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In this paper I develop a relativistic Hamiltonian and Schrodinger equation for three particles using a
generalization of the assumptions that give rise to Todorov's relativistic quasipotential equation for two

particles. This formalism is treated by a method that leads to a generalization of the separable Lagrange
equilateral-triangle solution from gravitational nonrelativistic to relativistic nongravitational bound-state

problems in quantum as well as classical mechanics. As an example I derive an analytic solution for the

spectrum of a three-body system bound by scalar Coulomb forces.

I. INTRODUCTION

Todorov's homogeneous quasipotential or rela-
tivistic Schrodinger equation for two particles was
originally proposed, in part, as a formulation from
which the relativistic eikonal expansion could be
derived in a very efficient manner. ' The Schro-
dinger-type equation comes from a homogeneous
form of the inhomogeneous quasipotential equation

T+ V+ VGT=O

by making certain assumptions about the Green's
function. The connection between the potential V

and a field theory is set by requiring that T be the
two-body on- shell scattering amplitude. Its appli-
cations to quantum electrodynamics have been
studied in recent work by Rizov, Todorov, and

Aneva. '
With an eye toward phenomenological applications,

in which the potential is not necessarily derived
from a field theory, an alternative derivation of
Todorov's relativistic Schrodinger equation has
been given based on a Hamiltonian formulation. '
Basically, we derived a two-body "Hamiltonian"
as a sum of two one-body "Hamiltonians". The
formalism developed was particularly suited to
strongly coupled systems involving world scalar
forces such as the scalar Coulomb force for large
n. In a later paper, I applied this formalism to a
phenomenological scalar linear potential. 4 A fit
to the two lowest-lying charmonium states,
$/J(3095) and g'(3684), allowed higher excited
states predicted to be tested. A third excited state
tt)"' was calculated to be at 4080 MeV. This agreed
very well with the previously measured charmonium
state at 4140 MeV.

The aim of this paper is twofold. The first is to
develop a three-body "Hamiltonian" and Schrodin-
ger equation along the lines of Todorov's quasipo-
tential approach. Todorov has recently presented
a derivation of his two-body relativistic Schro-
dinger equation by a method of generalized mass-
shell constraints. ' His approach is general enough

to be applied to the three-body problem. In Sec.
II, I present a slightly modified review of this ap-
proach as it applies to the two-body problem. I
limit myself in this paper to scalar particles and
scalar interactions. In doing so I also relate the
work in this section to earlier work on the general-
ized form of Todorov's quasipotential equation for
scalar interactions. ' In Sec. III, the three-body
"Hamiltonian" is given as a natural generalization
of the two-body "Hamiltonian" is given as a natural
generalization of the two-body case. It is required
that the kinematics and dynamics reduce to that of
two bodies when the mass and coupling of the third
goes to zero. This eliminates some of the arbi-
trariness in the specification of the potential func-
tions as well as in the relativistic kinematics. As
with the nonrelativistic three-body problem, the
accompanying equations of motion as well as the
corresponding Schrodinger equation are not sepa-
rable in relative coordinates. This brings me to
the second aim of this paper.

The existence of simple, exactly soluble con-
figurations in the gravitational three-body system
is well known. These are the Lagrange equilater-
al-triangle and the Euler collinear configurations.
Such equilibrium points, in fact, are observed
in the solar system even though they require
special initial conditions. The sun, Jupiter, and
a cluster of asteroids sharing Jupiter's orbit
known as the Trojan asteroids form a rotating
equilateral triangle system. ' The possibility
that such rotating equilibrium points may exist
for forces other than gravitational was demon-
strated in a recent paper. ' In particular, the gen-
eral conditions under which the equations of mo-
tion separate into three two-body equations were
given. Implications of the existence of quantum
analogs to these separable solutions were also ex-
amined there. In Sec. IV those results are re-
viewed in the context of the relativistic "Hamil-
tonian" of Sec. III, and I compare those equations
with the corresponding nonrelativistic equations.
The consequences of separability of the equations
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of motion in classical mechanics translates into
a separable Schrodinger equation in quantum me-
chanics. From this, in Sec. V I derive as an ex-
ample an analytic solution for the spectrum of a
three-body system bound by scalar Coulomb
forces. =F={F,X} (lo)

Ref. 3 and by a factor of E,E,/w from that given
by Todorov in Ref. 5. This has no effect other than
to scale the proper time (called r here and in Ref.
3) associated with the equation of motion

II. TWO-PARTICLE DYNAMICS

For two particles, the relativistic dynamics is
established by imposing constraints of the form
of generalized mass-sheLl conditions:"'

2 @g
=p ] + fPl g + 4' ) = 0, t = 1 ~ 2 ~

The functions 4, are Poincare-invariant functions
of the particles' coordinates and momenta. With
no external forces this function vanishes when the
interparticle separation goes to infinity. Certain
combinations of the functions P, are used to define
an effective relativistic "Hamiltonian".

