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A general formulation is given for the derivation of relativistic equations and associated potentials describing
the field-theoretical interaction of two or more particles using a recently developed functional, field-

theoretical formalism. The latter allows an exact single-time treatment which makes possible a global (i.e.,
oft'-shell) definition of the potential as a certain set of "connected" contributions. The potential thus obtained
is a nonlocal operator with a precisely defined energy dependence. Simple, illustrative applications to N-
electron and N-nucleon systems are given, and the one-boson exchange and annihilation potentials for the
nucleon-antinucleon system are calculated. The one-boson annihilation contribution is shown to be quite
important. Remarks concerning the applicability of the formalism as well as extension to non-Abelian gauge
theories are presented.

I. INTRODUCTION

This paper is devoted to the presentation of a
general formalism for developing two- as well as
many-body equations describing the effective field-
theoretical interaction of systems of fermions and
antifermions which are pure enough in their parti-
cle composition to allow a useful description by
means of such equations. This procedure is based
upon a recently developed, functionally based,
field-theoretical formalism, ' and differs from the
existing ones in several important respects. In
addition to illustrative applications, a calculation
of (relativistic, off shell) single-boson exchange
and annihilation nuclear potentials is given which
shows the essential importance of the latter for
nucleon-antinucleon systems.

A survey of the work on the problem of repre-
senting the field-theoretical interaction of a pa, ir
of particles by means of wave equations and poten-
tials shows that it originated with the consideration
of quantum-eiectrodynamicai (@ED) corrections to
to the Coulomb potential as early as the birth of
quantum field theory itself. ' Subsequently, in the
efforts to deduce the interaction of nucleons from
meson field theories, this problem acquired a new

significance which led to an extensive investigation
involving many workers in the field. ' While the
latter has continued to the present at a more or
less undiminished pace, the recent discoveries of
heavy mesons and the emergence of quantum chro-
modynamics (QCD) as a candidate for a theory ot
strong interactions have posed the similar problem
of deducing the quark-antiquark interaction suit-
able for the description of these heavy mesons as
loosely bound, particle-antiparticle states of the
theory. ' While the problem has thus widened in

scope and areas of application, the methods of so-

lution have not achieved a parallel degree of gen-
erality and perfection, as will be evident shortly.

A survey of the literature in Ref. 3 (which rep-
resents the bulk of the efforts on the problem in
question) shows that the various methods of con-
structing interaction potentials from field theory
have in the past decade converged upon the reduc-
tion of the Bethe-Salpeter' (BS) equation to a
three-dimensional form. ' This convergence, how-

ever, has at the same time given rise to a large
number of alternatives, each with a claim to su-
premacy, and some with important differences. '
The cause is well known: The elimination of the
unwanted relative-time variable in the BS equation
is a nonunique process. Even within the context of
QED, where owing to the weakness of the interac-
tion one is facing an essentially unambiguous situ-
ation, and where the principal concern is a direct
calculation of small corrections to energy levels
rather than effective interaction potentials, the
process of reducing the BS equation to a three-
dimensional form is a subtle and nonunique task. '
Another main disadvantage of the BS formalism
stems from its essentially perturbative structure
which prevents a closed expression of its contents
and renders any systematic t;reatment other than
a perturbative one a tedious task. Finally, we note
that the BS formalism is a two-body formulation
whose many-body extension is a rather useless
scheme with an N-fermion equation that is a par-
tial-differential system of order ¹

In contrast to the existing schemes, the present
formulation is based on a field-theoretical equa-
tion (FTE) which is free of the relative-time vari-
able in the center-of-mass frame. "Moreover,
because the entire scheme is based on a functional
formulation, the resulting formalism is logically
independent of perturbation theory and expressible
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in closed form (involving functional derivatives).
More specifically, one deals with an exact two-
body (or many body) equation of the form'o

where X is a bispinor which depends upon (the
common time) f and a pair of spatial variables cor-
responding to the two interacting particles, h is
the sum of two corresponding Dirac Hamiltonians,
and 0 represents the interaction by virtue of the
presence of functional variables and derivatives
therein. The sought-after equation and the asso-
ciated interaction potential are simply obtained by
the conversion of the various (functionally ex-
pressed) contributions contained in 0 into numer-
ical interaction terms in accordance with some
approximation scheme. In this way, one is natu-
rally led to a relativistic equation (RE) of the form
first considered by Breit (in its time-independent
version),

8
i —

)I = (h y v)x .
Bt

In short, the passage from the (exact) FI'E to the
RE is effected without the modification of the ki-
nematic structure of the equation as represented
by the Green's function (is/St —h) '. This is the
basis of the advantageous features enjoyed by the
present method. It is important to note that a fur-
ther step of turning the RE into a Schr6dinger
equation is a matter of a nonrelativistic approxi-
mation which may or may not be desirable or ac-
curate, "and one which is not necessary. "

The single-time property of the FTE and the re-
sulting identity of its kinematic structure to that
of the RE also form the basis of a global (i.e., off-
shell) definition of the intera, ction potential. This
is a very significant improvement not only in the
accuracy of the potential, but also in a precise
definition of it for many-body problems where the
customary on-shell definitions are inherently am-
biguous.

