitude explicitly and directly within
the extended framework:
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&t)=&mle'"'~M)-=&M~e'"'~ M& IMMI&.&&&. le'""~M&+f &MI@)&+, ~e'"IM)d&

1 1f)tpt+ e fit
~ ~

~(yl
o&r (X,) v r o.r(X+ i~)or(X-ig)

(4.17)

where C~ is a clockwise contour encircling the
generalized continuous spectrum along I' as de-
picted in Fig. 6. Note that this treatment contains
an implicit assumption of the type in (3.7) regard-
ing the asymptotic behavior of F(z), which allows
us to drop the contribution of the contour at infin-
ity. If the function F(z) has no singularities in 6,
(4.17) coincides with the expression obtained ear-
lier through the deformation of the contour for the
survival amplitude for the standard case given in
(3.14).

Within this new framework, to an unstable par-
ticle js associated a new kind of state with a com-
plex value of the energy(compare Ref. 7). Des-
pite this complex energy value, every such state
contributes to the comP/ete set of states and is
"orthogonal" to the continuum of ~c I'. The wave
functions of the discrete complex energy state are
given by

(4.18)

and

(4.19)

and therefore depend on the contour I' along which
z is defined. So we see that the energy of the un-
stable particle is independent of the contour, but
its wave function does depend on the "background"
chosen. As the coupling g(X) is weakened, other
things being equal, the discrete wave function be-
comes more and more dominated by f„the con-
tribution of the discrete state which wa. s stable
when the coupling tended to vanish. Correspon-
dingly, the imaginary part of Xp also decreases
and the energy becomes "almost real".

V. SCATTERING AMPLITUDE: REDUNDANT POLES

We now proceed to calculate the scattering am-
plitude for these models. As in the usual case of
the scattering problem, we compare the states of
the actual system with a hypothetical "free" sys-
tem in defining the scattering. We work with the
"in" state of the total Hamiltonian, and find the co-

efficient of the "diverging wave" for unit "plane-
wave" amplitude. For the model we have dis-
cussed, this leads to the following expression for
the scattering amplitude:

where

)) ~g(X)
~

'o(X)
Q(A. + if)

E(X)
Q (X.+ i &t)

= e~~&") sinb(A. ), l) &= I', (5 1)

e =S(X)=2«)o)
o.(l)+is) ' (5.2)

T(x) =- F(X)

nr(A. ' (5.3)

with n „(X)given in (4.9). If Xo is a solution of
or(l)) =0, this implies the presence of a discrete
eigenstate and also a pole in the scattering ampli-
tude at A. = Xp. However, in general not every pole
in the scattering amplitude corresponds to a dis-
crete state. The lack of pole-discrete-state cor-
respondence does not show up in the generalized
theory developed in Sec. IV. This is due to the
fact that the theory there was restricted to the
case where F(X) is analytic. We shall see that
poles in F(X) can lead to poles in the scattering
amplitude and at the same time without corre-
sponding discrete states in the generalized com-
pleteness relation.

it is a unimodular quantity for real X. As long as
g(X) and g*(X*) are boundary values of analytic
functions, the scattering amplitude will also be an
analytic function in the cut plane with a cut along
the real axis from 0 to ~. If there is abound
state, n(l&, ) =0, A, &0, and consequently the scat-
tering amplitude would have a pole at this location
provided F(l),) does not vanish. Every such bound
state corresponds to a pole of the S matrix.