The square of the total momentum,

for any dynamical variable I'.
In the absence of external forces that may dis-

tinguish between the two particles one ean choose

4~ = 42= @.

The set of invariants on which 4 may depend is,
for scalar particles,

I, =x'+ (x ~ P)2/w'-=x',

I2 = x ' P, I3 = x ' p,
I~=p', P'= -w'= const

with the derivatives with respect to these invari-
ants defined as

pl p2 & 4~, 42, 43, 4~, (13)
is defined as -w' where w is the center-of-momen-
tum (c.m. ) value of the total energy of the two par-
ticles. Energies of' the separate particles in the
c.m. frame are

respectively. The function 4' ean be eliminated if
the c.m. energies are required to be constants of
the motion. Since

1 1
E, = ——p,P= —(w'-p, '+p, '),

1 1
(w2 p 2+p 2)

w ' 2w

(4)

1 ={a,x)=o,
one has

(14)

The fundamental Poisson brackets are

The relative position variable is

{[3x+3(x a)S]4'P
2E~E2

+ p4'+ p4'j.
Hence E, and E, are constants of the motion if 4'
=0 or

4=@(x', x p, p', w'). (16)
and has a vanishing Poisson bracket with the total
momentum P. The relative momentum variable
is defined by

E2 pq —E~p2

The orthogonality condition (8) is also a constant
of motion as

From (4) follows the orthogonality condition

The two-body "Hamiltonian" is defined in terxns
of the functions P, as

se= —~+ ~=0.
This definition is used because it is easily gener-
alized to three bodies. -!~is dif'~rs by ".factor of
». , ;~. '

-"-.„"-.:..~m '. "-. " ' -il»;.-
. ." '-: -. .', .-, '.'bed in

The constraint functions fg and $2 have Zero
Poisson bracket with each other and hence with the
Hamiltonian. This is also a consequence of (16).

The energies E, and E, are constants of the mo-
tion and functions of p, and p, . Any such function
must depend on the constant of motion P'= -w'.
Hence Ej and E2 must be functions of w, m~, and
f82. In the case of two bodies, the constraints
provide these "~--~+.-'--'-= '.~ p.-r'ic."):~r
oinatia":
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2 2 2
ft), —P = 0 = P, —P2 + m ~

—m2

IE = —(w'+m '-m '),
2R'

1E = —(fv +m —m ) ~2 2~ 2 1

Since

Pj. P2
1 2(x —x)=x=p/E = ———.

2
(29)

(3o)

Other useful functions of the invariant se2 are

E' m '=E'-m '=O'=E'-m '
1 1 2 2

fI'=, (u ' —2(m, '+ m, ')u '+ (m, ' —m, ')')2 1
4' 2

(20)

the relationship between T and the proper times
of the two particles is

1= 1,2.

Por scalar potentials, the form of 4 can be in-
ferred by rewriting (24) for 4=0 as

(21} P'- O' P'+ m.'
2E 2E (32)

m = ' ', E'= (u'-m ' —m ')'.m m

gg
' 4' 2

(22)

The functions b', m, and E ax'e called respec-
tively the on-shell c.m. value of the x'elative mo-
mentum squared, the relativistic reduced mass,
and the energy of the fictitious particle of relative
motion.

