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Using techniques developed in recent years in general relativity we study the general GL(R, n) and

GL(C, n ) gauge theories with no external sources. In particular, after casting the field equations into the
spin-coeAicient formalism and adapting natural (to the formalism) gauge conditions we show how most of the
equations can be integrated in the case of real asymptotically "flat" solutions. In the self-dual (or anti-self-

dual) case the field equations are reduced to a single nonlinear wave equation for a Hertz-type potential. As
a final point we show the relationship between this potential and our version of the Atiyah-Ward method of
finding self-dual fields.

I. PITRODUCTION

It is the purpose of this paper to study the gen-
eral' GL(R, n) and GL(C, n) gauge theories (with no
external interactions) and to show in particular
how many of the ideas and techniques developed
in recent years in general relativity (GR) can be
usefully applied to them. More specifically, we
will show how to cast the field equations of the
gauge theory into a null coordinate and tetrad form
which in turn define a natural or canonical choice
of gauge fra,me. The resulting equations, which
now resemble the spin-coefficient versions of the
Einstein or Maxwell equations, can then be inte-
grated rather completely (by using techniques fam-
iliar from GH) in the two important cases (1) self-
dual (or anti-self-dual) fields and (2) real asymp-
totically vanishing fields ~

In Sec. II we will review' some relevant material
from vector-bundle theory which will be needed to
fix the gauge.

In Sec. III null coordinates associated with a
timelike world line and the related null tetrad are
used to produce the spin-coefficient version of the
field equations, while in Secs. IV and V, respec-
tively, we show how the cases of the self-dual and
the asymptotically vanishing fields can be inte-
grated. Finally, Sec. VI is devoted to discussing
the relation of the work presented here to Spar-
ling's version of the Atiyah-Ward twistor approach
to gauge theories.

vector fields, e„(4=1, . .. , n), form a basis set,
as does

Be„=GA eB, (2.1)

for G„ in GL(R, &i) or GL(C, n). A connection or
parallel transfer of vectors in B is introduced by
defining V, by

B
+&eA='YAa eB

or in form notation

~eA=YA eB yA ='YA, dxB B B a

(2.2a)

(2.2b)

with y A being an arbitrary matrix-valued one-
form. Equation (2.2) allows one to take the covar-
iant derivative of an arbitrary vector V= V"eA by

v —(vA + vB A)e (2.3a)

or

vV=(dV" + V'& ")e (2.3b)

f B G C DG-1 B+dG cG-1 B
~A A yC D

'

A C

or with matrix notation

~'=GyG '+dGG '.

(2.4a)

(2.4b)

The "curvature" tensor of this connection is de-
fined by

F =dy —yp, y (2.5a)

or

Under a change in basis (2.1) one can easily show
from (2.2) and (2.3) that

II. MATHEMATICAL PRELIMINARIES (SEE REF. 2)
b Yb, Yo, b I~,7 bl (2.5b)

We will consider the trivial vector bundle' B
(each fiber being n-dimensional real or complex
for the time being) over Minkowski space M, i.e. ,
8 =,lI &&8" or M x C", or more intuitively we con-
sider that at each point of M there is an n-dimen-
sional vector space and that there exists n linearly
independent vector fields, global over 3I. These

or
B B B ( C B C Bbi

A „b yA b, yA, ~yA yCb yAb

(2.5c)

Under (2.1) one can easily show from (2.4) and
(2.5) that
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I'=GI'G '. (2.6)

The (generalized) Yang-Mills field equations can
be written either as

dI'*+ F*A y —y z I'*= 0 (2.7a)

with E,*o= oui, o,~E'~, ri»»= —V-g, or more conven-
tionally as

+ah + ~by y y'cb- 0 (2.7b)

In the special cases of self-dual or anti-self-dual
fields, i.e. , E„=+iEf, the field equations (2.7} are
automatically satisfied because of the generalized
Blanehl identities

f'~, V -=(V",f'+ V'y„"f'}e„=0 (2 9)

which comes from (2.3b), with f' being the tangent
vector to the curve. ' If this is now generalized to pg

linearly independent vectors chosen at one point of
each curve of a space filling congruence and then
parallel propagated along the curve we obtain a
basis set, satisfying