This property is also true for the scattering am-
plitude in the generalized theory that we have con-
structed in Sec. V with the generaliz~;-(i continuous
spectrum along the contour I . In this case the
scattering amplitude is given by the expression
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We now illustrate this with the simplest case
where F(z) has a pole at A =z„which occurs in

the region bounded between the positive axis and
the contour I', and Im&&0. Since F(X) is the dis-
continuity function, there are two cases we need
to consider. First is that, as X-z, ,

o., (X) - finite

T(X)—i/2 . (5.8)

Ti(x) =- E(X)
o, (X)

(5.9)

We see that T(X) is regular on its second sheet at
A. = z, . On the other hand, on the physical sheet,
the continua, tion of (5.7) is given by

and

nr(X) =n«(X) ~ 1

A. -z '
1

(5.4) As X-z, ,

1
T,(A) ~ (5.10)

and second, as X-z, ,

and

n, (X) ~
A. —z

mr(z, ) = n«(z, ) -finite .

(5.5)

F(z')dz'
n (X)r= X —m+-

m ~ z' —X

z'
I

(5.6)

The continued scattering amplitude defined in
the ~-plane cut along I' is given by

T,(X) = F (A.) (5.7)

which appears to be identical to (5.3), except for
the present case ar(A) which is defined by (5.6).
Since E(A) is a meromorphic function, here we
have defined the Riemann sheet structure of Tr(X).
If again X = Ao is a solution to the equation or(&)
=0, it corresponds to a discrete eigenstate. And
there is a pole in the scattering amplitude at &

By assumption F(X) has a pole at A = z~. As
X approaches z„the dominant part of the denom-
inator function o.r(X) is given by 2iE(A), so

For the case of (5.4), the complex variable func-
tion n, (&) obeys the dispersion relation of (3.27).
And it is finite everywhere on the first sheet of
u(A) cut along the positive real axis. To ensure the
Cauchy equivalence of the theory, the generalized
spectrum must be along a contour which is de-
formable from the original contour C of Fig. 1
without exposing the pole on the second sheet of
n(X) at X=z, . For definiteness, we continue to
work with the generalized spectrum along the con-
tour 1 . However, in order not to expose the pole
of E()}at X=z„for the present case it is neces-
sary to include the additional continuum specified
along some clockwise closed-contour C, encircling
the point X=z, . The generalization of (4.9) is now

given by the expression [compared to (3.8)]

It can be shown that this pole does not correspond
to a discrete state in the generalized completeness
relation. '

Next we look at the second case, which is speci-
fied by (5.5). To ensure the presence of the pole
in n, (X), it is necessary to rewrite n, (X) as fol-
lows.

n, (A) = X —m+—,dz'1 1'(z')
m r z'-A.

T

1 E(z')
m cz—

1

(5.11)

where C, is a clockwise contour encircling z =z, .
The C, contour integral gives the pole at z =zy.
For the present case, or (z) is regular in the z-
plane cut along I'. The corresponding dispersion
relation is given by

n, (X) =X —m+—,dz'.1 F(z')
m

(5.12)

One can readily check the Cauchy equivalence of
the (5.11) and (5.12) in the overlap region where
both expressions are defined. We will leave the
explicit verification to the reader.

The corresponding continued amplitude Tr(A) is
defined in the same manner as in (5.7). We see
that there is an additional pole in T on its second
sheet due to the presence of the pole in F(a) and
the fact that nr (A} is regular in the plane cut
along F.

Both of these cases illustrate the previously men-
tioned fact that not every pole of the scattering
amplitude corresponds to a discrete state. For
the case of scattering by a local potential these
"redundant poles" without corresponding bound
states have been known for quite sometime. "~
These poles are associated with the geometry of
the potential rather than the dynamics, in that
their location is unaffected by the overall strength
of the interaction. As we have illustrated, the
same results are obtained for the complex poles
of the scattering amplitude coming from the poles
of the form factor: They too are redundant poles
and depend on the form and not on the strength of



the couplings. From the point of view of the ana-
lyticity and dispersion relations obeyed by partial-
mave amplitudes in the analytic 8 matrix, form-
factox' singularities are conventionally associated
with the "left-hand singulax'ities". %6 recall that
the positions of these singularities ax'e indeed of
kinematic origin: While they depend on the masses
of exchang6d pRrtlcles, they Rre independent of
the strength of interactions.