Using (19), (21), and

p-p+ —p
M'

The scalar potential is introduced by the modifi-
cation of the reduced mass'

m. -m. + V„.
Then Eq. (24) becomes

E E
P = —P+P P = —P-P

24 bV
(23} (p'+m '+2m V + V„')=

2
. (35)

and substltlltlng 1Ilio 'tile HaIIllltolllall (9) yields Hence

(38)

E =E,E, /u&. (25)

fx ~ P, 3t') = —(2P+ x 4'+ 2P C')

The variable x ~ P is a constant of the motion if

The motion takes place in the hyperplane defined
by (27). Thus in the c.ln. frame the relative time
and. energy variables xo and Po are zero and the
fundamental dynamical variables are x and p.
ith this in mind the transition to quantum me-
chanics becomes straightforward. In the Schx'o-
dinger representation,

P'x (dx)q*(x)y(x)5(P ~ x)

x P=O=P 'P. (27)

These two conditions are conjugate in the sense

Hence if it vanishes initially, it vanishes for all
time. By imposing this initial condition one has
two ox thogonality conditions

(dx) P*(x)P(x)

in the c.m. frame, and the relativistic Schrodinger
equation

(38)

jx P p P)I= P' = -II ' (28)

Given the "Halniltonian" (9) or (24), these two
conditions restrict the accessible regions the
system may occupy in phase space.

The physical interpretation of v as the proper
time of the c.m. system can be verified most
readily if the p dependence of 4 is ignoxed. Con-

(-V + 4)P= fI P.

For the scalar Coulomb forces"

and the resulting spectrum ise
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x/z
ZU = m~ + m2" + 2Rl~m2 1 ——

2

where

n =n-l-2
+ [(f+ —,')'+ cz'Pi', n=1, 2, .. . .

(41}

(42)

. &3K= —+ —+ —=0.
E~ E~ E3

The equations of motion are

' = x,.=(x, , 3'

(51)

The purpose of this section has been a review. of
recent recastings and expositions by Todorov and
to a lesser extent myself on the question of two-
body relativistic dynamics. It will provide a "two-
body limit", so to speak, which I will demand the
three-body formulation to satisfy.

III. THREE-PARTICLE DYNAMICS

50

where

x E.

(x,,C „'+ ,'P, ,e „'—)/E,, (j-t )—,

(52)

As with the two body problem, the square of the
total momentum

P=P, +P, +P, (43)

is defined as -w' where I is the c.m. value of the
total energy of the three particles. Relative posi-
tion and momentum are defined by

E;, = E;E /(E, + E,).
The superscripts on the 4 's designate derivatives
with respect to the appropriate invariants [see (13}t.
Using the latter equation, it is clear that the c.m.
energies E,. are constants of the motion just as in
the case of two bodies. that is.

X'' X'5J

p, i = (E,p; —E;p, )/.zzz.

(44)

(45)
—(P, , Z)=0.

+ @ik(xik &i xikPik~z Pik }

=p; +.~n, + C, —0 (46)

The definition (the particle subscripts z, j, k are in

cyclic order throughout this paper)

2y,.= p,.'+nz, '+ 4,,(.x,,', x„p„,p„').
Hence E„E„and E, must be functions of w my„

m„and m, . Unlike the case of two bodies, the
constraints do not provide explicit forms for these
constants. In any event, when the mass and coup-
ling of pa.rticle k vanishes, the c.m. energies of
particle i and j should be given by the two-body
forms

of the constraint variables with 4;,= C, , gives the
ordinary two-body dynamics for particles i and j
if 4,.~=0= 4,.~. For scalar interactions I assume"

1E = —(zz'+m' —m'),
2w

(54)
2m 5m j

iJ E E ig 5Ji+

The c.m. energies E„E„,and E, are

1E.— P o p.

(47)
1E = (n'+m—' —m ").

2w

As with the two-body problem there are other
constants of the motion. The Poisson bracket of
P p, , with K vanishes:

1= —(zzz —2P; +Pi +Pk
EP ~ P;, ~)= —

„,
~ (E,tp, , ~)-E,(p„~))

+ 2P, Pk PkP P;P, ) . -.- (48) =0. (55)

E,+E,+E,=w. (49)

Also notice that one has orthogonality condition

P P,, =O. (50)

The fundamental Poisson brackets are as in (5)
except that there are now three variables. The
three-body "Hamiltonian" is defined as

prom the cyclic nature of this equation it is easy
to see that

P" and P ~ p. . =0,P5 PJ
E E. E E. ij

i 5 J
(56)

it is clear from (52) that it is a constant of the
motion if initially P x,, = 0 = P ~ x;~:

