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The inverse scattering formalism for reflectionless potentials is extended to the reconstruction of central
potentials in three space dimensions. An approximate interquark potential is derived from the Q(3.095) and
Q'(3.684) levels and leptonic decay widths. Remaining ambiguities are discussed in detail. Consequences for
the Y' family and prospects for refining the interquark potential are explored. '

I. INTRODUCTION

An extensive literature'now supports the notion'
that mesons which are composed of massive quarks
may be described in terms of the nonrelativistic
Schrddinger equation. An impressive phenomenol-
ogy of the psion family has been constructed fol-
lowing the analogy between (e'e ) positronium and
(ce} charmonium. Several approaches to the prob-
lem have been fruitful. The most thoroughly ex-
plored of these has been the explicit-potential
technique in which a specific form is assumed for
the interquark potential. In most applications,
this potential (which is thought to result from the
exchange of massless gluons) has been assumed to
be a superposition of a Coulomb term and a linear
confining potential. ' However, no compelling der-
ivation of this form from the underlying field theo-
ry has been given, and alternative suggestions4
have met with some degree of phenomenological
success. Consequently, it has been of interest to
obtain general results which permit the properties
of the potential to be inferred from experiment.
For example, the scaling of observables with quark
mass has been investigated by a number of authors, '
and several important theorems on the order of
levels and on leptonic widths have been proved. '
In addition, general results (which do not depend
upon details of the potential) on the number of
levels below new-Qavor threshold' and on other
connections between observables' have been ex-
hibited. %e present here, as a complement to
these approaches, the first application of the in-
verse scattering method to the determination of
the interquark potential.

In the preceding paper' (hereafter denoted as I)
we developed a technique for reconstructing a
symmetric, confining, one-dimensional potential
V(x) from the energy spectrum of its bound states.
The energies E„of the N lowest-lying bound states
determine an approximate potential Vst(x) which is
a rational function of exponentials. The approxi-

In particular examples it was seen that the choice

E,=-,'(E +E „) (1.3)

resulted in excellent approximations. For values
of x within the expected range of validity, the se-
quence of approximations Vz(x) was shown to ap-
proach rapidly the exact result, yielding faithful
representations of V(x) for Ã as small as 3 or 4.
Qle now apply this method to the problem for which
it was conceived.

Within the framework of the nonrelativistic
SchrMinger equation with a central potential,

+ V(&)
~
e(r) =Em(r),

Vs

&2p i
(1.4)

the procedure we shall describe for calculatipg
V(s') is explicit and essentially unambiguous. We
restrict our attention to spin-triplet quarkonium
states. The possibility of going beyond (1.4} to in-
corporate spin-spin, spin-orbit, and other rela-
tivistic effects will not be discussed. In Sec. II we
collect some important formulas derived for the
one-dimensional problem in I and make the neces-
sary extensions to the S -wave radial equation in
three dimensions. The approximate potential V, (s')
deduced from the masses and leptonic decay widths
of P and P' is the subject of Sec. III. Assuming the

mation Vn(x) is a symmetric, ref lectionless poten-
tial which supports N bound states at the first N
bound-state energies of V(x). It is not confining,
but approximates V(x) over a range which is rough-
ly delimited by the classical turning point ~x„~ of
the highest level included, where

v(. ~~. ~) =E„. (1.1)

(For simplicity we consider a potential which is
monotonically increasing for x&0.) Beyond the
classical turning point, V„(x) approaches a value
E, which lies between the highest level included in
the approximation and the lowest level omitted,

E &Q gg
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interquark potential to be independent of quark
flavor, as it would be in quantum chromodynamics,
we apply the reconstructed cc potential to predict
properties of the new quarkonium system suggested
by the discovery" of the Y family. We also solve
the P-wave Schrddinger equation in the reconstruct-
ed potential to determine the positions of 'P, levels
and radiative decay rates. The manner in which
such derived predictions may be used to resolve
ambiguities in the reconstructed potential is ex-
plained. Section IV contains a summary and con-
clusions.

u(~) =~R(r) (2.9)

is

u"(~)p, +V(r) —E u(r) =0. (2.10)
1 „ /(3+1)

2p, 2/x

provide a sequence of approximations to V(x) and
its bound-state wave functions.