Finally, we emphasize that annihilation effects
attending the presence of fermion-antifermion
pairs are fully incorporated into the FTE. In fact,
an interesting result of our calculation of the sin-
gle-boson interaction for the NN system is that the
vector-meson (virtual) annihilation contribution to
the interaction is a short-range effect of a magni-
tude comparable to the corresponding exchange
contribution. In any case, in view of the funda-
mental importance of fermion-antifermion systems
for all interactions, the inclusion of annihilation
effects in the formalism is clearly an essential
feature.

Some of the properties discussed above have al-

ready been demonstrated in more or less direct
applications of the FTE to QED bound-state prob-
lems. "' Our main concern here is of course
equivalent potentials, and for the most part, this
will be discussed in the context of model nucleon
interactions. As will be evident from the deriva-
tions, however, the formulation is equally appli-
cable to the case of coupling to non-Abelian gauge
fields such as QCD.

This paper is organized as follows: In Sec. II
the derivation of the two-body FTE for the NF sys-
tem with pseudoscalar coupling (as a model inter-
action) is presented. An integral variant of this
equation, which is more suitable to the considera-
tions of this paper, is also derived. In Sec. III,
the general form of the FTE is considered, and an
equivalent interaction kernel is defined as a cer-
tain set of "connected" contributions. The global
nature of this interaction potential and its energy
dependence are illustrated in Sec. IV in the con-
text of a many-electron system and a simple nu-
clear model. The many-body FTE is also derived
in this section. Section V presents the derivation
of one-boson exchange (OBE) and annihilation con-
tributions and a brief comparison with customary
OBE potentials as well as an estimate of the im-
portance of the annihilation part. Various com-
ments regarding the validity of the procedures of
this paper and its practical use are contained in
Sec. VI.

II. DERIVATION OF THE TWO-BODY EQUATION

In this section we present the derivation of the
FTE for the nucleon-antinucleon system within the
pseudoscalar coupling model of meson-nucleon
coupling. This will serve as a prototype for fer-
mion-antifermion (as well as the simpler fermion-
fermion) systems in field theories with linear bo-
son-fermion coupling. First, we sketch the deri-
vation of the field-theoretical formalism. This
derivation is strictly analogous to the original der-
ivation developed within QED."'

Using the notation
of Ref. 9, we write the Lagrangian for the meson-
nucleon system as

Z =S, —v ~ j, j = g~[N, y'rN]j, —P

where 7t and N are, respectively, the meson and
the nucleon fields, and j is the usual pseudoscalar,
isovector current of the nucleon. Then we consid-
er a (fictitious) perturbation of the above (fully in-
teracting) system by means of coupling to a c-
number current J,

g =g —m J, (2)

with J constrained to vanish at distant times. Thus



DERIVATION OF INTERACTION POTENTIALS FROM FIELD. . .

the physical system is regained at distant times as
well as in the limit of J=O.

The object of interest, the two-body amplitude,
is defined by

Xo (x, y) =S (0, out I(T[N'(x)MOO'(y)]qf IÃP, in)',

Z ' = (0, out
~
0, in}, (3)

where N ls the 0-conjugate field to N, ln
("out") stands for an incoming (outgoing) state,
isospin indices have been suppressed, and J ev-
erywhere signifies the presence of the external
source. The projection operator Q, appropriate
for the description of annihilation effects, is de-
fined by

())' = 1 —Z [0, in)I '(0, out
~

. (4)

The use of No ra, ther than the usual. (charge) con-
jugate field ¹ in the above is on account of the
simplicity of the corresponding field equation,

(y"p„-m —ig~y'v ~ &()N = 0,
(y"p„m Ig,y'—r &)(h'.=0,

where, as usual, ((o=(-1)o&(, where the exponent
x'epresents the t" parity of the meson. Note that
according to the usual convention,

and that the usual NN amplitude is simply given by
7'2.

