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The invariant methods of modern differential geometry are used to study both a noninertial single particle
and Fermi-Walker transport in special relativity. The presymmetry, especially the acceleration group, is
formulated in the tangent manifold of the observer. Our geometrical construction of the presymmetry of
Ekstein also gives Newton's second law as a theorem. In addition, we obtain the exact. closed-form expression
for a noninertial particle in special relativity and an exact, closed-form expression for Fermi-Walker transport
in special relativity.

I. PITRODUCTION

The purpose of this study is to relate ideas on
modern differential geometry to the ideas of
pxesymmeh~y of Ekstein and collaborators, ' '
for the case of special-relativistic particle
mechanics. ' ' The fundamental basis for pre-
symmetry is the clarification of the association
between the laboratory procedures and the self-
adjoint observables. Physically, this means that
instead of blindly and uncritically hanging physical
names upon mathematical objects, one searches
for a framework in which the correspondence be-
tween physical and mathematical entities is rea-
sonable and explicit. Presymmetry is probably
the only existing attempt to establish such a
framework. Ekstein' has shown how to idealize
and extrapolate from empirical facts to turn the
laboratory procedure collection and the observa-
tion procedure collection into "hardware spaces"
where 6 is an algebra of operation procedures and

8 is a convex set of state preparation procedures.
If g is the *-algebra of observables then the many-
one map C defined such that

is the presymmetvy of the theory.
In special-relativistic mechanics, ' ' the equa-

tions of motion have the same form in all inertial
frames. A mathematical solution to an equation
of motion is a family of world lines. An element
of the Poincare group has a natural action in the
transformation of this family of world lines. The
equation of motion is said to be relativistieally
covariant if and only if the set of all solutions is
closed under the the transformations induced by

Poincare transformations. As Avishai and
Ekstein have pointed out, this fails in the pre-
sence of external forces because in this ease
"there is a privileged frame. " The content of
presymmetry is a precise and nontrivial formula-
tion of the residual covariance of a system subject
to external forces. This structure is also appli-
cable to subsystems of free systems which are
subject to internal forces from other subsystems.
In this context, Newton's second law follows as a
theorem.

The concept of local independence was greatly
clarif ied by presymmetry. Several authors'
following Ekstein s lead on local field theories
discussed the following:

The Fksfein pmposition. Causal independence
is neither necessary nor sufficient for local eom-
mutativity.
Perhaps the most striking consequence of pre-
symmetry is due to Avishai and Ekstein. ' They
proved that presymmetry, including a postulate of
loca, l acceleration covariance, imply the equiva-
lence principle as a theorem.

Another recent interesting collection of the
application of geometrical ideas are due to Esta-
brook and collaborators, ' Ksehn, ' Post, ' '

and Yang et gl. '8' These authors have forcefully
advocated the use of modern invariant differential
forms for a variety of fundamental physical prob-
lems.

In this paper we will study presymmetry using
modern differential geometry. In addition to being
asthetically pleasing to make the noninertial-
frame nature manifest, we easily find a generali-
zation of the usua, l textbook formulas~ ' for
Fermi-Walker transport and generalize the recent
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paper by Ni and Zimmerman. " Given the global
nature of invariant differential geometry this might
seem surprising were it not for the rich variety
of local information on partial differential equation
systems which Estabrook et al. have obtained.
This also has practical importance since relativis-
tic particles near the earth s surface are subject
to exactly these noninertial forces. See also the
recent paper by Ni and Zimrnerman. " Finally,
we will not introduce differential forms to the
reader because of the availability of Ref. 7, where
an excellent introduction appears.

The organization of this paper is the following:
In Sec. II we will present a geometrical presym-
metry structure. In Sec. III the invariant methods
are used to give a geometrical realization of the
acceleration group and in Sec. IV these methods
are applied to the Fermi-Walker transport prob-
lem. In Sec. V our conclusions are given.