(2.8)

which follow directly from (2.5).
We now investigate how to select a basis set or

gauge. The basic idea is to choose a vector V at a
point on a specific curve and then parallel trans-
fer it along the curve, via

(such that f,f'=0) and v,v'=2. & and g are complex
stereographic coordinates, g= e'~cot-,'6}, while gg is
the proper time along the world line f, (x'= uv'),
and r is the affine length measured along the null
rays leaving I . In this coordinate system, the
Minkowski metr ic becomes

and all other scalar products vanishing, with n'
being the inward-pointing radial null vector field
and yy~' and pyg' being complex spacelike null fields.
In the null coordinate system the four fields /, n,
yyE, and &n take the form

&0 8
P H' r Bf

8
Pl

(3.4)

We are now in position to translate the Yang-
Mills field equations into a form associated with
the above null-tetrad and coordinate system. De-
fining the three curvature tensor matrices

ds = 2 du + 2 dudr — d&d&. (3 3)
2Po

In addition to the vector field l' we consider three
further null fields n, ni, and rn such that

t'&, e = 0.
which then implies from (2.2) that

&ta 0

(2.10)

(2.11)

f fX,„'f
f

-=X, =-,'E.,(f n'+mW'), (3.5)

There, of course, remains the GL(n) freedom in
the choice of the e~ at the starting point of each
curve. This remaining freedom will be used to
eliminate some constants of integration when the
Yang-Mills equations are solved.

III. A NULL-TETRAD FORMULATION
OF YANG-MILLS THEORY

x'= uv'+ rf'(f, ~} (3.1)

Though the material of this section can be pre-
sented in a much more general null-tetrad system
(see Appendix A) we will confine ourselves here to
the simplest ease —the null tetrad based on the
null cones emanating from a timelike geodesic I-
in Minkowski space.

Beginning with Minkowski coordinates x', we
introduce null polar coordinates (u, r, t, g) by

I lyo'. ll -y..-V,

fly„,„'
f f

=-y„,.=y.m',

we can write (2.7) as

(3 5)

9 8 1 1
xo+ 8xl [xo y11'1- IX». 1

9/g ~r
{3.7a)

(
8 9 2 1

xi+ —8'xo= [xz~ yxi 1
—[xo yov1~

Q1g er r r
(3.7b)

and their complex conjugates p„X„y, as well as
the connection matrices by

with

(1+11,1+ t, f(r. C), —1+ 1.Z),-a

8 2—+- fx, +-ox [xi,oy o] [xoo, y,o1-r] r

c
8 g 1—+- +x-a x[ ., X. y1-o[ i, x1y

(3.7c)

(3.7d)
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[, ] represents the commutator. 5 and 5 are ang-
ular differential operators which act on spin-
weight s functions q by

1-s B
gg = 2PO

'—Po'q,
ag

1+ 8g'g= 2PO
' —PO 'q

Bg

The spin weights of X„X„X„y,p po] pro pyy are,
respectively, s=1,0, -1,0, 1,-1,0.

To complete the null-tetrad version of the Yang-
Mills equations we need the translation of (2.5),
namely,

B 1
Xo + &0&' )Br

(3.12a)

1 B
2X1 = —-(8 r., —mr, ;)+—r» —[r,;, rox ],'r Br

(3.12b)

B B 1 1
Xz

= ———+ yxo' ——5yxx'+ [y»' yxo']
By Bu y

as well as the conjugate equations.
In the next two sections we show how (3.11) and

(3.12 can be largely integrated for the two impor-
tant case of self-dual (or anti-self-dual) fields and
real asymptotically flat fields.