Using a procedure strictly analogous to that giv-
en in Ref. 9, we arrive at the following two-body
FTE:
&o(y())g()& y(2&g(2))~o(x y)

=n"(y,"'s„")+y(2's(")s(x,y)c(-fr, ), (7)

vector n" is the four-velocity of the two-body
state. The superscript (1) [(2)] corresponds to the
nucleon (antinucleon) variables and specifies that
the y- and r-matrices act on the corresponding
first (second) index of their operand. The absence
of such superscripts, as in the trace operation of
(10), signifies the usual matrix multiplication.
The two-body equation (7) is supplemented by a
palx' of Schwlnger equations

S(x,y) =S'(x -y)

+~gp d4zS'x —z y~7'C z 9 z, y, 12

d, , i(x, y) =5,)ho(x-y)

+gp d'zd'z'6' x —z

)i tr[y'v, .58(a, z) j5(o,(a')]

x (),I(a', y),
where 8 and 4' are free nucleon and meson prop-
RgRtol's. EqllRtkoll (7) together wltll tile pRII' of
Schwinger equations constitute an exact, closed
set, of functional differential equations which sex've
to determine X~. The latter, in turn, serves to
determine bound-state energies or scattering am-
plitudes for the corresponding states. %'e also
note in passing that the right-hand side of (7) is
specifically a result of the particle-antiparticle
nature of the system and would be absent other-
%'ls e

Equation (7) is covariant and thus valid in any
coordinate system. In the center-of-mass system~
where n~ has only a temporal component, it as-
sumes the form

~ 9
+ —h —U )to(x, y)

8xo Byo

g(i) (()~o I+((& o(()~&(i) .$(X)P

I+((lyO(i&~r(i & . F(x)

F(x) = g J (f'x'a'(x -x')

x tr[y&vyo(x', x')Ci r2],

(6)

(9)

[yo(()cf (1) +yo(2)6 (2)]p(x y)C( Ir ) (14)

0 tJtl) U(2)
(x) + (y)&

P(i) ~ ii) o(i) s(i)& (i) .@gx)

h =h& )+I &» h ~" = ~~"= +Pi')m
X P & x kX

elgp

C (x) =(o (x) +2 d'ca(a, x) ),6(o(a) '

C =iy'y'.

Note that the original functional variable S has
been eliminated in favor of y which has the geo-
metrical structure of the xneson field. The unit

Note that, by definition, the mode of operation of
h and U upon X~ is bispinorial. The occurrence of
the temporal derivatives in an additive combina. -
tion lmmedlately 1 enders the relative time x
a free parameter in the equation. Thus we adopt
the common time t =~&(xo+y'), setting the relative
time equal to zero, and obtain the single-time
equation

(16)
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where' llotlllg 'tllR t'the right-hand side of (14) ls R

linear operRtloll oil lt [see Eqs. (9) Rnd (i0)]~ we
have lumped all interaction-bearing terms of (14)
into a grand sum Q. %e have thus arrived at the
FI'E discussed in the Introduction. It is worth
emphasizing that (16}is an exact equation which
(in conjunction with the pair of supplementary
equations) serves to determine the equal-time,
field-theoretical amplitude XO(t, x, y).

A variant of the FTE just discussed mill be mox'e
suitable for subsequent appbcations. To derive
ttus version, we note that Eq. (3) may, in view of
(4), be written

Ito~(x, y) = To~(x, y) -Z'(0, out IT[N'(x)No'( y)]

x /0, in)'K,

K = Z'(0, out ~NN, in)~, (1V)

mhich si,rnply states that T~ is given by the right-
hand side of (3) with the projection operator Q' re-
moved. But in the physical limit of J=O, K van-
ishes» implying that in the limit X~ and T~ are
MenticaL Furthermore» an exalTl1nation of the
derivation of (V} in Ref. 9 reveals that To satisfies
the simpler equation

Xo(x,y) - TO(x, y) =S(x,y)Cr,r, (19)

mhich serves to relate the I'ight-hand sides of Eqs.
(V) and (19). Equation (18) may now be cast in an
integral fox'm, mith the information contained in
(19}incorporated therein. To do this, we rewrite
(18) in the center-of-mass frame [cf. Eq. (14)],

i*—-a)v =vs,f. 8
(20)

( St

+u(+lllg &l) ++tmlg (a&)TO(x y) (IS)

mhich is, as already pointed out, the equation g~
mould satisfy if the state mere not a paxticle-anti-
particle one. This is also evident from the fact
that X can be nonzero only fox particle-antipax'ticle
systems, regardless of the presence of J.

Equations (1V) may be written more compactly as

down»

Tc = Y'+GUT~.