The reduced radial equation which follows from
(1.4) upon substitution of

. (2.3)

K„'=2p(E, —E„), (2.1)

where p, is the reduced mass and E, has been cho-
sen according to (1.3). We define an N &&N matrix
A with elements

(2.2)
m m g + g

where

X„(x)=c„exp(- v~),
and the constants c„are given in terms of the x's
by

~n ~m+~n (2.4)

We showed using the Gel'fand-Levitan inverse scat-
tering formalism that a symmetric, reflection-
less potential which supports bound states at
E, E, . . . E„is givenby

d
V~(x) =E, —2, ln (Det A ) .dx' (2.5)

II. INVERSE PROBLEM FOR THE RADIAL SCHRODINGER

EQUATION

We first summarize the procedure derived in I
whereby a symmetric, confining, one-dimensional
potential V(x) is locally reconstructed from the
energies En of its first N bound states. The re-
constructed potential is specified by the N bound-
state para, rpeters

For S waves, Eq. (2.10) is identical to the one-
dimensional Schrodinger equation. As a result,
formulas (2.5) and (2.7) may be applied to the study
of quarkonium systems. However, because of the
boundary condition

u(0) =0 (2.11)

imposed by the finiteness of the radial wave func-
tion at the origin, only the even numbered param-
eters v„v4, . . . correspond to energy levels of
physical states. The remaining parameters v„
K3, . . . describe states of a one-dimensional sys-
tem which have even parity and hence do not sat-
isfy (2.11). Consequently, in order to apply the
one-dimensional formalism to the S-wave char-
monium system, we must regard g and g' as the
second and fourth levels of a symmetric one-di-
mensional potential V(x) = V(—r) The e.ven-parity
levels which occur in the one-dimensional problem
are interleaved with the physical psions, onebelow
the g, one between th) and g', and so on.

The values of the parameters K„tc„.. . that cor-
respond to physical states are determined directly
from particle masses (with a given choice of E,
and charmed-quark mass). The others (z» z». . .)
do not have immediate physical significance. How-
ever, the wave functions of the physical states de-
pend through (2.7) upon the "unphysical" parame-
ters ~„~„.. . . The square of a '8, wave function
at the origin is measured by the leptonic decay
rate as"

The. corresponding normalized bound-state wave
functions, which obey the condition

(2.12)

dx[P„(x)j'= 1, (2.5)

are obtained from the formula

1 DetA'n'
Det A

(2 7)

The matrix A'n' is simply given by A, with the el-
ements of the nth column replaced by their deriva-
tives with respect to x. Equations (2.5) and (2.7)

where M& is the vector-meson mass and eQ is the
charge of the constituent quark. This piece of in-
formation permits the determination of the odd
numbered K's from experimental data.

To illustrate these points let us construct the
N =2 approximation to the charmonium potential
from the mass and leptonic width of g(3.095). We
must first choose a charmed quark mass rn, and a
parameter Eo According to th. e rule(1. 3), the lat-
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ter should lie about halfway between E,=M~ and the
unphysical level at E,. The parameter e2 is then
given by

K, =[m,(z, -M,)]'~2. (2.i3)

To compute K, we employ Eq. (2.7) to construct the
approximate wave function. Imposing the condition

(2.14)

~ (0) 2(«.y,,y,.y,)"
D(0)~v

)& [y„y„(K,—K, —K,) +y„y„(K,—K, —«, )

+ y»y23(«3 —K, —K,) + (K, + K, + K,)] .
Here we have abbreviated

D(K) = DetA(x),

(3.6)

(3.6)

which allows the identification

u„(2) =v 2 g„(2), (2.16)

where A is defined in (2.2). In particular, we have

(o) = [ y»y»y„+y»y»y„+y»y»y„

we obtain

[y(0)]2 2( 1 2
4m'

(2.16)

from which

4w[4 (0)]'
K

(2.17)

The formula (2.5) yields a reconstructed potential
V2(2') in terms of K, and «', .

In the next section we shall construct the approx-
imate interquark potential V4(2'). For N) 2 we have
found no simple analog of (2.17) for the odd-num-
bered K's. We shall determine them implicitly
through (2.7) and (2.12).

+~1824~34 +~12~13~24~34 +~12~23~14~34

+y„y„y„y..]. (3.7)

The parameters «', and K, are fixed by solving (3.4)
and (3.5) numerically with the experimentally mea-
sured wave functions at the origin.