1 B 1
X. = —3roo + —+ - y» + [r», r o]o&r r (3.8a) IV. ASYMPTOTICALLY VANISHING FIELDS

B B 1 a
2Xx = ———r..- Sr-.x Vr—,.)+ —r„

Bu r Br

+[yii»-J —[y' r. I (3.8b)

B B 1 1
x.= ———+- rxo ar-»+-[» »xo]xBr Bu r ' r

Equations (3.7) amd (3.8) are completely equivalent
to the ordinary Gi (n) Yang-Mills theory. '

We now use the techniques of Sec. II to partially
fix the gauge. For the space-filling family of
curves we choose the null geodesics leaving L
[i.e. , I' being the tangent vectors t' of (2.10)] and
hence from (2.11)

In this section we will study the asymptotic be-
havior of real Yang-Mills fields in (real) Minkow-
ski space.

The basic idea is to first concentrate on a single
null cone Q Qp and integrate those equations from
(3.11) and (3.12) that do not involve 8/Sn, namely,
(3.lla), (3.11b), (3.12a), (3.12b), in terms of some
arbitrarily chosen data. The remaining equations
then are used to determine the time evolution of
the system.

If at u = u, we choose X, (u = u„r, g, f) a,s an arbi-
trary function of r, g, and g [later we will restrict
the r behavior to 0(r ')], regular in f and f, then
(3.12a) easily yields

r~. t =r~oo =oB N B (3.9a)
+0 1 r

y,y
—+ — yX,dy,r y

(4 1)

or

, =0. (3.9b)

(3.10)

This freedom plays an important role in Secs. IV
and V.

Using (3.9), Eqs. (3.7) and (3.8) simplify to

9 2) 1—+- ixx+-Sxo= [rx. , x.1Br r) r (3.11a)

8 1 1—+ - Xo+ -6'Xi = [yio X|]Br r r (3.11b)

B B 1 1————- X.+ -8x, = [r.;,x, 1 —[y», x.1,
Bu

(3.11c)

The remaining freedom of gauge transformations
can easily be seen from (2.4) to be a G„s subject to

where y'( uf, f) is an arbitrary function of inte-
gration. If now (4.1) is used in (3.11a) we have
immediately (remembering that y». = y». )

1 ", 1
x, = ——— x xx. + fx. , x,;1)-

oo

(4.2)

which when used in (3.11b) yields

=X2 1" 1-
x. = —' —- & - xx ~ fx, x, '1)r (4.3)

B
Xy+ Xy =+—Yj.Br

(4 6)

with X', and X", as arbitrary functions of f and f.
If we now write the sum and difference of (3.12b)
with its complex-conjugate equation (remembering
y». is real and y». = y„.) we obta. in

1
x, —x, = —-(Zr. , —or,;) [r,;, y.;1— (4 4)r

which we will see imposes a restriction on the
functions of integration and

8 8 2 1
Xx+-IX'= [y X2]o-x[yxx X ]

BM

(3.11d)

and hence
r

&gg=&gg + X +X (4.6)



y,',.(t, 0) being arbitrary but real. Y,'... however,
can be made to vanish by using some of the re-
maining gauge freedom (3.10), i.e., by solving

X, =—,'+o(r '),
(4.14)

BQ
+Qy0 Oll

the remaining freedom thus restricted by

Equation (4.6) becomes

(4.7)

(4.8)

X, =—'+O(r-')

and that as in Maxwell theory there are three
zones, the far or radiation zone where one con-
siders only the r term in the field, the intermed-
iate zone where terms of r and higher are ex-
cluded, and the near zone.

If we consider the eigenvalue problem of the
form

(4.16)

We see that at this point given X,(r, 0, 0) the radial
behavior of all the functions is determined via
(4.1), (4.2), (4.3), and (4.8) with y', X,', and X,

'
being the arbitrary functions of integration, %'e

now find the restrictions on these functions and
their evolution.

From (4.4), using (4.1) and (4.2), we obtain

which determines the imaginary part of X~ in terms
of y'.