It is intex'esting to note that not only are there
Qo discrGte solutions corresponding to the redun-
dant poles (and hence no terms in the complete-
ness relation), "but these redundant poles do not
contribute to the survival amplitude calculated
using the complex contours as c3n be seen explic-
itly from (4.&V). It follows that not all complex
poles of the scRtter1ng amplitude correspond to
decRying stRt68 %hich contribute complex expo-
nential dependence to the survival ampl. itude. The
complex poles which do contribute to the survival
amplitude are the dynamical poles of the scattex-
ing amplitude %'hich cox'x'68poQd to the di8cx'et6
solutions of the modified eigenvalue problem.
Vfhile ere have carried out our demonstration here
only for a particular class of models, it is valid
more generally.

Finally, one vrord about phase equivalent sys-
tems. It is vrell known that two distinct interac-
tions can yield the same scattering amplitude.
And among such phase equivalent systems the

numbex and the nature of the discxete states may
change. Else@&here ere have shmvn" b'av to con-
struct systems in vrhich Rll poles of the scattexing
amplitude become dynamical poles. As the models
change, so mould the sux'vival amplitudes. The
sux'vivBl Rmplitude makes use of ~0'M der'lied
knou ledge of the states of the interacting system
than is contained in the scattex'ing amplitude.

(Al)

(A2b}

dQ

g=)

a', = v(z), and o„=o(X) .

The orthonormallty conditions, component% ise,
3,x'6

qy+ yoz Q, z azdz=j. ,

go))t+ go + Q) 8 0 8 6fZ 0
y (ASb)

0) ~0+ X)t ~ ~ 0 ~ + ~ d~

g,t„,+ X,(~)A, (~)n(~)«= &(&- &').

The completeness relations to be checked 3re

g (~) ~n~g*(&')
&0=(n )&z2 0( )=~,4 4= -(~ )

(A2a)
5(x —z) Ax„g+(x+)g(z)

(X —z+ ig)n(X+iq)'
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APPENDIX A: ORTHONORMALITY AND COMPLETENESS

RELATIONS

In this appendix ere verify the orthonormal. i.ty
Rnd the completeness relations for the generalized
eigenfunctions defined in Sec. IV along some gener-
al. Contour I". When I' is the positive real. axis,
they reduce to the corresponding relations for the
I.ee model discussed in Sec. II. To simplify the
notation we shall write n(z) in place of nr(z) for
the function defined by (4.9).

The right Rnd left eigenfunctions are respectively
g1ven by

FIG. 6. The relation bebveen the contours C, C1», and

Cp.
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fp gp + /AT)/de 1
r

g, y, (z')+ f„y„(z')dz=0,

Cc „(z)q,+j$„(z)q,dX=O,
r

(A4a)

(A4b)

(A4c)

1 1 cr,g(z)g*(z*)
uo uo r (Xo z)

1 1 u(z)dz
a,' 2zi c (X, z)'

where the relation

In(z+ i~) —u(z —i~) l2m'
(A6)

4.(z)X.(z')+ C(»(z)X, (z')d&=
5(z z)

)

1. Verify (A3a). The left-hand side is

(A4d)

has been used. The contours are shown in. Fig. 6.
Notice the relation

Cr+ C„=C~.

So

1 n(z)dz 1 n(z)dz n(z)dz
2zi, (~, z)' 2zi, , (~,-z)', (V, -z)'~

Equations (A5) and (AB) lead to left-hand side (LHS) =- 1.
2. Verify (A3b). The left-hand side is

v v, g*(~«) g«(z «) 6(X z) v g„g«(&«)g(z)+,„, + ", , v(z)dz
(u,')'" n(X+ i&) r (n,')'"(X,—z) v'g (X —z+ i&)n(X+ is)-

1 i a, g«(x«) i v, g«(x«)
(n,')"' n(X+ ic) (u,',)' "(X, a)