Thus, this orthogonality condition holds for all
time. Is the invariant P x, , also a constant of the
motion? Its poisson bracket with X can be found

by using the equation of motion for xi and xJ. Ob-
serving that
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x,.„3t)=f ~ x,
2 E 2

i j
Ek" —E 2

ek 2E E tk
k i

=0. (57)

These equations can be derived from the nonre-
lativistic-three body Hamiltonian

2 2 ~ 2

(67)

Py requiring it to vanish one has the two sets of
orthogonality conditions

xij'P=O=P;j'P, i, j=i, 2, 3, iwj. (58)

I will restrict consideration in the rest of the
paper to potentials C that do not depend on the
relative momenta P;j Using this and the ortho-
gonality condition x,j ~ P = 0 implies

2 2 2 2 2 2
Pl +All P2 +m2 P3 +m3

2El 2E2 2E3

+ U12(x„)+1i„,(x„)+1i„(x„)
=0

where

(59)

2E. '
ij

The equations of motion (52) simplify to

x, = P,./E, ,

Ps- -~i'Uij —~,"Uik ~

If I define

q =x —x.
k a j &

(61}

(62)

then combining the equations of motion from (59)
and (60) leads to

by manipulating Hamilton's equation as in (61)-
(64). ln fact, since in the c.m. frame q, =q, =0,
Eqs. (63) and (64) are of the same form as (65)
and (66} except that the c.m. energies E, repla. ce
the masses m; and the total c.m. energy w re-
places A1.

IV. SEPARABLE SOLUTIONS FOR THE PROBLEM

OF THREE BODIES

ln a recent paper on the nonrelativistic three-
body problem, I showed that the special types of
configurations of Euler and Lagrange that allowed
exact and separable solutions of the three-body
problem are not unique to gravitational forces. '
The equations of motion for these special configu-
rations could be regarded as derived formally by
applying Hamilton's equations to a separable Ham-
iltonian. Because of the analogies between (63)
and (84) and the nonrelativistic equations (65) and

(66) [Eqs. (10) and (11) in Ref. 8], the arguments
given there are easily adaptable to the relativistic
case.

The "Hamiltonian" (59) and the resultant equa-
tions (63) and (64) are not separable. This is, of
course, the primary difficulty with the three-body
problem. In the two-body problem a separation
is achieved by introducing c.m. and relative co-
ordinates. The analogous substitutions here are

q,.+ — ' ' ai=E,Z, i,j,k in. cyclic order
i j k

E;PP.= ' =- p + pk, i jk cyclic
w

(68)

where
(63) where

~j Pki7 Pk Pij '

Substituting into (59) gives

(69)

+12(q13) 1 2 1
&& =

2E ( P, —P,)'+ 2E ( P, —P,)'+ 2E ( P, —P,)'

Z( lit q21 q3) (64) + 3J,2(q, )+~„(q,)W„(q,}—B= 0 (70}

Kquations (63) and (64) are the relativistic general-
ization of

with

where

UJ2( qi) V Z
j k

'V22 U31( q.}
m2m3 m3ml

&a3'U„( q, )
+

m, m2

(65)

(66)

(71)

ql+ ~2+ ~3= 0

or from (61)

(72)

The nonseparability in (70) resides in the mo-
mentum terms rather than the coordinate terms
as with (59}. The variables p and q are not inde-
pendent. In particular,
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sos (73}

Adding 1/2E, E2E3 times the square of this to (70)
results in

This Hamiltonian is separable if Z =0. It is just
such a condition that, in the nonrelativistic equa-
tions (65) and (66), leads to the special configura-
tion of a rotating equilateral triangle in the case
of gravitational forces. That is called the Lagrange
solution. With

where

+ u„(q, ) E, - (74)

(75)

Kpl2]m~
0»i (qk) [~

i

1
&a

one finds that

(82)

The fact that this appears separable is just an op-
tical illusion. The variables q& and p& cannot be
treated as independent canonically conjugate vari-
ables because in arriving at (74) I used the triangle
constraint equations (72) and (73). They can be
treated as independent if a Lagrange multiplier of
the form ~' (q, +q, +q, ) is added to this Hamiltonian.
The resulting equations of motion are then

(83)

tor fq, [
= [q, i

= iq, i
since q, + q, + q, = 0.