It ls Rt this juncture that the conslderatlons cul-
minating in (19) are utilized to determine the ho-
mogeneous solution T', to wit, Eq. (19}yields

T'(x, y) =It'{x,y) 8'(-x, y)Cv, Z'.
Here X', mhich of course satisfies

{23}

F, = dfdy» O, out N»x N~~» y O, in»

xx', (x,y) (x'=y'=t--~),

K = dt BKPp'—
9
et

x P(0, out ( r [N"{x)No"(y)] )0, in)'}(',~(x,y)}

(x'=y'=t). (2V}

is an appropriate superposition of energy eigenso-
lutions of k [see Eq. (3V) in Sec. III]. This leaves
us mith a detex mination of E» the matrix element
for the process of NN vacuum in the presence of
J, in terms of X'. e mention in passing that
while E vanishes in the absence of J, its functional
derivatives, which represent annihilation effects,
do not. Indeed the quantity F, mhich appeared in
the origiDRl FZE» ls R functional der1VRtive of K&

1.e, »

F (x) = [S/6Z(x)]K, (2s)

as may be seen in the original derivation. 9

RecRlllllg the deflnitloll of E ill Eq. (IV)q we 8111-

ploy the usual procedure of relating matrix ele-
ments to vacuum expectation values, modified to
suit the present one-time formulation, to obtain

»(y -y'}. (21)

The matrix element occurring in (2V) may be ex-
pressed in terms of the (equal time) fermion
Green's function 8» leading to

mhich, mriten more compactly, x'eads g -j gt —tr jg Cy $' g»x g x»$

The boundary conditions to be 1IQposed upon 6 Rre
the analogs of those of Feynman fox the present
formulation; they are given in Eqs. (S&) and (SV).

T'he i- !op, RI for. 1 gf (~1) r a n

(x'=y'=t) . (28)

At this juncture we use Eq. {24), integrate by
parts, and use the equation of motion (20) (which
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g=i dtdxdytr ~,y, t'I y, x 8' y, & C&,

To =(1-GU) 'T', (3o)

me can write the related solution for g~ as follows:

81mllarlyq Eq. (29) IIIRy tie WI'lttell conlpRctly Rs
the linear operation

xy, r,)t'(x, y)] (x'=y'=t). (29)

Recall that the matx'ix mode of operation of 0 upon
Sc is bispinorial [cf. Eqs. (14}and (15)]

With K thus determined, Eq. (23) gives T' in
tex'ms of y' and 8, which in turn completes Eq.
(22). To record the sought after equation conve-
niently, we revert to a compact, symbolic nota-
tion. Using the formal solution of (22},

approximation of reducing the latter to a SchrM-
lllgel' eqllR'tloll (wllicll IIIRy ol' 1IIRy llot be valid) 18
to be considered a step beyond our basic procedure
and logically independent of it.

Finally, me emphasize the important feature,
e t' edb f e, th t ' thep es tdef 'tio

any reference to the "energy shell" will be avoid-
ed, and a globally valid kernel of interaction mill
be derived. Th18 gelleral scheme Dece881tRtes R

corresponding general form for the potential in
the form of an integral operator in space as mell
Rs in time vRr1Rbles. The temporal Donlocality
being rathex trivial as a consequence of time-
translation invariance, is in a may a generaliza-
tion of the energy dependence of the "on-shell"
methods, but with the advantage of being well de-
f1Qed fox" Rny numbex' of pRI'tlcles.

To state the definition of the potential, me begin
with the prototype FTE written in the center-of-
maSS framers

K = dtdxdy tr f~ x, y y' x, y

(x'=y'=t)
1 (32)

where g~ signifies the adjoint of g with respect to
lts indices. Equations (29) and (32) serve to define

where, for convenience, me have suppressed in-
dices Rnd spRtlRl vRI'1Rbles«The objective 18 to
construct a kernel V such that the solution of the
equation

which is a variant of the FTE (7) in an integral
form.

Having developed a suitable field-theoretical for-
malism, me Rre Dom plepRxed to define RD equiv-
alent relativistic equation. Befoxe me do so, how-

ever me m18Il to unde111ne some I'elevRnt, points.
I et us first emphasize the obvious fact that unless
some suitable approximation allows a simplifica-
tion of the grand kernel 0, any attempt at a poten-
tlRl I'epreselltRtloI1 ls futile' ln fRc't Eq. (16) 18 Rs
"reduced" a foxm as one mould hope for." Second,
even mhen some simplifications are possible, one
must in general be pxepared fox' a rather compli-
cated (e.g. , energy-dependent, nonlocal, complex)
potential. Third, it is important that the basic
definition of an equivalent interaction potential re-
spect the symmetxies of the original theory, par-
ticularly its relativistic structure. " It is thus
considered R vex'y signif1cant Rspect of the px'esent
procedure that the equivalent system possesses
the same (relativistic) kinematic structure as the
orig1nal one, and that. one 1s naturally led to a
physically very pleasant equation of the Breit type.
As Doted 1D the IQtloduct1oQ the Donrelativlstic

is the physical (i.e., J-0) limit of that given by
(16) for {Ift times, i.e.,

lim X(t tZ) =y(t),
S 0

oI' equ1valently

) mn{))i)),{){I)=fe'v{) ))){))-'(36)