~u~g*(&*) u, g*(z"):(z) v'~, g'(&*) n (z)dz

(a,')'"n(x+ie) r (&, z)(x —z ~ i j c(uo)'"'n(z+ie) 2|ci c (X, z)(X —z+ic)'

Denote by C„the counterclockwise contour encircling the point z = A+i&. Notice the relation

C„=C~ —C„.
So

A=
v v„g«(X«) -n (x+ i e) —1

(n,')'" u(X +i&)

Equations (A9) and (A12) lead to LHS= 0.
3. Verify (A3c). The left-hand side is

v' o, g(x) 1 6(X —z) v a„g(x)g«(z«) a,g(z)
u(X —ic) (n„')"' r ~u (X —z —ie) n(Z i~). (u,')"'(X, z)

(A10)

(A11)

(A12)

+ " +A, A13
v (r, g(x) v (r,g(X)

(u ) (X n— zf) (n ) (X —1)

with

v c»g(Z) cr, g(z)g*(z ) V v„g(z) 1 n(z)dz
(n,')'"n(x —se) r (x —-' —i~)(x, —z) (u,')"'n(x —ie) 2zi c (x z iE)(x, z)

(A14)

Denote by C„the counterclockwise contour encircling the pole of the integrand at z =X —i&. For the pres-
ent case,

C„=C~ —C„.
This gives

(A15)

v u„g(X) n(X —ie)
(n,')' "n (X —ie)

(A16)
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Equations (A13) and (A16) lead to LHS= 0.
4. Verify (A3d). The left-hand side is

~v, g(X) v v, .g" (X'") 6(X z) ~v„g(Z)g'(z') 6(a' —z) Kv, , g*(X'*)g(z)+ + " . . +, ', cr(z)dzn(x —i&) n(x'+iz) r ~ ~v (x —z —i&)n(x —iz) — - ~v (x' —z+rz)n(x'+rz)-

(via~ )'"g(&)g*(I"),6, , ), (v&v, )'"g(&)g*(&'*),(v.vi )'"g*(&'*)g(&),
A

n(X —iz)n(Z +iz)
'

(Z —Z iz)n(Z —i&) (x a+i&)n(Z'+iz) (A17)

(a'„a',, )' 'g(X)g*(X'*) g(z)g*(z )a, dz (cr„a,)' 'g(&)g*(&'*) 1 n(z)dz
n(rc —1z)n(~ + 'lz) r (~ —z —1z)(~ —z+ 2z) n(X —1z)n(X'+i&) 2rri a (X —z —1z)(rc' —z+ is) (A18)

Cr=C„+C~, —C„.
This relation leads to

(v v )ll g(y)~e(pre)
n(x —lz) n(x'+ 1K)

(A19)

Denote the counterclockwise contours encircling
the poles at z = X —ie and z = X'+i& by C, and C„.
respectively. For the present case,

I

Equations (A21) and (A23) lead to LHS=1.
6. Verify (A4b). The left-hand side is

g*(z") ~v, g*(&*)
na()ca —z') r n(x+16)

6(&- z') ~vugg(&)g*(z'*)+--, dX
(A. —z' —1z)n(x —1z)

x . ,
— —1

n(x —1z) n(x'+ 2z)
X' —X+iq X —X' —iq

(A20)

g*( '), g"( '*)
n'(a, —z') n(z'+iz)

Equations (A20) and (A17) give LHS= 6(X —X').
5. Verify (A4a). The left-hand side is

«ig*(&*) ~v1 g(&)~+ dX
n,' r n(X+ i&) n(Z —iz)

1 i 1 1
=—,+— dX =-—,+A. (A21)

n,' 211 a n(X) n,'

Notice the relation

where

g*(z") dX
A. =

-2m's X- z' —sq n &
(A25)

C„=C~+ C, , —C„=Cp+ C,, (A26)

This leads to

Denote by C, , the counterclockwise contour en-
circling the pole at A. =z'+i&. There is the relation

C~=C~- C„.
Therefore,

i 2 xi . 1
A =—,—2n'i = ——,+ 1 .