Before displaying the %=4 approximation to the
charmonium potential, we shall briefly discuss
two three-dimensional examples which illustrate
the technique. They also indicate the response of
the inverse scattering equations to potentials sing-
ular at x =o. This is an issue of some practical
importance because general arguments based upon
quantum chromodynamics suggest that the inter-
quark potential will have such a singularity. For
these examples we set 2p, =l.

We first consider the Coulomb potential

III. HEAVYQUARK SPECTROSCOPY V(r) = I/r, (3.6)

A. Calculation of central potentials

The N = 4 approximation to a central potential is
calculated from the masses and wave functions at
the origin of the two lowe'st-lying S-wave bound
states. For the 'S, states of the charmonium sys-
tem, the parameters v2 and v4 are obtained from
the g and 1IY masses,

K, =[m,(E, I„)]"',
K, = [m, (E, M,,)]"'.

(3.i)
(3.2)

The remaining parameters x, and v3 are determined
implicitlyby the inverse scattering formulas which
express the wave functions at x=0 in terms of the
I(."'s. Introducing the notation

K]+Kg
Ygg-

Kg —Kg
(3.3)

)1/2
(0} ( 2y12y23y241

D(0)~ir

X [y13y14(«1 «3 «4)+y13y34(«1+ «4 «3)

+y„y34(K1+ K3 K4) + (K1+K3+K4)], (3.4)

we may write the wave functions at the origin using
(2.7} as

which is neither confining nor reQectionless. Our
~ concern, however, is not the convergence of the
method to the exact potential, but to learn how the
singularity is imitated. In this case there is a na-
tural choice for the parameter E„namely,

E =0. (3.9)

The K's are determined" by the bound-state ener-
gies

1
2 16

and wave functions at the origin

(
4', (0)

~

' = I/64v .

(3.ioa.)

(3.10b)

(3.11a)

(3.11b)

V(2) = In(r) . (3.i2)

An int;erquark potential of this form is suggested"

The resulting approximation V3(2) is compared
with the true potential (3.6) in Fig. 1 The manne. r
in which the pole at the origin is simulated is note-
worthy.

As a second example we consider the logarithmic
potential
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0 I'($ e'e ) =4.8+0.6 keV,

I'(g'-e'e ) =2.1+0.3 keV.

(3.14a)

(3.14b)

2

For a given choice of E, and m„ the parameters
I&, and z, are given by (3.1) and (3.2). The value of
E, certainly must lie between M(g') and 4.03 GeV/
c', the position of the 3'8, level. In practice we
find it sufficient to restrict our attention to the
slightly smaller range

3.75 Geg & Ep & 3.9 Qe7. (3.15)

I

0 2
I I

6 S l0

FIG. 1. Two-bound-state approximate reconstruction
V4(r) of the Coulomb potential compared with the exact
potential (3.8). The physical and unphysic al levels are
indicated by solid and dashed lines, respectively.

by the equality of the g-P and T-T' level spacings.
Numerical evaluation of the energy levels and wave
functions leads to the appropriate'parameters" for
the inverse scattering equations. The approxima-
tion V,(r) is compared with the true potential (3.12)
in Fig. 2.

B. The charmonium system

The observables from which we shall reconstruct
the charmonium potential are the masses E,(T) =E,(g) +2(mq —m, ) . (3.16)

It remains to choose the charmed-quark mass.
In Fig. 3 we show 20 distinct charmonium poten-

tials corresponding to the choices Ep=3.75, 3.80,
3.85, 3.90 GeV and rn, =1.1, 1.2, 1.3, 1.4, 1.5
GeV/c'. All of these reproduce —by construction-
the observables (3.13) and (3.14). It is striking that.
smooth potentials of such diverse character rang-
ing from Coulombic (m, = 1.1, E,= 3. t 5) to linear
(m, =1.5, E,=3.8) and beyond (m, =1.4, E,=3.85),
are achieved.