To implement this condition, let us consider a
complete set of bispinors P.,], conveniently taken
to be eigenstates of h, and the corresponding Set
{A„(t)),where

where e are arbit;rary coefficients. A similar so-

Next, we define a resolvent R for Eq. (16), sym-
bolically given by

ft(J) = [1—GO(J)]-', (3

where 6 is as defined in Eq. '(2l). Then, a general
solution of (16) is given by

x(~ p)= fdtrt(t, t p)x(t),

x'(t) =g c.tl, (t),
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]ution constructed from (34) in the usual manner is right-hand side of (43):

1(t) =fdt 'R (t —t ') g c„A,(t '),
(40)

fdt, dt, t 2dt'K,'""(t—t, )G(t, —t, )

R=(1 —GV) '.
The equality implied by (36) is now called upon to
assert that

ti V t t t)e fht

=lim dt'A(t ~J)R(t, t'~J)e '"' g c,&, . (41)
J 0 O

x 3}f,'"2'(t, —t, ) ~ G (t,t, —t,t ~)

x K,'9'(t,t, —t')e '"',
where the superscripts indicate the number of
times 0 has occurred in a connected piece, i.e. ,
its order in the expansion. Using (44) we can re-
write the above expression as

dt, dt», dt'V ""t —t, )G t, —t,

%(t —t ) —llmQ(t ~J)R(t, t ~J) . (42)

In the physical limit, one recovers time-transla-
tion invariance and may therefore define x V'""(t2- ts) ' ' 'G(t2t-3 —t2t-a)

x V (tlf)(t t/}e (lit (48)

Note that the dependence of 3R upon the spatial
center-of-mass coordinates [suppressed in Eq.
(42)] is similarly translation invariant.

Using the completeness of ~, one obtains from
(41),

V t t t -kht — dtIgg t t t e"fht'
I —GV

(43)

We now assert that a solution to (43} is given by
the formul. a

where V'"' is the nth-order contribution to V.
Now, summing (47) over all integer values of n,
and f gives 9R. On the other hand, summing (48)
over n, first simply replaces each V&"&& by V,
leaving

g fdt, dt», dt V(t —t, )G(t, —t, ) ".
fbi

x V(t„,—t )e -'~',

which is easily recognized as the left-hand side of
(43).

The temporal nonlocality of the potential, antici-
pated in (34) by the expression

V(t) =3T(,(t),

where the subscript denotes connectedness as de-
fined below. Consider the usual perturbation ex-
pansion of A(J)R(J),

Q(J)R(J) =Q(J)+A(J)GA(J}+ ~ ~ ~

dt'V t —t')g t')

is for isolated systems of total energy (i.e. , invar-
iant mass) 8' equivalent to an energy dependence.
To see this in a general context, we make the spa-
tial center-of-mass coordinates also explicit in
the above, that is, we write

In the physical limit of J-O, a general term of
(45) will have the typical form

(~jim [A (J)G Q (J)j}G(lim [Q (J ')G ~ A (J ')])
J-o &'-0

where we have explicitly indicated the independence
of the limiting processes occurring in each "con-
nected" piece of the above chain. In analogy to the
usual definition, if a term consists of only one
such piece (i.e., if it is not possible to break it up
into more than one limiting process), it is said to
be connected. Otherwise, it is disconnected, con-
sisting of a chain of connected pieces linked by
means of the Green's function G.

To demonstrate the validity of Eq. (44), we con-
sider an f-piece disconnected contribution to the

where, it will be noted, the relative spatial vari-
ables as well as indices are still suppressed in this
expression. Translational invariance is evident in

V, and for g it implies that

X(t R}=e '~'X

since we are working in the center-of-mass sys-
tem. Thus the original expression is equivalent to

I

dt'dR'e'~' V(t' R') X(t)

which defines an energy-dependent potential inside
the brackets. More importantly, however, what-
ever the consequences of temporal nonlocality,
they are unambiguously defined by the original
time-dependent version regardless of the particu-



18 DERIVATION OF INTERACTION POTENTIALS FROM FIELD. . ~ 2867

lar situation at hand. An example of this for a
many-body system will be considered in the next
section.

IV. TWO EXAMPLES

To elucidate the features of the definition given
in the last section, we shall consider here two ex-
amples, both in the framework of a many-body
system, which will serve to illustrate the main
points. These examples will also serve to present
the generalization to a many-body system of the
formalism given in Sec. II. Of course, the two-
body interaction will be apparent as a special case.

The first example will be the familiar Coulomb
interaction in an N-electron system, where we
shall see that the instantaneous character of the
interaction reduces the potential to a sum of two-
body potentials independent of the many-body en-
vironment. In contrast to this, retardation effects
will be evident in the second example of an N-nu-
cleon system interacting via scalar mesons. This
example will also illustrate the manner in which
temporal nonlocality gives rise to N-body effects
in two-body intera, ctions ~

The FTE for the N-electron system is obtained
by means of a straightforward generalization of the
original derivation. The amplitude is defined by

c

N~ y(j)g(j) ~= p
jul

where
I

g =y i — —ec «(x) —m(j ) (j)
Bx

4"4 ) =A" (v) + (f d'*D" ' (*,*) / A ' (*) .