From (3.12c), using (4.1), (4.2), (4.3), and (4.8)
we obta, in

(4.10)

the definition of X20 in terms of Yo and from (3.1,1d)
we obtain

8
—,„x,'= -6X.'- [x,', Y'] (4.11)

the evolution equation of X,
' in terms of y'. Note

that (4.1.1) is compatible with (4.9).
The final equation to be studied (and also the

most difficult to solve) is (3.11c). This equation
determines the time evolution of X0, i.e., from
(3.11c) one can find (S/&u)xo in terms of Xo, X» and
y' ate=u0. If, for example, one has

then in general for each matrix element, i.e.,
(A, B), there are two independent eigenvectors.

However, in the radiation zone they coalesce to
one, simply being 0, = l, and obviously independent
of (A, B). Furthermore, A.„s=0.

In the intermediate zone one of the takeo eigenvec-
tors is I, [independent of (A, B)], the other depends
on the matrix element in question. In the near
zone the eigenvectors are different from /, and de-
pend on the matrix element.

This behavior of the eigenvectors, both being E,
in the radiation zone, one being E, in the intermed-
iate zone and none in the near zone is the Yang-
Mills version of the well-known peeling theorem
of general relativity and Maxwell theory.

[As an aside we note that if a Yang-Mills field is
null or degenerate in the sense that there is a de-
generate null eigenvector of F„independent of the
matrix element, then it follows immediately from
the equations in Appendix A that the degenerate
eigenvector must be the tangent vector to a shear-
free null geodesic congruence. The argument is
simply that degeneracy implies that X,=X, =0 (as-
suming that I, is the degenerate eigenvector) then
from (Al) one has z = o= 0, the conditions for /, to
be tangent to a shear-free null geodesic congru-
ence. ']

V. SELF-DUAL YANG-MILLS FIELDS

X.= —,'+0(r ')

then from (3.llc) we obtain

(4.12)

(4.13)

The condition for a self-dual field, e.g. , E,*~

= iE,~ takes the following form in the null. -tetrad
notation

X0=Xy = XP =0

and in genexal if

X()
X =0 +3+n

we obtain ordinary evolution equations for the X0.
If X,=O(r ') then it is easily checked from (4.1),

(4.2), and (4.3) t at

with the X„X„X2in general nonvanishing. (For
anti-self-dual fields X„X„X,= 0.)

Since in this case the I,~ are complex and hence
the X's and y„, are independent of the X's and y
we must use (3.11) and (3.12) as well as their con-
jugates —actually since (3.11) is identically satis-
fied by (5.1) all we need are the conjugate equa-
tions to (3.11) and (3.12) and its conjugate,
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2 1—+ —X + f—fXO =[r ~~ Xo] ~1 r 0 Ol

(
1}r 1—„+—,ix, + —,ax, = [r.. . x,],r)

(5.2a)

(s.2b)

By defining the potentia1. & by

8
y .=-ran=--r —510 8r

we have

(5 9)

(
1 1—

Xo+ 8 Xl [rloi1 Xl] [rllil Xol I

(5.2c)

(
8 8 2

x + —nx. =[r„., x,] [r—„., x,],8u 8r r
(5.2d)

(5.3a)

1— 8o= ——(er., —8r,. )+ s r„.—[r..., r„.],
(5.3b)

1 1————— r ~ + —F'r ~ —[r„,r...],10 r l l

(5.3c)

(5.10)

Finally, using (5.9) and (5.8), (5.3c) becomes

Dr'DF r'D ——0 + 8' 8 S = r'[Dg, 8'& ]8u
(5.11)

our promised nonlinear wave equation. Obviously
knowing s allows, from (5.9) and (5.10), the cal-
cuiation of the r's and hence from (5.4) the calcu-
lation of the X. [One could easily check that (5.2)
are identities. ]

Explicitly we have for the fields

X, = ——Dr2DS, (5.12a

8
X0 + + ~l0 ~ ~8r (5.4a)

1
2x, = -—(8'r,. - 8'r„.)+ s r„.—[r„,r„.],

(5.4b)
1 1

X2 s s + rot' 5rxi'+[Bi'prov]8u r
(5.4c)

or alternately

1
X0 =+ —+ — Xl0s,r

(5.12b}

(5.12c)