We shall also explore the implications of the re-
constructed charmonium potentials for the Y sys-
tem. The T(9.4) and T'(10.0}are regarded as the
1'S, and 2'S, levels of a QQ system. The appro-
priate value of the heavy-quark mass ~z for each
of the 20 potentials displayed in Fig. 3 is chosen
by requiring M(T) =9.4 GeV/c'. The ordinates for
the g and T systems are then related by

M(y) = 3.095 Gev/c',

M(g') = 3.684 GeV/c',

and leptonic decay widths"

L

0cl

(3.13a)

(3.13b)
We find mz/m, essentially independent of E,(g),
and varying between 4.1 (for m, = 1.1 GeV/c') and
3.2 (for m, =1.5 GeV/c').

The presence of four T levels in all the potentials
of Fig. 3 is a consequence of the choice of Ep
and of the stipulation that m(T) =9.4 GeV/c'. ' The
palue of E, 'is not necessarily correlated with Qa-
vor threshold. However, it is possible to estimate
the number of nar'rosv T levels (those below flavor
threshold} directly from Fig. 3 if the two flavor
thresholds differ by 2m+ —2m, =ED(T) —Eo(g)."
The flavor threshold for the charmonium system is
a line lying 45 MeV above the g' on the left-hand
side of each picture in Fig. 3. The corresponding
flavor threshold for the 7 family is the extension
of this line to the right. Thus, one would expect
four narrow T levels for small m, and Eo (lower
left-hand corner of Fig. 3), and three for large
m, and E, (upper right-hand corner of Fig. 3).

I l

0 2 4
l I

6 8 lo

FIG. 2. Two-bound-state approximate reconstruction
V4(r) of the logarithmic potential compared with the ex-
act potential (3.12). The physical and unphysical levels
are indicated by solid and dashed lines, respectively.

This is in accord with the expectation of three or
four narrow Y levels obtained in Ref. 7 in a semi-
classical approximation.

For a given value of E„Fig. 3 shows that small-
e'r values of m, are correlated with deeper poten-
tials. Since the levels
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X, is shown as a function of m, and E, in Fig. 4.
To compare it with experiment, we note that spin-'
orbit and tensor force contributions vanish for the
combination

. rdV'
E„=(&+V)„= — +(V). (3.17)

are fixed, decreasing m, is correlated here with
more negative (V) and larger ((r/2) (dV/dI ))
(steeper potential, greater kinetic energy). The
potentials also become deeper for fixed m, and de-
creasing E„corresponding to a decreasing ratio
of K~/K2.

In order to sharpen the estimates of m, and E,
we now focus on two spectral quantities which are,
to some degree, known from available data: the
P-wave charmonium levels and the Y-Y' mass
difference.

The predicted mass of the 2P charmonium state

(M(2 'P)) —= 9 [M('Po) + 3M('P, ) + 5M('P, )] (3.18)
= 3.52 GeV/c'.

The numerical value in (3.18) comes from masses
quoted in Ref. 17. Values of m, and E, in the low-
er right-hand corner of Fig. ,4 are preferred.
Mariy of the models noted in Ref. 3 predict too low
a value of M(l(, ); this may be connected with the
higher charmed-quark masses occurring in such
models.

r(
FI . . erquar p eIG. 3 Int k otentials reconstructed from the masses and leptonic wid hs' t of 3.095 and ' 3.684). The level. s

~ ~ ri ht-handof charmonium are in ica e on e ed' t d th left-hand side of each graph. Those of the Y family are shown on the 'g
~ ~ . 3side of each graph. The solid lines denote 3Si levels; dashed lines indicate the 2 Pz levels. The 20 po en i s epic e

correspond to the choices E0=3.75, 3.8, 3.85, 3.9 GeV and m, =l.l, 1.2, 1.3, 1.4, 1.5 CeV/c .
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I.5 =-
M(Xc} (GeV/c )

I.5
1(T e+e ) (keV)

Al
CP

~e I.S
C9

I.P.

I4

12

E
l.2

5.90'3.75 3.80 3.85
E. (Gev)

FIG. 4. Contours of -the predicted mass of the 23P+
{X,) level of the charmonium system as functions of the
parameters Eo and m~.

I.I'
5.75 5.80 . 5.85 3.90

E, (GeV)

FIG. 6. Contours of the predicted leptonic width of Y
as functions of the parameters Eo and m .

