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We investigate classical Yang-Mills theory with sources in the limit of no time dependence and find a class
of "Abelian" solutions with nonvanishing magnetic field, even without spatial source-current density. The
field is due to nontrivial point magnetic monopoles of topogical origin.

I. INTRODUCTION

It is usually possible to obtain insight regarding
many phenomena by considering the physical sys-
tems of interest in a limiting or extreme case.
Sometimes the resulting equations are easy to
interpret and occasionally completely solvable.
In this paper we obtain a limiting situation by
making a compound ansatE for the Yang-Mills
system with source-current density; we con-
struct and treat a particular "static" limit of
the equations of motion.

We take our cue from elementary texts on elec-
trodynamics, the opening chapters of which con-
tain expositions of so-called electrostatics. ' Two
features appear: first, all the quantities under
consideration have no time dependence, ' hence
"statics"; second, for simplicity, it is usually
assumed that magnetic phenomena are not pres-
ent. Technically, a steady-state current den-
sity does give rise to a "static" magnetic field,
and because the equations are linear, magneto-
statics can easily be incorporated.

The general Yang-Mills system displays many
similarities (and differences) to electrodynamics,
the Abelian version. We propose to study the
system when the non-Abelian symmetry group is
SO(3), and retain the assumption which eliminates
all time dependence. However, because of the
nonlinearities associated with SO(3} Yang-Mills
theory, the separation of the magnetic part as in
electrostatics cannot be consistently accomplished.
A less stringent ansatz will be made, which can be
implemented, and which leads to a nontrivial con-
struction.

We use the three-vector representation for ele-
ments, of SO(3) to show that certain distributions
of the Yang-Mills source lead, via the fields, to
topologically conserved quantities. These char ges
are seen to exist only at discrete points in space,
and play the role of magnetic monopoles in the
resulting theory.

The next section shows how we use the compound
ansatz to derive a non-Abelian Poisson equation

for the static potential, as well as a subsidiary
condition which has the Meissner effect as its
Abelian analog.

The third section contains the solution of the
equations and the discovery of the monopoles.

Section IV has some interesting examples,
while Sec. V is a summary and list of conclusions.

II. CLASSICAL YANG-MILLS STATICS

The dynamical equation of motion from which
we will extract our results are the Yang-Mills
equations with source current density'.

D"F „=L (p, , v = 0, 1,2, 3),

F,„-=e„A„-sg„+A„&&A„,
D" =—g "+A"x.

The current density ]
„

is assumed given, whileF„„is the field strength in terms of the gauge
potential A„.The operator D" is the covariant
derivative for the gauge group SO(3} in the ad-
joint representation. We have set the coupling
constant equal to unity. Finally, ]„must be
covariantly conserved:

D"j„=0. (2)

(3a)

D'F,.
&

——],. (i,j =1,2, 3).
The first part states that all quantities in the
theory have no time dependence; this includes
gauge transformations. Thus, no gauge trans-
formation can take us out of the static regime,
but the gauge group is now defined on ordinary

(3b)

The preceding set of equations defines a theory
whose solution we will give in an interesting static
limit. The solution will be closely related to the
kind of static theory presented in the opening chap-
ters of elementary texts on t;lectrodynamics.

Our ansatz consists of assuming
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three-dimensional Euclidean space. The second
part of the ansatz consists of isolating the "mag-
netic" part and treating it separately. In ordi-
nary electrostatics this separation is accomplished
by setting the magentic field and spatial current
density to zero. The general Yang-Mills case does
not permit this additional simplification because
of the nonlinearity of the equations of motion.
Therefore, we allow more general configurations
given by Eq. (3b) and treat them consistently.
Under the time-independent gauge transformations,
this part of the ansatz is "geometrical, " since
both sides transform like three-vectors in group
space (and three-vectors in ordinary space).

If we now take the temporal and spatial com-
ponents of the dynamical equations of motion in
this static limit, we obtain

III. SOLUTION OF EQUATIONS

A„XD=Q.

Thus Eq. (2) implies that

D'j,. =0,

(8)

In order to solve Eqs. (5), we define the unit
vector

A., =-A,/A„A,—= (A, 'A, )'~'.

This quantity has meaning if Aoc0. We will see,
however, that points where A, vanishes are
also of physical interest.