(51}

(52)

These equations are as usual supplemented by a
pair of Schwinger equations which need not be re-
corded here.

Just as in the two-body case, the N-time equa-
tion (51) reduces to a single-time FTE of the fa-
miliar form

8
N

i —-h g=Ug, h= Ph((&

h'=aj p +pjm
X j jsl

U ' =eP" y„"~(f)~(x() (xo=t, i =1, . . . ,N) .

(53)

, (x„.. . , xt) =~(0, out ~T[g~ (x,) ~ ~ ~ P (xt)]

x ~P, in)', (50)

where P is the electron field operator, P is the
total momentum of the system, and J represents
the external current source. The equation obeyed
by p is found to be

The Coulomb interaction is conveniently obtained
by replacing the full propagator D"f' in 4 by the
free propaga, tor in the Coulomb gauge and retaining
the temporal components

D„„(z,x) —6„,6„+00(z —x) . (54)

We shall denote the corresponding interaction term
by V, .

Let us now consider the one-Coulomb photon-ex-
change potential V, as given by (44),

V, =limU, GU,C
y

C

N

=lim g eC"(t, x ()G(t, x„.. . , x„~t', x&', . . . , x'„')
AQ

x e4'(t', x,') . (55)

U ' G U ' = 'U ' (G "+'G "-)U" '. (5 t}

In short, G obeys Feynman boundary conditions
with respect to the coordinates that occur imme-
diately next to it, treating the two sides symmet-
rically.

Using the definition just given and Eq. (54), we
can convert (55) into

e2 N

Q & {[(A+((& A-(()) (A+(J ) A-(& &)]
4m

j&j

X Xj-X~ + Xj —X)

x [(A+"' —A "')+(A+'&' —A ")]]
(58)

Thus the instantaneous character of the Coulomb
propagator has reduced the interaction to a sum of
instantaneous two-body potentials: Retardation ef-
fects are absent. We mention in passing that to
the lowest order, the projection operators A' in
(58) may be replaced by unity and zero, respec-
tively, and the familiar form regained. The re-
maining terms, known as Coulomb corrections,

Note that the restriction in the above sum serves
to eliminate self-energy terms.

At this point, the boundary conditions obeyed by
G must be precisely stated. First, note that G al-
ways occurs in a combination of the type U ' G U ~,
where, as before, the superscript indicates the
particle whose coordinates occur in a given term.
We now define'

G ' (t —t')= —ie '" ' ' [e(t —t'}A'"' —e(t' t)A "'], -
(56)

where A' are the usual energy projection opera. -
tors. Using this definition, we can state the
boundary conditions:
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are known in atomic physics. "
'Ihe second example is obtained by analogy to the

first and with the interaction term as given by

U']'=Z, P"'4 (x,),

4 (x,.) = y(x) +i d'za(z, x)6/6y(z}, 59)

where d, is the (scalar) boson propagator. Again
we shall consider the one-boson-exchange interac-
tion V~ which is obtained from the above by taking
4 to be the free propagator and trea. ting 3R up to
one exchange. In analogy with the first example,
we get

V (f —f') =jg ' g ~p"'6(f —f', x, —x&')(G"'+G &'}(f,x„.. . , x„~f',x,', . . . ,x„'}]6'&', (60)

with the resulting energy-dependent potential

v~= u~e'~'V t~ . (61)

It is Hear from Eq. (60) that Vz~ is a sum of "two-body" potentials each of which involves the coordinates
of the remaining N 2partic-les as well (these enter via G). To make this feature more transparent, let us
adapt this calculation to a model nucleus whose nucleons, while bound by a common potential, exchange
scalar mesons. The exchange potential for this model is obtained from (60) by taking h "to include the
common potential. To make the result still more transparent, we will consider the nonrelativistic limit of
(60}. Proceeding with these steps, then, we obtain

«."]"»"" .l

', ",«'] =-(««] '«. 'g f««« "«i(«'+ «']']t«' ~ «']+« —w- '«]'« "V,
gyp al

where the dependence of h upon the spatial variables is the same as that of V~~. It is clear now that V~~

is a sum of two-body potentials only if a product-basis formed of the eigenfunctions of h is employed (in
which case the potential has the usual Yukawa form). In general, however, V~& is a sum of what may be
called quasi-two-body potentials with an energy-dependence specified by (62). Needless to say, the com-
plications of nonlocality in time and its consequences are manifestations of the global definition of the po-
tential.