A contour plot of the predicted Y-Y' mass dif-
ference is shown in Fig. 5. The shapes of the con-
tours are similar to those in Fig. 4. The experi-
mental values"

0.61+0.04 GeV/c'
(three-peak hypothesis),

(3 19)0.65+0.03 GeV/c~
(two-peak hypothesis)

again favor values of E, and m, in the lower right-
hand corner of the figure. A specific potential
which reproduced the result (3.18) when construct-
ed to give the observed Y'-Y spacing already has
been noted in Ref. 13.

The small values of m, = 1.1-1.3 GeV/c' implied
by comparison of Figs. 4 and 5 with (3.18)and (3.19)
tend to weaken somewhat the case for a nonrelati-
vistic approach to charmonium spectroscopy.
However, these small values have been encount-
ered previously: They are obta, ined from sum'rules
for e'e a,nnihilation, ' and are required if the spe-
cific model of Ref. 13 is constrained to fit
I'(P-e'e )."

The similarity of contours in Figs. 4 and 5 pre-

vents an unambiguous choice of E, a.nd m, . A very
different dependence is exhibited by the leptonic
width of Y, shown in Fig. 6. This quantity is pa. r-
ticularly sensitive to short-distance behavior of
the potential not probed by existing data. A clear
correlation may be noted between la, rge values of
I'(T e'e ) and highly singular potentials. (See the
lower left-hand corners of Figs. 6 and 3, respec-
tively. ")

The higher-lying Y' samples values of the po-
tential that include those related to charmonium
spectroscopy. Indeed, the predicted values of
I'(T'-e"e ), shown in Fig. 7, vary less strikingly
than those of I'(T-e'e ). This relative insensi-
tivity to parameters may be useful for a test of
the heavy-quark charge ez."

Additional information on the preferred values of
m, and E„very different from that provided by
present data, will come from a measurement of
the 2S-2P splittings in the Y system. The pre-
dicted values are shown in Fig. 8. For singular
(Coulomb-type) potentials, such as occur in the
lower left-hand corner of Fig. 3, the 2S and 2P
levels are nearly degenerate. They move apart

l.5—
M(T ) —M(T) (GeV/c2)

l.5
I'(T' e+e ) (keV)

OJ

w I.5
C9

E l.z

l.4
M

~~ I.B

E
l.2

I.I' 3.75 3.80 5.85 3.90
E (GeV)

FIG. 5. Contours of the predicted Y-Y' level splitting
as functions of the parameters Eo and m, .

3.75
I.I— I

s.so &.85
E (GeV)

3.90

FIG. 7. Contours of the predicted leptonic width of T'
as functions of the parameters Eo and m~.
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M(T) —M(Xb) (GeV/c )
1.5 1.5

M(T")- M(T') (GeV/c )
I I

1.4

I.B

E
1.2

14-
N

V

15
0.40

1.2

0.35

0.

'
3.75 3.80 3.85

E, (GeV)
3.90 1 alp 75

Js
3.80 3.85

E. (GeV)
3.90

Flo. 8. Contours of the predicted 2$-2P splittings of
the Y family as functions of the parameters Ep and tRc.

as the potentials become shallower.
The Y"-Y' splitting is displayed in Fig. 9. It is

slowly varying over the range of interest, a fea-
ture compatible with previous expectations based
on specific models. " The three-peak hypothesis
of Ref. 18 gives

M(T") -M(T') =0.39~0.13 Gev/c'. (3.20}

For the purpose of further discussion we have
chosen two specific values of rn, and E„ lying
along approximate contours of Figs. 4 and 5:
(m„E,) =(1.1 GeV/c', 3.8 GeV) and (1.2 GeV/c',
3.85 GeV}. These choices ensure (i) approximate
agreement with the constraints (3.18), (3.1S), (ii)
reasonably smooth behavior with x, and (iii} a pair

FIG. 9. Contours of the predicted T' —Y" level splitt-
ing as functions of the parameters Eo and nzc.

of potentials between which new experimental data
can provide a reasonable distinction. Some prop-
erties of levels in these two potentials are shown
in Table I.

The uncertainty in the value of I'(7-e'e ) appar-
ent from Table I already has been noted in connec-
tion with Fig. 6. The other leptonic widths are
more stable. They fail to decrease monotonically;
compare Y' and Y". This effect is an artifact of
the oscillating convexity of the reconstructed po-
tential. "

The predicted radiative decay widths of the g'

states into Xcy are considerably too large. A si-
milar discrepancy arises in specific potential
models, ""and may indicate a general shortcom-

TABLE I. Predicted properties of levels in two quarkonium potentials.