Consider now the Meissner effect (5b). By
taking its covariant divergence and using (5a),
we find that

D'F„=jo—:P,
Ao x Fo,. =Q,

(4a)

(4b)

consistent with the second part of the ansatz.
The Meissner effect and its covariant diver-

gence (8) are completely solved by

with D,.Ao = cL,Ao (10a)

F„=-D,A, . (4c)

The last equation states that the electric field
is the negative spatial, covariant derivative of the
temporal components of the gauge potential: the
generalization of ordinary electrostatics. Sub-
stituting for F„.in Eqs. (4a) and (4b) from (4c)
gives the system

D'D;Ao = g,

AoxD'Ao0

(5a)

(5b)

Here the first relation is seen as a non-Abelian
generalization of Poisson's equation. The second
result has an Abelian analog also. It is the
Meissner effect of superconductivity in a three-
dimensional Euclidean theory, if Ap is interpreted
as a Higgs field. ' A, transforms properly for
this.

The Eqs. (5) are invariant under time-independent
gauge transformations parametrized by, say,
X(x,). However, while

5A,. = e,.y~A, . x y, (8)

the temporal piece of the gauge potential transforms
linearly,

p=~Ao (lob)

respecitvely. The proportionality factors nt and
ot are related functions of space. These factors
are determined by substituting Eqs. (10a) and

(10b) into both sides of Eq. (5a). Thus

-o. = e '&,. + n 'a, , Zf Ao I0,

and no condition if Ao =0.
By taking the inner product of Eq. (10a) with 4,

one shows with the help of Eq. (5b) that

n, = ~,.lnAo

Thus

A, = exp[&(x, x,) j,
where

x

dx'n, (13)

The curve g is arbitrary, but begins at x, and ends
at x.

Considering again spatial points for which Ao
w0, we may take the magnitude of Eq. (10b) to
write

6Ao=Ao x y,

because of (3a). The quantities p, D,.AO, and F,,
transform like A, . In addition, we see that the
solution of Eqs. (5) will give consistency con-
ditions on A,. which will in turn affect the second
part of the ansatz.

= pe ', p —= (p ~ ig'" =- 0.
Substituting into Eq. (11) gives

a' n, +a' n,. = -s. gn(n)pe ',
sgn(a) -=a/~n~.

(14)

(15)
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This integro-differential equation reduces to'

s 'B,e' = -sgn(a) p,
OF

s 's P, = -sgn(a)p . (16b)

(18)

The a, , coefficients of A„arearbitrary as ex-
pected. However, the leading term in EII. (18) is
of pax'tieular interest since it is the fix st quantity
that we have encountered which is not parallel,
to A, .' The significance of this development is
understood by constructing F,.&

from its definition
in EII. (1) and EII. (18):

F,I=F,P40, .

F,=f, -A, (sp, && sp,),
fII

=—8;QI —aP; ~

We follow other authors7 and intex'pret Il,.
&

as the
magnetic part of an invariant field strength; thus

gk —1 ~kf jy2 tj
is the magnetic field. Calculation of the diver-
gence gives

A, = sgn(a)p .
The sign of Q' 18 deteI'mined by the 8eQse of

A, relative to p. If A, and p are parallel (anti-
parallel), then sgn(a) is positive (negative). This
extra problem is a vestige of the original nonlinear
structure, and the determination must be done
consistently. For example, if A, is zero at a
poIIlt i11 space 'tlleI1 by Eq. (IV a) we de'ter1111Ile

that sgn(a) cannot be constant —otherwise EII.
(1Va) evaluated at the point could not vanish.
Exploration of this mechanism will be performed
ln speclflc cRlculRtlons pl'esented in R 1RteF sec-
tion of this paper. Also note that, for consistency,
40» 0.

Let us continue. Since it contains a term de-
pendent on A,. x A„wesee that EII. (5b) includes
information about A, . Taking the inner product
of A, and EII. (5b) gives nothing. However, the
cross product of these veetox'8 enables us to
wI'lte

density. However, all the B,A,, (i=i, 2, 3) cannot
be independent because they are all orthogonal to
A,. Thex efore p vanishes evex'ywhere except
for isolated points where A, is zero, and p is
the density of a set of point magnetic monopoles.
It ean be shown' that they have positive or negative
integral charge and are topological in origin.
The total magnetic charge is the Brouwer degree
of the systexn, and the charges of the individual
monopoles RFe the Polncar6-Boff 1Ddlces of the
zeros of the Higgs field A, located at those points.

Finally, in order to interpx et the second part
of our ansatz, we take the inner product of Eq.
(3b) with A, to find

(22)

These are the determining equations for the re-
maining degrees of fFeedoIQ. TRklQg the cI'oss
product of A, with EII. (3b), however, gives

j,- &AO=O. (2

Also, by EII. (9), we have

pe O

These conditions on the static current density
may be satisfied in a variety of ways: for instance,
by taking ],. to vanish everywhere. Therefore,
we will still have a nontrivial magneti. e field even
though there are no spatial-current sources.
The magnetic monopoles, necessary for the
consistency of the nonlinear equations, are the
so111'ce. Tile u aIeIlow det'el'111111ed fI'OIn EII. (22)
and the locRtloDs Rnd stx'eDgths of the topologlcRl
charges.