II. GENERAL PRESYMMETRY

Let us paraphrase Avishai and Ekstein' to mo-
tivate the discussion of presymmetry. We are
considering experiments which are not necessarily
shielded from external influences. Nevertheless,
we assume that the external influences ean be con-
trolled, or understood, to the extent that sequences
of experiments are reproducible. The causality of
a theory gives the conditions for control. ' A par-
ticular experiment will consist of a state prepara-
tion procedure and an observation procedure. The
complete state preparation procedure includes a
set of blueprints b for the specific experiment and
a set of points {p„p„.. . ,p„)in Minkowski space
at which the blueprint instructions are to be
carried out. The act of observation in the experi-
ment extracts a real number s from the prepared
state. An equivalence class s' of a state-preparing
procedure (b, {p„j)are those procedures with the
same mean values {s„)of the infinite (random)
sequence of measured values. An equivalence
class e' of observation procedures consists of
those observation procedures which create the
sa.me expectation values {sg for ea.ch state-prepa-
ration procedure. This gives the state-preparation
collection 8' as the equivalence class of state
preparations with elements s' and the collect'ion
of observation procedure 6' as the equivalence
class of observation with elements n'. Then the
mean values 8' are a map of the Cartesian product
of 8' and 8' into the real numbers R', i.e., such
that

8'x t

The time translation K, : (x, t)-(x, t+7) induces a

change on each procedure via

(b, {p„))-(b,{~,p„)), (2.1a.)

where
(a) the altered instruction is an observation pro-

cedure, and
(b) equivalence classes of procedures remain

equivalence classes under this transformation.
Note tha. t the points p„are the representatives of
the Minkowski space points in the tangent space.
A similar transformation can be considered to
act upon the convex set 8'. The concept of st
metry is realized by pairs of (symmetry) trans-
formation (S,*,S,~) which act upon the pair (8', 8')
such that the expectation 8' is left invariant, i.e. ,

C'(Sfn', S,*s') = C'(n', s'), (2.1b)

for all ~'c 8' and for all s'~ 8'. The concept of
presymmetry is realized by pairs of transforma-
tions which act upon canonical subsets 8,'c 6'
and 8,'c 8' which leave 8 ' invariant and which
satisfy conditions (a) and (b) above, i.e. ,

8'(S*n" S,qs") = Q'(n", s") (2.1c)

for each z"c 6,' and for each s" (= 8,'. Predict-
ability is provided by these canonical subsets by
the fact that a transformation of 8,' induces some
corresponding transformation of the orbit sets
in 8,'. To quote Avishai and Ekstein from Ref. 3
about Eq. (2.1a), because it cannot be said better,

"The existence of such transformations is the
basic fact that makes physics possible. Indeed,
physics compares the results of observations at
different instants by the same instrument, and the
test for, 'sameness, ' is the agreement between
different instruments of the same equivalence
class. Experimenters spend most of their time,
'checking their instruments, ' which is a shorthand
expression for verifying the preservation of equi-
valence classes. Note that this property is far
more general than time-translation invariance
of the equations of motion. It is the prime example
of presymmetry. "

Now let us use the invariant methods of modern
differential geometry in addition to the methods
of Ekstein' and Avishai and Ekstein. ' It is neces-
sary to lift the Lorentz manifold into its tangent
(or cotangent) bundle, i.e. , we must also distin-
quish the "space-time" from "observation of the
space-time. "

Let us consider a general space-time (M, q)
where M is the manifold of space-time points and
q is the metric. Suppose y~, is a diffeomorphism
of iVI restricted to a timelike curve z of an ob-
server. We allow all diffeomorphisms y which
satisfy the presymmetry conditions set forth in
this section. To determine the allowed class of
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cp's it is necessary to construct representations
of the objects 8' and 8'.

In Minkowski space-time (L, g), it is easy to
construct the representations of 6' and 8' if one
uses the fact that L is algebraically a vector
space. One simply describes an event as a unique
vector Xc.L and the dual basis vector dx' as the
observation of the coordinate X' so that

as the measurement Of the event X. For a general
space-time (M, g), this algebraic structure is only
available in T(M), its tangent space. This suggests
that it might prove instructive to analyze Minkow-
ski space-time in T(L). Thus it is necessary to
lift L into its tangent space T(L) which, in effect,
distinquishes between the "space-time, " L and the
"observation of the space-time, " T(I ). This lifting
is accomplished by identifying each event q z L with
its tangent vector X~c T~(L) by

X = (exp ) 'q .
This means that p represents an observer event
and q represents a particle being observed. %'e

will call X~ the "laboratory representation" of a
particle at q. In flat Minkowski space-time, the
exp map reduces to the identity and X~=q-p is a
relative vector. Although the only function of the
exp map here is to remind us that X "lives in"
T(L), it will prove absolutely essential in a future
work which generalizes the present paper to
curved space-time. " Using this construct we now
introduce the presymmetry group A~.