~ (GeV/c 2)

I'„b (keV)

m, = 1.1 Gev/c2
Eo =3.8 GeV

9.40 (input)

1.19

inc =1.2 Ge&/c2
Ep=3.85 GeV

9.40 (input)

0.69

Experiment~

M (GeV/c 2)

1"„b (keV)

9.98

0.32

9.96

0.27

I (GeV/c 2)

g It

l'ee' (keV)

M (GeV/c ')
y II1 r„b (keV)

)t, {2&) (M} {GeV/&')

&c= &0
(0'-x, v)'

Xc f
{keV)

&c ='I'2

10.32

0.33

10.58

0.18

9.89

50

10.27

0.30

10.54

0.18

9.81

60

aRef. 17.
beq = —3 is assumed.

In the expression I'(y' )t {~Ps)y}=4+so 2{24+1)~ya I (g'l r l)t) I ~/27, the experimental
values of the photo n energyny deriv~ from the pa~icle masses of Ref 17 are used
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ing in the nonrelativistic Schrodinger bound-state
picture of charmonium. '~ However, radiative de-
cays are particularly demanding tests of struc-
ture, "probably requiring more pieces of informa-
tion than the four (less two free parameters) at our
disposal.

IV. SUMMARY AND CONCLUSIONS

With the wealth of charmonium data now avail-
able and the prospects for measurement of a still
richer Y spectrum, it seems likely that future ef-
forts toward a theory of heavy-quark bound states
will fall along two main lines of investigation, one
theoretical, the other phenomenological. Attempts
to relate the interquark potential function V(x) to
fundamental theory" will be complemented by
phenomenological determination of this function
from the measured bound-state parameters. The
work described here and in I is directed toward
the phenomenological investigation. Within the
framework of the nonrelativistic Schrodinger equa-
tion with a central interquark potential V(x), we
have developed a systematic method for recon-
structing V(x) from the masses and leptonic decay
widths of 8-wave bound states. With information
about N bound-state levels, the method provides
an explicit formula for a reconstructed potential
V»(x). A mathematical proof that V»(x) conver-
ges to the exa.ct potential V(x) is still lacking.
However, the examples studied in Sec. IVof I leave
little doubt that this is the case for any reasonably
smooth function V(x). More importantly, these
examples clearly show that the number of bound
states needed for the practical application of this
method is very sma. ll, with V,(x) (two bound sta. tes)
already providing a rather accurate approximation
to V(x) over some range of ~.

The charmonium potential V, (x) constructed from
g and P' data was discussed extensively in Sec. III.
The ambiguities in V, (w) associated with the choice
of charmed-quark mass and E, parameter may be
viewed as a commentary on the limits of our pres-
ent knowledge of V(r) and the manner in which this
knowledge will be refined and extended by future
measurements of the Y system. Already the com-

bined evidence of the Y-Y' splitting and the P-wave
charmonium levels suggests a rather small value
for the charmed-quark mass, rn, =1.1-1.2 GeV/c'.
The sensitivity of quantities such as I'(T-e'e ) and
the T -X~ (2S-2P) splitting to the remaining ambi-
guities in V, (x) serves to emphasize that these
quantities probe values of x which are not explored
in the charmonium system.

We conclude that inverse scattering techniques
provide a valuable tool for analyzing and correlat-
ing currently available quarkonium data and for
using these data to estimate the spectral param-
eters of the Y system. This approach can comple-
ment the more familiar explicit-potential tech-
niques that allow the incorporation of theoretical
prejudices regarding the form of the potential at
short and long distances. But in our view, the
most encouraging aspect of the present work is the
prospect of reconstructing the quark potential from
forthcoming data on the Y system. According to
general arguments, ' which are borne out by the
specific potentials studied in Sec. III, this system
is expected to have at least three and possiblyfour
narrow 'S, bound-state levels. From the examples
described in Sec. IV of I, we expect V, (x) or V, (r)
to provide a very accurate representation of the
true potential. Moreover, the assumptions and
approximations which go into a nonrelativistic
potential model should be much more reliable for
the heavier quarks which form the Y states. Thus,
when the Y levels are accessible to e'e machines,
they will provide an extremely detailed and accu-
rate measurement of the potential which binds
quarkonium.
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