In Ref. 8 I gave several examples of nongravita-
tional forces which could lead to a separable non-
relativistic Hamiltonian. The Z = 0 restriction may
or may not imply an equilateral-triangle configura-
tion depending on the mass ratios. For example,
if I assume a scalar Coulomb potential of the form

9
»»» q» + s„'U»2(q») =-~.

Bq&

Comparing this with (63) implies

(76)

(77)

V;,(q, ) = o.„V(q„)=
Iq&

then from (66)

q, a„q, ~„q,
fq, [' m, m, /q, /' m, m, i»»3 i' m, m,

(84)

These same equations of motion can also be de-
rived from (70) by using Hamilton's equations and
treating q„p, as canonically conjugate. The rea-
son this is true is that the triangle constraint is
not used in arriving at (70). In fact, that constraint
follows as a consequence of the first of Hamilton's
equations. C onsider

In the case of a general triangular solution

q, +q. +q3= o

and

(85)

1 ].
,„&=q;=E—()»- ~ )-E (l»2- S»)~a

This implies

f, +$2+qs =0.

(78)

(79)

m, m2 iq ~' m, n„

+ 2 31 q2 (86)
ps

The Hamiltonian is separable (Z =0) if

Hence the constraint q, +q, +ps =c, is a first inte-
gral of the equation of motion. The initial condi-
tions of the three-body problem imply that c, =0
in c.m. coordinates and hence , =0 in all frames.
The second set of Hamilton's equations

c}
H=j,. (80)

when combined with (78) leads to (63) and (64).
Including the Lagrange multiplier, the three-body

Hamiltonian (74} is

I. /Sm 1 Ares

m, A„
s/s

2 31 (87)
ms Q12

The triangle inequality implies

&+p& 1. (88)

(89)

It places restrictions on the coupling constants and
masses. For example, if the masses are equal,
then

E,E ' z' (q, +q, +q, ) -&=o. (81)

2 2 2

+
2

+
2 +12(q3} +23(q2} 31(q3)

Pg P2 Ps

which is clearly satisfied if the couplings are
equal.

The most attractive feature concerning applica-
bility to the quantum system, whether nonrelativis-
tic or relativistic, is the separability of the equations
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of motion. 'This would mean that the corresponding
Schrodinger equation would be separable. In Ref.
8 I demonstrated that in the case of helium, a
spectrum derived from such a procedure is mod-
erately accurate, ln fact altos~ as good as per-
turbatlon theory. Questions that I left unanswex'ed
there concerned the nature of this approximation,
in particular, how the constraint q, +q„+q~=0 is to
be imposed on the wave functions and eigenvalu s.
That will not be dealt with ln this papel either.
The purpose here is to obtain a relativistic three-
body quantum spectrum by applying this separable
approximation to the three-body relativistic Schro-
dinger equation whose classical "Hamiltonian" for'm
is given in (81).

The quantum analog of (81) is

X@=0 . (90)

It is a three-body homogeneous quasipotential or
relativistic Schlodlngel" equation. If I wllte this
equation in the c.m. system where e', j', = 0, then
imposing the separability assumption Z =0 leads to

3

2 2

+ &„(0,)+&.„(O,)+"0„(q.)
2P. I 2/2 2P ~

&& |t (T&„q„q,) =&g(e„t)„q,) (91)

(I suspect that the principal quantum numbers
n„n2, )z3& are not arbitrarily related. This is one
of those problem areas mentioned above. ) Hence

'))Z ~')N'2&12 VZ2PPl ~ Q2~ W ~P)Z I&~1
2M'n, ' 2M%, '

Notice that if m„n», e2, -0 then

'P)Z ~VE2 Q»
Hi = PN&+ m2—

(97)

That is, the three-body spectrum (97) has the ex-
pected two-body "limit" (98).

y. A RELATIVISTIC SPECTRUM FOR THE SEPARABLE
THREE-BODY PROBLEM

This is not a trivial kinematical generalization
of the nonrelativistic spectrum. The reason is that
the E,. 's are unknown functions of the c.m. total en-
ergy u and the m,. 's. To determine what these
functions might be I shall require that the formal-
ism have the correct two-body limit. This was
mentioned earlier below Eg. (53). Notice further
that the three-body "Hamiltonian" (70) reduces to
the two-body form

In the nonrelativistic Limit
P12 @12 (99)

(92)

and the variable B becomes the binding energy. To
see this let

(93)