V. ONE-BOSON-EXCHANGE ANNIHILATION POTENTIALS

In this section, we return to the two-body case
and derive the nucleon-antinucleon potential result-
ing from the exchange of one boson in the forward
(usual exchange) and in the crossed (virtual anni-
hilation) channels according to the definition given
in Eq. (44)." Our aim here is not the development
of a comprehensive potential for the NN interac-
tion. " Rather, limiting ourselves to single-ex-
change contributions (which, among other things,
suffer from the lack of important effects of real
annihilation into two or more mesons), we wish to
apply the procedures of this paper to deriving rel-
ativistic, off-shell versions of well-known OBE
potentials as well as the (usually ignored) one-
boson-annihilation interaction (which will be shown
to be quite significant).

To obtain the desired terms, we turn to the in-
tegral version of the NN FTE, Eq. (33), and use

definition (44) to obtain the expression for the full
potential,

[limU(1 —G U) '(1 —S'cv', g)], .
Jw o

(63)

Note that in writing (63) we have dropped a term
present in Eq. (33) because it vanishes in the phys-
ical limit anyway. We are only interested in one-
quantum exchanges:

V= limU(GU- S'cr, l),

where it is understood that g shall be approximated
up to one power of U.

The first term in (64) gives the usual exchange
contribution (already encountered in Sec. IV), and
the second yields the annihilation part.

Proceeding with the former for an isoscalar,
vector exchange (with direct coupling), we obtain

Vvs(t f') = (-1)~gv' Q —,
' a-" &'(f —f', x,. -x,'. )(G"'+G'~')(f«x„x, ~t'«x,', x,')aP',

iy )=&
f]]j
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v'here the exponent 6 represents the G parity of
the exchanged meson, and

+p& YQ Fp

6 (x) =(211) 'fd he '4'*(h'- ll'+fe) '

Performing a temporal integration and reverting to
momentum representation, ere obtain

l'v, (p lp'} = (-l)'(») 'zv'(k)

x [a„"'q(p,'- p)n""+a„"'q(p, —p')n" ],

Q(p„p, ) =(&o+h —+ '

x ((o ' —(l»+W-hp[A "'(p, }+A "'(p,)]},
~=(p, -p, )'+ il', h=h"'(p, }+h"'(p,).

l'v~{p I
p'} = -26r, r,(-i)'g, -"(2v) '

& (tt" - il') 'f" (P)j„(P'),
where

„11(p) „. h(p)
y "(p) = n" —- -(-l)"—,,—-."

2E(p) 21."(p)

E{p)= (p'+&»') '.
For scalar (pseudoscalar) annihilation, gv' is re-
placed by g~'(gp') and 1' (7 "y') substitute(i for n".
The explicit representation of the matrix elements
of (71), namely, the equation

{x,l
t"„lx.,}=-».,..(-l)';.,'(2;) '"(g"- il") '

For scalar (pseudoscalar) exchange, gv' is re-
placed by -gs' (g~') and y' (y'y') substituted for
e". As usual, the isospin factor v' ' ~ v~ is to be
appended for isovector exchange.

%'e now proceed vrith the annihilation contribu-
tion in (64). Recalling the definition ot' f in (32),
we obtain from (64)

p'v~(x»xa lx»x~)

= —i lim[U(x„x, )S"(x, —x,)cr, ]
$~ o

~ [r,7;[U(x;,x, )SO(x, x,)cr, ]7;r—,}
(x'=x'=f x"=x"=f ) (66)

where U is the quantity

U(x„x,) =gv[a„"'4 "(x,) r" '+ (-l)on„"'

x 4 "(x,) ~ r ~'],

+„»=»„r*&+~fa' &'„,& -*»»».& &

Upon performing the functional differentiation and
after removing the center-of-mass coordinates,
~e obtai~

l" { I
') =(-»'g '(&'- t ') 'f "{) .f '( ')

where

f". (x) =r [7"y~'(tl, x) + (-l)'~'(t},xb"7"]«,.

The isospin factors can be explicitly calculated
and reduced to the conservation condition requir-
ing the equality of the isospin of the 1&tÃ state (T)
and of the annihilation boson (Ts}. Thus the poten-
tial, now written in momentum representation, ap-

dptr g~~ p f" p)

d p' tr [f„'(p')y, (p')],

underlines the SepRI"Rble nRture of the Rnnlhllatjon
potentlRls.