Definition. The presymmetry group A~ is the
relativistic rigid-body motions of 1„,&(L), where
g (7') is the nongeodesic curve obtained from the
geodesic (r') by the composition map

g =PoPo 0
~

where 7 and T' are arc-length parametrizations,
o is the reparametrization T'=o(T) and y: L- L
is the presymmetry diffeomorphism.

A vector field is called complete if and only if
it is the infinitesimal generator of a one-
parameter group of transformations on the under-
lying manifold. In Minkowski space-time, a
natural choice of complete vector fields in the
tangent space are given by

(2.2)

Under the diffeomorphism y, the tangent vector
t becomes y~t and the diagram

W(L)
exp

commutes, l.e.,
(2.3)

Therefore, the effect of p on the laboratory re-
presentation is given by

(2.4)p+= [exp„&»t '[y exp(X~)].

The tangent vectors f t, i
i =1,2, 3I span a

family of initial-data surfaces for the geodesic ob-
server y. Since the basis in Eq. (2.2) is complete,
it follows that the set of ta,ngent vectors fy, t [i
=1,2, 3) are complete and provide families initial-
data surfaces for an observer z. This demon-
strates the existence of a causality condition for
y eA~.

If q FA~ and 8 is a Poincare transformation, we
ca w 'te

for some p z L. The map q, carries any hyper-
surface Z orthogonal to t~ into itself, and, there-
fore, represents the act of imparting an accele-
ration to a particle in its instantaneous restframe.
Under such a transformation, the restriction
rp'= p, in satisfies the presymmetry condition

y~w(y„'X ) = u~~(X),

where gg ~ T~(L) is an observation procedure.
Let 9, 9 cZ, be the set of geodesics in L and let

z E9. Under y each z c8 is mapped into a nongeo-
desic curve zy=q ~ y, so that, clearly, q does not
preserve the inertial connection on L. However,
a connection V' exists such that z„is geodesic
with respect to V' because

(2.5)

Thus, a new "free'* Hamiltonian exists whose
flows are geodesic of '7'. This is a geometrical
statement of the equivalence principle; the pre-
symmetry proof of the equivalence principle was
given by Avishai and Ekstein in Ref. 3.

To show that our version of A~ is parametrized
by a function, so that we can use the published
proof by Avishai and Ekstein' that dtm(A~) is
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infinite, it is necessary to show that the diffeo-
morphism p preserves the symplectic structure
of L. Recall that a syrnplectic structure'" on any
manifold AI, here L, is a global nondegenerate
closed two-form r on T*(M). In local coordinates
(X', t&,) on T~(&if), u& is given by

(d dX ~ dp

where the p, 's are the components of the natural
one-form

3 =P.dx'.

The observation of an event in T*(S,&, &} is a tangent
vector

X= X' —+P8 8
(2 6)

a&P,

where (X', P ) are the relative position and momen-
tum of the particle, and where S,&, } is the local
spatial rest frame of the particle with world line
z (T). T hus

d '7z:u=
d7

(3.1)

where (u, u)=1. The accelerated observer also
carries a triad of spatial vectors e, L T„,&(L),
i = 1, 2, 3 which satisfy

vector space. Therefore, T,&, &(L) is called the
"laboratory frame" of the accelerating observer
A~ as in the preceding section. Both mathemati-
cally and physically the laboratory frame is dis-
tinct from the space-time L in which the accele-
rated observer moves. In general this distinction
cannot be ignored, although in certain cases for
special relativity one can ignore it. One important
consequence of the postulates of special relativity
is that at each instant 7 and isomorphism exists
between T,&„(L)and L.