1
'40s ——— rX,d

0

(S.13a)

(5.5)

with @00... the function of integration, being an ar-
bitrary function of u, f, g. By now using the re-
maining gauge freedom (from Sec. III) and satis-
fying

+~~ &C0l, =0

we can make

(s.s)

(s.v)

[We point out here that Eq. (5.6) is the starting
point of the Sparling version of the Atiyah-Ward'o
twistor approach to self-dual Yang-Mills fields. ]

From (5.7), (5.3b) becomes

8
s e (5.8)

Since (as was pointed out in Sec. II) the Yang-
Mills equations are identically satisfied by virtue
of the Bianchi identities for self-dual or anti-self
dual fields, we could dispense with (5.2} (which
are now identities) and simply integrate (5.3) for
the r's and use (5.4) to obtain the fields. We will
in fact now show that (5.3} can be reduced to a sin-
gle nonlinear wave equation for a 'Hertz-type"
potential. .'

Equation (5.3a) integrates to

1
x, =+~ «x d~, (S.13b)

1 " 1
X2 = ——5 X0« —— rX0«

0 r 0
(S.13c)

Though this appears to be quite pretty and sim-
ple, we unfortunately do not yet see a way to in-
tegrate Eq. (5.11).

VI. ATIYAH-NARD PROCEDURE

In this section we will describe our version (of
the Sparling version) of the procedure due to
Atiyah and Nard for producing self-dual solutions
of the Gi (n, C) Yang-Mills equations. Unfortunat-
ely, we must use the full. technology associated
with the operators 8' and 5' and spin-weight spher-
ical harmonics.

We begin with an arbitrary (spin-weight one)
matrix-valued function of the coordinates u, f, 7
that we will call A(u, g, g). Though it is not nec-
essary to do so, one could think of this function as
the coefficient of r ' in y»„ i.e. , y, of Sec. IV.
We will show that from A(u, 1,Z) one can generate
a unique self-dual solution of the Yang-Mills equa-
tions. In other words, we wil. l have shown that
from the radiation field of a real asymptotically
"flat" Yang-MilIs field there is associated unique-
ly a. self-dual field
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In Sec. III, Eq. (3.2), we introduce the pararnet-
rized null-cone tangent vectors I, (r. , f), from
which we now define

(6.i)

where x' is an arbitrary point of Minkowski space.
We now ask for a matrix function G(x', f;, Z) which
satisfies the linear matrix equation

(6.2)

wltll A =A(l~x, g» f)» l.e. , witll (6.I) put lllto tile g-
slot of A.. %e will require that G be a regular
function (in the sense of having a spherical har-
monic expansion) of 0 and Z. Though it is difficult
to solve (6.2) with the regularity conditions [and we
will avoid R dlscussloI1 of lllethods of 801VIIlg (6.2)],
we wil. l nevertheless assume that regular functions
G(x', r, f), solutions of (6.2) are known or can be
found. %'e will. show that by purely algebraic and
differential operations on G, a self-dual Yang-
Milks solution can be produced. (Why this proce-
dure works is not at all clear though it seems as
if it is closely related to coding all the information
about the field into the gauge transformation [see
(5.6)] required to make y, l' and y,m' vanish, for
any null. vector fields E' and m', with I', m' being
two legs of a null tetrad system P, n', m', m',
with I' n' =-vI'm' = 1, other products vanishing. )

%e first introduce some preliminary technology.
In addition to l, (4, f) of (3.2) we introduce

(6.3)

To prove this we first note that from (6.2) we
have

G '5G„=G 'G, Q-AI, , (6. 'I)

where we have used

(6.6)

G-' = G-'G G-'.
, a yC

From (6.7) it easily follows (using &G '
= -G-'EGG-') that

(6.9}

3'(G,G ') =-GAG 'I, . (6.10)

Defining V=G,G II'» we. see [using (6.10)] that

6'V-G G 'III'+ 6(G,G ')I

and

=G G'm'
, a (6.11)

from which it follows from the regularity of G that

G,G Il'=y", (x')I',
(6.13)

G,G ~an'=y,'nI, ' .
Equation (6.5) follows immediately from (6.13)
using the orthognality properties of I, n, m, and
m. By applying F' to (6.5),

6(G,G 1}=ajl,+jrn, +6' 'IIm, +k(n, —I,)
and contracting with /' and m', we obtain (6.6),
thus proving our contention.