SI; =SE,+aE,+aI', .
Substituting into (71) and assuming n, E «M leads
to 8 = -n, Z. For the scalar Coulomb potential (84)

(96)

if the mass and coupling of particle 3 goes to zero
in such a way that E, and E, reduce to the forms
given in (19)." In particular,

m, 2 m22

2 Ei E2

The primar"y problem, insofar as the kinematics
is concerned, is the determination of the functional
dependence of E„E„E,or ge, ))z„m„m, . As men-
tioned above, the constraints do not provide an
answer as in the two-body case. It is, however,
important to obtain these functions so that the
eigenvalue 9 is expressed in terms of the total
c.m. energy. The variable 8 is related to binding
energy. In particular, if the particles are un-
bound and static then

(SU + 2)')z» —M ~ —))E~ —2)%Hi ~+ ))l -')H~+ P'0))')z~))

Obviously 8 vanishes in this case. In the general
case, zc &3l =n), +w2+m„so the choice

+m,.m,.+ m,.m, +f,(u' —m'))

is an obvious extension of (101). The functions
f, are not entirely arbitrary. If the kth particle
decouples and has a zero mass and energy then

E, =—[gv' —m, ' —m,.' —2m, m, +f,(ur' —(m, + m, )')j = 0

(103)
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or

f,(xu, m, , m, , m, ) I,~=-I (104)

u d' cu l&(l, +1) mmmm~ ai,2+ 2
2E~EA dpi 2E~Ea qi EPEa

or

1Z. = —[u'+ 2m -' —m .'+ m.mi j i

+f,(ur' —.(m, + m))')]

1= —(zg'+m. ' —m .'),
2K

1f, (w, m, , m~, m, ) I, ,=-, .

(105}

(106)

To determine the spectrum compare it with the
nonrelativistic Schr5dinger equation of the form

1 d' l(l+1} o. p'
, + ~ ——+ 2 u= su. (115)

2m dg 2m/ Q 2m/

It has the eigenvalue solution

mQ
2n

Furthermore, (49) implies

f, +f2+fs =o ~ (107)

where by analytic continuation of the angular mo-
mentum

In the application of this to a bound-state sys-
tem, the individual Ei's are not observable quan-
tities. Thus, as long as their sum is sv it should,
in principle, not matter what functions are chosen
as long as those choices are consistent with the
definition (48) and the limiting forms in Eq. (19).
In particular, for equal masses the choice E, =E,
=E, =wl3 is consistent. This implies that

f, (ut, m, m, m, }= 0.

An example of a class of functions that satisfy
(104), (106), (107), and (108) is

n'=n- I-k+ [(I+4}'+P']'".
Applying this to (114}implies

EgEg mymp 2 1
2' E& E~ ~~ n~

m) my Qgy
2 2 2

2soE E„n,"
where

n,' =n, —l, ——,'+ [(l, + -,' }2+P,.']' ~'

1 (m(mg) "+(m(ml)" 2(m~mq—)"
2 (m, m2)" + (m, m, )"+ (m, m, )"

q & 0. (109)

(1

Hence the eigenvalues for the total c.m. energy
~ are given by the solution to

The separable relativistic three-body Schro-
dinger equation (91}is equivalent to three two-
body equations of the form

& =&i+&2+&3

or to

(121)

(
' +&„(a,) 4(tt, ) =&((q, )

2p, i
(110)

2 2 2 2 2 2
m2 m3 m) m2 +y2

R8 /2E n

2 2 2 2 2m2m, a» m, m, ~,
uE, E,n," pe, E,n,"

8 =8, +82+83.

Now the relativistic scalar potential in the c.m.
frame is, from (47),

(122)
, a -OandE, andE t~e

on their limiting form (19) then solving this equa-
tion for u' yields (41)." In the general case it is
necessary to have explicit forms for E..

In general

with

m)mg, , Eg+EI
EE

&la
V

lq, I

(112)
1E.= —(mB+2m. ' —m ' —m —2m.m

3% i j 0 j

+m,m, +m,m~+f, (w' —M')) . .

For small coupling, the nonrelativistic result
(9'l) should come from (122). The binding energy
ls

The radial form of the relativistic Schr5dinger
equa, tion (110) ts (pi= Is~ I "ere)



and using the approximation in (123) gives

E.-m. — h. m, ,

is that the linearity of their appearance allows
(107) to be imposed.