2'lt' O' Q'

(A22)

(A23)

1 1
A = -g +(z'+) +

n,'(X, z') n(z'+iz), '

In turn from (A24) and (A27), LHS=O.
7. Verify (A4c). The left-hand side is

(A27)

g (z) 1 6(1—z) ~vg*(~*)g(z) V v g(~) g (z) g (z)
(n,')'r2(a, —z) (n,')'" r ~v (X z+ i&)n(a —iz) n(X —iz) n,'(X, —z) n(z —iz) (A28)

where

g *(X*)g(X)v,dX ig(z) dX

r (X —z+ rz) n(X+1z)n(X —1z) 211 a (X —z+ 1&)n(X)
(A29)

Denote by C, the counterclockwise contour encircling the pole at A. =z —i&. Using the relation

Cr = C, + C~ —C„=C, + C~, (A30)

we get

1 1a= ~(z) . +
n(z iz) n,'(X, z) ~'

Combining (A29) and (A30) gives LHS= 0.
8. Verify (A4d). The left-hand side is

(A31)
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g(z) g*(z'~) h(A —z) & v„g'(X'), (z)
~

o(X —z') &'o,g(X)g*(z'*)
(n,')'~'(y, —z) (n,')'~'(X, —z') r ja (X- z +ie)n(X+ie) ' L va, (X —z' —ie)n(». —iz)-

g(z) *(z'*) &(z —z'),."*(z'")e(z),.'r(z)."*(z")
no(XD —z)(XQ —z ) az (z —z + 2e)n (z + &e) (z —z ' —'le) n(z —1e)

+ + ', ', -+ ', "
. +A, (A32)

with

A= ig (z)g*(z '*)
2» c (». —z+ tz) (X —z' —ie) n(x)

' (A33)

Denote the counterclockwise contours encircling the poles at X=z -i& and 5 =z'+i& by C, and C, , respec-
tively. The relation

C„=C,+C, , +Cp

leads to

(A34)

1 1 1 1
& = -g(z)a*(z'*) —, , +, , +

n'(X, —z)(X, —z') (z —z' —ie)n(. —ie) (z' z+ ie)n(z'+ie),

Equations (A32) and (A35) now yield LHS= h(z —z')/o,

(A35)

Here we evaluate the integral

APPENDIX 8; THE INTEGRAL F(t)

F(t) =
(u —ih)' '

From Eq. (3.383.8) of Gradshteyn and Ryzhik, "
PQP 1

da —
&3

" &' & &~ &'~ & & ~ze&&u&zi'(&&) ll/ (&3p)

I'(z) is the gamma function and IV, ,(z) is the Whittaker function. Using (B2) we get

F(t) —
( jh)&' &'&tzt '~z'~&' z&~ze '&'&»I'(I y z)IV. . . ( jht)

But according to Eq. (13.1.3) of Abramowitz and Stegun, "we have

W~, (z) = e ' 'z' "U(—+ p, —». , 1+ 2p, ;z),
and Eq. (13.1.3) gives

M(a, h; z), „M(1+a —h, 2 —h, z)
s in»h I'(1+ a —h) I'(h) I'(a) I'(2 —h)

The small-z expansion of the M function is given by [Eq. (13.1.2) of Ref. 28]

M(a, h, z) =1+ (a/h)z+ O(z') .

Combining (B3), (B4), (B5), and (B8), and making use of. the identity I'(z)I'(1 —z) = »/sinz for small t, we
arrive at the expression

F(t)- (—ih)'" ', „—t' ' 'I'(1 —p+ e) II+ 0(t)J.„,, vl'(e+ 1) 1

sin»(e —p) I'(p)r(e+ 2 p)
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