We now describe the geometry of the noninertial
world line z(r). If the connection on L is denoted
by V, then the timelike velocity vector, u&e T,&, &(L),
tangent to z is given by

&(X) = PQ',
is the observation of "relative phase" and

u (X„X,) = —,'(X;P,') (2.7}

and

(e;(T) ej(r)) = —t&;,

(u(&), e,(r))=0.

(3 2)

is an observation of neighboring geodesics.
Therefore, the preservation of w ensures, and
explains, the proviso concerning preservation of
rigid-body structure in presymmetry.

This shows that a "natural" geometrical formu-
lation of presymmetry exists and, therefore, that
all of the usual local structure is irrelevant for
its formulation. Next, let us turn to developing
this structure for the acceleration group A~. Then
we will be able to calculate easier by having
eliminated unneeded details.

At each instant T the e,. span the three-dimensional
vector space S+„orthogonal to u as shown in
Fig. 1. Physically, S,„}is the spatial rest frame
of the observer at z(T). Further, the e,. are unique
modulo a constant spatial SO(3) rotation which
reflects the Galilean principle of relativity.
Vectors lying entirely in S,&, ) are indicated by
overarrows.

The orthogonal tetrad (u, e,.) is propagated along
z via the equations

III. INVARIANT METHODS AND THE
ACCELERATION GROUP

In this section modern invariant methods are
used to derive the exact noninertial-frame equa-
tions of motion. Toward this end a. geometrical
construction and physical discussion of noninertial
reference frames is given. Although these ideas
are widely discussed in relativity tests, ""lec-
ture notes, -' and a recent publication, "our general
expression is not available, rather only special
cases based upon drastic assumptions.

Let z: R -L be the trajectory of an accelerated
observer in Minkowski space-time. At each
instant r an observer z(7) has a. local laboratory
frame consisting of three orthonormal spatial
vectors and a unit timelike vector which is re-
corded by a standard clock at z(v). These four
unit vectors span the tangent space T,&, &(L) as a

FIG. 1. World line of accelerating observe showing the
vector tetrad (u, e;}a»d its corresponding dual (c 0, c ').
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' =(A, e,),
BT

&u—=(A, u).
BT

The definition of A in Eq. (3.3) is

A= aSu —uS a+ A,(v, u),
where Q, is a tensor satisfying

(A, ((u, u), u) = 0

(3.4)

&'z(r) Vu

BT
(3.5)

ur is an angular velocity of z(&) and both a and &o

are contained in S,&„.a ES,&„&follows from

0= —(n, u) =2(u, Vu/9&) = 2(u, a).

The propagation equations (3.3) preserve the
othrogonality relations in Eq. (3.2) since A is
antisymmetric. Also, Q acting on the basis set
{u,e,.] is an active infinitesimal Lorentz trans-
formation. This gives the well-known classical
equation

de ~ = (gp x e « = Q
dt

with

(3.6)

(A, (&g, u), A) = (u &&A.

The cross product is the usual one in 8,&„—=R' and
a is the invariant acceleration of z(r) given by

Dejinition 1, xe f is spatially simultaneous with
z(r), written as x8z(r), if for some r c S,&, &,

x= z(r)+ r. (3.9)

X=z(&)+y, (3.10)

where (y, u) &0, i.e. , y is a, past-directed null
vector. In Fig. 2 the geometry of the null simul-
taneous refexence frame is displayed.

Theorem. The decomposition in definition 2 is
unique

Proof. Suppose the contrary is true, thus

X= z('i}+yi = z(&2}+y.

R 8&1g'vk8.

(i) This definition depends upon the value of u at
z(&).

(ii) This definition of simultaneity does not define
an equivalent equivalence relation because symme-
try is not defined and transitivity is false. Thus,
r in the definition of X is nonunique.

nonunique.
(iii) Finally given an (X, t )0) cL, there does not

exist a ro& 0 such that z (T,} and X are simultane-
ous. This obtains because time ordering "loses"
the time-reversed solution. Thus a natural ref-
erence frame based upon the ecomposition of

Eq. (3.3) is unphysical.
physical.