In the relativistic case I define a va, riable ~2 by

where

2 Mh. = ——(1+f ) —1..
3 m

(126)

Using this in (122) and retaining only terms of
01'del' nE/M leads 'to

1,m2z„2 1 m2m, @23'

gl =M'- 3A

1
&,.= —(m,. M —n,'(I +f, )) . .

Equation (122) can be rewritten as

svE, E,E, —m, 'E2E, —m, 2E, E, —m, 'E, E,

(128)

1 m3mg QgI+—
2 Mn2

and ut is the same as given in (97). Notice that the
arbitrary functions f, do not appear. The reason

2 2 2m, m E,e,
SUPl3

2 2 2m3 mI E2&~I

2

Substituting (128) leads to

2 2 2m2 m, E,ctt2,

un~
j.

n'- n'(m, '(m, + m, )+m,'(m, + m, )+m,'(m, + m, ))
2 2 2m, m, m, m, a„m2m, m2m, m, @23 m, m, m, m, ~„+ 4 3m,'m2m, 'M + 2 + 2 +

p2n3' Pl
$

n2

-m'm'm M — ' ' + + ' " =0 131/2 j'2 /2
Pls Flg Pl2

m,' =m; /(1+ f;) .
The spectrum that this equation implies is not uniquely determined unless the set of functions f,. can be

uniquely specified. In the case of equal masses (m, =m, =m, =—m) f, =f, =f, =0. I further assume for sinl-
plicity that z„=n»= n„= n and that Ply &2 FE3 Pl and l l2 l3 l where

n =n I .'+[(I+-,')'-+--', o']'/'-

The factol' of 3 follows f1 QIII (120). Thell (131) IIIlplles

n'- Gm'~'+ m'(9+ 3u'/n") n'- 9(o2/n")ms = 0.

This equation has three roots. The only root that vanishes as II'-0 (so that w'-M') is
o2 1/2 ((11/n12)(1 3(II/np2)1/2

a2 =2m' 1 — 1 —— COS-,'tan '
n' 1 ——n2/n'

or

c/' '/' n' (1 —-'cP/n~)'/2= 3m + 6m 1 —— cos3 tann" n" 1 —zn'/n"

This is to be compared with the two-body spectrum

nP = 2m' + 2m'(1 — /&In)' './

VI. CONCLUSION

The primary results of this paper are summar-
ized in Eqs. (59), (63), (70), (71), (81), and (90)
which give the various exact forms of the relativ-
istic three-body "Hamiltonian" and Schrodinger
equation. In general. , even for simple potentials,

there are no exact solutions. Numerical methods
are needed. Because the classical equations of
motions or the corresponding Schrodinger equa-
tion are not separable, even this type of analysis
can become quite involved especially for simple
model calculations. The forms (63), (81), and
(90) become separable and more tractable when
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g =0. In particular, the separable relativistic
SchrMinger equation (91) becomes as easy to
handle as an ordinary reduced one-particle Schro-
dinger equation. The separability assumption can-
not be classified as an approximation in any per-
turbation sense. Rather, when applied to any pa, r-
ticular problem it amounts to a rather strong phys-
ical assumption or restriction on the nature of the
orbits. In the case of gravitational forces in non-
relativistic mechanics, the orbits in the equilat-
era. l-triangle configuration are known to be stable,
at least with respect to linear perturbations. "
The gulf between this classical system and a rela-
tivistic submicroscopic quantum system is enor-
mous but the formalisms are similar. One might
speculate that such special three-body solutions
are of fundamental importance in the quark model
of ba, ryons. " The forces are not restricted by the
forms to be gravitational.

Besides the unanswered questions alluded to in
the paragraph below Eq. (89), there are nontrivial
problems that remain with the relativistic three-
body formalism developed here. The determina-
tion of the functional dependence of the c.m. ener-

gies E,. on ge, m„m„m, is not clearly resolved
as it is with the case of two bodies. In that case,
the functional dependence was fixed by imposing
the constraints in a form other than in that of a
"Hamiltonian". The problem with three bodies
is that there are no combinations of the constra, ints
that involve the cross terms pyp2 p2p3&pyp3 which
appear in (48). If that problem is resolved, the
uniqueness problem for unequal masses inherent
in the definitions (102) and (109) will, it is hoped,
be eliminated. These are subjects for future papers.
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