Our second CIR1111 18 tllat j'g (x )» liow wl'lttell Rs

y.'(x )=G.G-'+6)f. -jm. (6.14)

6'v = 0- v = u, (x')I' (6 4)

if v is a regular spin-weight-zero function.
Our first claim is that G„(x', f, g) can be ex-

pressed by

G, ,G ' = y,'(x') +j I, + IIm, ,

with

(6.5)

which formally defines for each value of g and g
four independent vectors at any point of Minkowski
space. (I, is treated as if it is a spin-weight-zero
function. ) Note that, for each f and E they satisfy
Pn, = -m'm, = 1, other products vanishing, and that
any vector v'(x') can be written

v'=(v n)P —(v ~ m)m' —(v m)m'+(v ~ I)n'.

Further, it can easily be shown from the proper-
ties of g and the form of /, that

with

I =I 6(G.G-') (6.i5)

is automatically the (matrix valued) vector poten-
tial for a self-dual Yang-Mills field. To prove
this we must simply construct the field and show
that it is self-dual. This, though relatively
straightforward, is unfortunately rather tedious.
%e will sketch the proof.

Directly from (2.5) with (6.14} we have, after a
lengthy calculation,

—.'F.', =I„m„(2a al c+[j,6—I]+[-P,nj] -[II,I]}
+II.n„(5 —6c+[y, ffj]}+m,.~~„( 5+[P,I]}-
+I,.m„(rb —[p, gj]}+8,.m„( c+[y, I]}-

(6.16)
with

j = -I'6(G, .G-I),

k = I'6'(G, ,G '). (6.6)
fg =al -bm--bm +em

G,G ~=el, —Pan, —P~, +yg
(6.IV)
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We now show that F„is self-dual and hence satis-
fies the Yang-Mills equations. It is not difficult
to show that the bivectors

I tarn b]9

(lpga])b]+

m tamb]) I ])lamb]

are anti-self-dual, while

l],mb),' (lr~b]+ t b))in[ b)

(6.18)

(6.19)

are self-dual and hence the conditions for (6.16) to
be self-dual are

the parameters P and g of this section. Actually
we will be interested in evaluating functions of
x' and g at q = g and g = g. Great care must be
taken to perform appropriate differentiations,
i.e. , ]]/Sx' and 5, before restricting )) and ]] to
g and f.

If now the gauge is chosen as in Sec. V, so that
y', = y„ i.e., y', l' = y,'m' = 0 with q = (, g = g, we
have, from Eqs. (6.1'l) and (6.14),

2b —5c+[y, 5h] —[P,h] =0, (6.20)

2a —5b —c+[h, 5h]+[P, 5h] —[n, h] =0. (6.21)

y=0,
8c =h, l'=Dh =—h .ar

(6.26)

bE,'b = l t,mb)(5b —[p, 5h]}

+(l&~, +m&,m )(-b+[P,h]}

+mt~„(c —[y, h]} (6.22)

By simply using the defining equations (6.17), one
can directly show that (6.20) is an identity. To
prove (6.21) involves a further step. Call the left
side of (6.21) L; by direct calculation one can show
that 5L = 0. From the fact that h and hence L is a
regular spin-weight-1 function it then follows that
L =0. Here also we have used the regularity con-
dition on G.