IV. EXAMPLES

We show some details of the previous considera-
tions in specific examples.

Let the static potential be given bye

(A )'= kx'e " ' (a =1 2 3)

The constants k and cr are parameters whose speei-
fi.cation determines a particular A,. This vector
functloD Gf posltlon hRs R 81TDple zeFG at the GFlglD,
where we expect to find a magnetic monopole.
The magnitude of A, is radially symmetric and
equal to

ag'=--,'~"'sp, (sp, &&sp,) -=-p „.
Hence p is the nonvanishing magnetic charge

We operate on A, with s 'S,. and use EII. (16) to
obt Rln

(26)
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e-~lc y y
sgn(II) p = —

~

k
l

— —4 — + 2

X'
(p)'= sgn(o) —.

y'

Thus p reverses when sgn(II) changes. Other
quantities are calculated in a straightforward
manner; we list some of them:

(28)

This function is continuous and differentiable
except at the origin. Graphs of Ao and sgn(a)o
are given in Fig. 1. It is seen that the quantity
sgn(II)p vanishes on the surfaces of two con-
centric spheres. Their radii are determined by

Also, sgn(a} changes when the non-negative

p goes through zero. Following a radial line
from the origin, sgn(II) is first negative then
positive between the two spheres of zeros and
negative again to infinity. Hence, sgn(n)p appears
smooth.

The direction of p is given by EIl. (17b), and
since A, is radial we have

which, given j,, determines a,. up to a gradient.
We conclude with one more example. It has

been seen that the simple potential of Eg. (25} is
generated by a rather complicated charge dis-
tribution. We propose another monopole which
exists in conjunction with a simpler charge dis-
tribution:

(36)

As a function of x, the distribution has only one
finite zero. Therefore sgn(a)p has one sphere
of zeros in space. The Iluantity sgn(II) changes
on the sphere, which divides space into two parts.

Substituting EIl. (36) into Ell. (17a), we cal-
culate

X'
(A.)'= -a'"6'.—+ a.—i ig i

f »05CQbQC

(30)

(31)

This potential has a simple zero at the origin,
which marks the location of a unit magnetic charge.
Unlike the first example, which is not a dyon,
this monopole is a dyon, with electric charge q.
However, since they are radial in direction,
both examples have vanishing total isotopic spin
vector

» It i j» a bcg by C X
2 (32) T = cPXP X =0, (38)

g It —&» k' ijf

sp'= ——6'(x),
4m

(34)

(35)

GI'aplls of Eels. (36) alld (3V) al'e glvell 111 Fig. 2.

V. SUMMARY AND CQNCLUSIQNS

In the preceding sections we have treated the
problem of Yang-Mills theory with source cur-
rent density in a static limit. The conditions which
we have used remind us of electrostatics.
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FIG. 1. Wu- Yang-'t Hoofs monopole potential and
charge distr ibution.
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PIG. 2. Dyon potential and charge distribution.
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After applying our compound ansatz we recover
a non-Abelian Poisson equation for A, as well as a
subsidiary condition which causes Ao and the
non-Abelian electric field to be parallel in
group space. The electric field is in turn given
by the negative, spatial covariant derivative of
A, .

It is possible to solve these equations. First,
we see that A, acts like a Higgs field in our
limit and transforms linearly under the set of
time-independent elements of the group. The
transformed A, , however, still displays the
inhomogeneous piece of a gauge transformation
of the second kind. Now, consistency demands
that the quantity A,. contains a term which is
orthogonal to A,. Other objects in the theory,
such as D,.A„F,, , p, and ],. are parallel to A, .
Therefore the magnitude of these latter quantities
along with a relative sense (+) is all that is re-
quired to specify them, once A, is obtained. If
however, there are points in space where A,
vanishes, the nonparallel part of A,. is generated
by conserved topological charges: net integral
magnetic monopoles. We obtain, in the end,
a theory with magnetic charges, no Dirac strings,
and single-valued potential (up to an Abe1ian
gauge transformation).

After establishing the above interpretation, we

proceed to study examples which contain "Poisson"
distributions. First we consider a single mono-
pole of the Wu-Yang-'t Hooft type. This object
is seen to be generated by a source-charge dis-
tribution with two concentric spherical shells of
zeros —a rather complicated function. We expect
that a simpler geometry can be generated by a p
which contains only one spherical shell of .zeros.
The corresponding potential for this charge dis-
tribution is constructed, and a dyon is reported
to be situated at the origin.

In both examples the charge density becomes
large in the neighborhood of the monopole. How-
ever, both static charge distributions are normal-
izable and lead to nonzero magnetic field without
spatial current density. Also, for both, the total
isotopic spin vector vanishes.
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