Equations (66), (67), (71), and (72), supple-
mented by the rules given subsequent thereto for.

various mesons, define our one-boson exchange
and annihilation potentials, ~~ and V„, respective-
ly [see also Eq. (74) below]. As remarked before,
these are not considered to constitute a complete
intera. ction potential for the ÃX system. Further-
mox'e, a proper comparison of these with the ex-
isting versions of OBE potentials requires a nu-
merical solution of the resulting RE,

[it&'-h"&(p)-h'"{-p)]x(p)=f «p'&(pip')x(p'). (74)

Nevertheless, it is not hard to see that the ex-
change potentials given here differ significantly
from the static, static-plus-p' corrections, or the
so-called relativistic versions of QBE potentials. '
In all of these, the second term contributing to Q
ln Eq. (67) 18 at&sent, and the fll'st terlII ls re-
placed vrith M ' except for the off-shell potentials
that are essentially arbitrary coniinuatiuns of the
on-shell ones. Qbviously, the quantity iV-A, in Q,
which is responsible for part of the off-shell ef-
fects, i.. far from negligible for &~p, l

and ~p-, l of
the order of vector-meson masses, or, loosely
speaking, at distances corresponding to the range
of vector-meson potentials. For essentially the
same reason, and at comparable values of mo-
menta, the nonrelativisti approximation (i.e., the
reduction to R Schrodinger equation&) suffers from
serIous erroI's.
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Finally, it is clear from (71) that the annihilation
potential, which is ignored in the current QBE
models of 'VA' interaction, is a sizeable effect. Its
range (the nucleon Compton wave length) is com-
parable to that of vector-meson potentials, and so
is its strength. Taking the (d potential as an ex-
ample, and considering the T =0, .J=1, AA state,
we have for the ratio of the potentials at zero mo-
menta

Since the mass of ~& is comparable to that of the
nucleon, one can see that the +-annihilation poten-
tial in this example substantially cancels the &-
exchange potential, which in turn is a dominant
short-range contribution in QBE models. In short,
it is inconsistent to use a short-range (i.e., range
comparable to nucleon Compton wavelength) ex-
change potential without at the same time including
the corresponding (virtual) annihilation contribu-
tion.

VI. DISCUSSION

In this paper we have developed a procedure for
deriving 6'-body equations and associated interac-
tion potentials from field-theor etical models with
linear fermion-boson coupling. As usual, a de-
scription of systems of two or more particles in
terms of such equations is useful when the particle
composition enjoys a fair degree of purity as in
orctinary atomic and nuclear systems and perhaps
also in eharmonium and possibly in other meson
and baryon states as well. Qf course, the question
of the validity of a given field-theoretical model
is additional, and one which is logically separate
from our considerations. Be that as it may, one
must be aware that in field theories where there
is a strong coupling which does not weaken with in-
creasing momentum transfer, the above descrip-
tion becomes doubtful for high-momentum regions.
The pseudoscalar model of nuclear coupling is
presumably an example of such unwanted behavior.
Fortunately, the possibility that QCD (or a simi-
larly asymptotically free gauge theory) is the
underlying theory of strong interactions is encour-
aging in this respect. We should also add that the
above-mentioned breakdown is addi. tional to the
similar malady that would occur as a result of a
nonrelativistic description such as the use of the
Schrodinger equation. Thus a description in terms
of relativistic equations is seen to be a basic ad-
vantage of the present scheme. As for the feasi-
bility of the methods, suffice it to say that the cus-
tomary momentum-space techniques of solution
would be adequate. In this respect, we mention
a recent angular-momentum resolUtion and nu-

merical integration of the RE (the Breit equation
in this case) with the static Coulomb potential for
the positronium atom. '2

The main application given in this paper is to
nuclear forces within the one-boson interaction
model. While this afforded the possibility of a
brief comparison with existing models. it should
be emphasized that we are here invoking the use
of BE, rather than the customary Schrodinger
equation, for the description of fViV (or NiV) sys-
tems. The ease for a relativistic description is
well known. " It should be emphasized, however,
that any description of the QBE kind must be
amended by a phenomenological treatment for
short distances. Note that such treatments as the
use of cores or boundary conditions are easily
adapted to the RE. Note also that, as a conse-
quence of the relativistic structure of the present
formalism, the matter of subtracting iterations
of a lower-order potential from a higher-order
one (which comes about as a result of trading one
Green s function for another) is trivially elimi-
nated here by virtue of the connectedness property
defined in Sec. V. The latter property is essen-
tially one of two-particle irreducibility within the
present formalism (which is slightly different from
its counterpart in Feynman theory).

Despite their exclusion in this paper, applica-
tions to the quark interactions are perhaps the
most interesting ones within the present formal-
ism. As already mentioned, the FTE correspond-
ing to QCD (or other non-Abelian gauge theories)
are trivial generalizations to those given in. this
paper, except, of course, for the supplementary
equation corresponding to (13). The latter is
qualitatively more complicated on account of the
self-coupling of the gauge field. This complication
and the related infrared problems notwithstanding,
there are useful areas of application which have
lead to results bearing on heavy-meson spectro-
scopy and on a possible quark phase of nuclear
matter. Such areas therefore seem the most
suitable for future applications of the present for-
malism.
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