We have thus shown that

Comparing Eq. (6.23) with Eq. (5.12a) we have

h —= h ( „-g „— T
= D(r7)- (6.2'I)

or

(6.28)

(6.29)

By comparing the y». of Secs. V and VI, i.e. ,
Eq. (5.9) with y,'m' computed from (6.14), and
using Eq. (6.27) we can obtain the alternate ex-
pression for p,

which is clearly self-dual. "ntroducing

x.'=c -[r, h1,

X,'= b+[P, h], -
X,

' = 5 b - [P, 5h]

(6.23)

where 5- refers to differentiation with respect
to g.

This work was supported by a grant from the
National Science Foundation.

APPENDIX A

it is straightforward to show that

X,'=I'l'[5(G „G ') —2G .& '&(G,G ')]

l
Xg= -z @Xone (6.24)

X2 —-g Xg ~

As a final point we show the connection between
the present section and Sec. V, i.e., we will relate
G top.

We first note that the freedom in the solution
of Eq. (6.2) is

+ [x„r„.] —[x„r„.],
bx, —&x.=(p —2r)x. +»x, —|)x,

—[x„r„.1+[x„r„.],

(A lb)

(Alc)

We present here for completeness the general
GL(n, C) Yang-Mills equations in spin-coefficient"
form with arbitrary choice of the tetrad vectors
l„n„m„and m, . They are

Dxz —bxb= (]) —2&)xb+ 2px) —Kxb

+ [x„r.:]—[x„r„.], (Ala)

DX, —5X, = -XX,,+ 2])x, + ( p —2e)X,

G(x', g, g) —G'(x', g, g) =g(x')G(x ', g, g), (6.25)
bxb —EX) = -vx&&+ 2PX, + (r —2P)xb

-[x„r„1+[x„r„.] (Ald)
where g(x') is an arbitrary nonsingular matrix
function of x'. This freedom in the solution for
G corresponds to the gauge freedom.

We next introduce for x' the null polar coordin-
ates of Sec. III, namely (u, r, t, t). We will, how-
ever, call them (u, r, q, g) to avoid confusion with

with

X,=Dy„. —6ybb, +y„,& —yb, , (e —e+ p)

+yba ~ (n+ p 7I') rbb ~c

+[r.;,r .], (A2a)



2908 EZRA T. %K%MAN

(A2b)

Yll~ YOO~ + Y01~ Y10~ +Yll~ (~ + + P P)

Y-„.(11+7+&-P) +Y„,( +~+n P-)

+'Y00t('Y+'Y+ P —I)
+h„., Y ] f-r,:,Y.;],

X, =&Y„—&Y,~ +Y„(& +P -7)

-Y., ~- Y,:(V+Y -Y)

Y00~ ~Yll~! Y10~~ '

No essential use is made of GL(n); we could restxict
ourselves at any time to any of its subgxoups.

S. S. Chem, Comp/ex Manifo/ds without Potentia/ Theory
(Van Nostrand, Princeton, N.J., 1967), Chap. 5.

3Actually, all bundles over Minkowski space, M, are
trivial; it can be nontrivial only when one deletes por-
tions of M or compactifies it.

In the case of a timelike t~=(1, 0, 0, 0) or a spacelike t'
= (0, 1,0, 0), the respective gauges are fxequently re-
ferred to as temporal and axial.

~Equations (3.7) and (3.8) have independently been derived
by M. Carmeli, Phys. lett. 68B, 463 (1977}.

6J. Anandan and H. Hoskies, Phys. Hev. D18, 1152(1978).
VThis result was stimulated by an inquiry from H. Boskies

and J. Plebanski.
8See P. Tod tTwistor Newsletter No. 6, Dec. 1977] for an

alternate but equivalent approach to the potential.
~G. Sparling, report (unpublished),

M. F. Atiyah and H. S. KVard, Commun. Math. Phys. 55,
117 (1977).

~~Under special circumstances, i.e., for special
A. (zg, &, g)the self-dual field will have the same radiation
field as the real asymptotically "flat" starting field. We
will explore this question in a future paper.

~E. T. Newman and H. Penrose, J. Math. Phys. 3, 566
(1962). The definitions of the D, A, 6, 5 etc. are found
here.