Definition 2. The simultaneity set 3,[z(r), J ] is
the interior of a spacelike cone plus the origin,
i.e. , 3 [z(&),L]={X&K

~

Xit z(r) for some v' j.
Using definition 2, a better choice of reference,
termed nu/l simultaneity„can be based upon the
decomposition

Q = co~&.~~e;e~.
'Cv Jv 0

Upon expanding Eq. (3.3} the physical content of
both parts of that equation is obtained. The second
part yields

(3.7)

which is the definition of a. The first part becomes

7'a
= -(e, , a}u+ (o x e, .

QT

The first term on the right-hand side is required
to preserve the relation (e,, u} = 0, and the second
term shows that the e, 's rotate with the angular
velocity w in the rest frame of z.

Although the previous results are obtained in a
straightforward manner, they have an unphysical
aspect due to time ordering. This suggests that
a new definition of the reference frame is needed
to eliminate this difficulty. The material that
follows is directed toward this end.

GKOOKS IC
WORLO
LINf

FIG. 2. The geometric concept of null simultaneity in
relationship to the accelerating observer.
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where T, «, and y, &y,. Then

z(&,) —z(&,) = y, —y,

terms of quantities relative to z(&) we introduce
the new connection V' defined by

is timelike, so that

(7z —y2) yi —y2} ~0 i

which implies that

&y&, y,) &0 ~ (3.11)

~'A VA

BT

Clearly

V'u V'e )
BT aT

(4.6)

(4 6)

However, each past-directed null vector can be
written as

&~= —I»I"+»
y, = —ly, lu+y, .

Thus

(y„v,&= ly, l ly, l

—v, 'y~ 0

which is contrary to Eq. (3.11). Q.E.D.
The reference frame based upon Eq. (3.9) is

used in this paper because it is the standard frame
used and the equations of motion take on a parti-
cularly simple and pleasing form. The unphysical
effects mentioned above occur only at points for
which

(a, Qr
& 1,

so that this frame is valid for most I-. We derive
the equation of motion for reference frame Eq.
(3.10) in the Appendix.

IV. INVARIANT FORMULATION OF
FERMI-WALKER TRANSPORT

VXV=—
aT(

(4.1)

The equation of motion of a free particle relative
to the noninertial frame is now derived. Let
X(r') be the world line of a free particle with
velocity vector

VV dT VV V'V

BT' dT' BT BT

Therefore from Eq. (4.9) one has

V'V

BT BT

(4.9)

=I'[(1+a, r)u+ r+ ~x r]
~ ~

~ ~

+ I'[(a ~ r+ a ~ r)u+ r+ ~ x r+ ~ x r]

+ I'[(1+a ~ r)a. + u(a r+ a. ~ x r)

+ ~x r+ ~x (~x r)]. (4.10)

Separating Eq. (4.10) into its components parallel
and perpendicular to u gives

V'/sr is the natural time derivative associated
with the noninertial observer since the observer
sees the basis (u, e,] as constants, as expressed
in Eq. (4.6). If rcS,&, &, then

dr'= —r'e,. = —e,.= r, (4.7)
BT BT

so that r cS,&, &. Using Eqs. (4.5) through (4.7) one
can expand Eq. (4.3) to obtain

V= I"(&)[u(1+ a ~ r)+ r+ u x r]. (4.8)

Equation (4.4) can be rewritten as

see Fig. 2. Then

X[&'(r)]=z(r)+ r(r)

and therefore

(4.2)

I"(1+a, r)+ I'(a ~ r+2a. ~ r+a ~ x r) =0

and

(4.11)

V= = —[z(&)+ r(r) ]
vX(r') dr

aT dT' BT

~ ~ ~ ~ ~

I'(r+ ~ x r)+ I"[r+ ~ x r+ 2u x r

(4.3)

where I" = drld&'. Since X(r') is free, its accelera.
tion must vanish,

+(1+a ~ r)a+&, x(~x r)]=0. (4.12)

From Eq. (4.11) it follows that

VV

BT'
(4.4) I'= —&(I+a r) '(a r+2a ~ r+a ~ ~ x r), (4.13)

Equation (4.4) is an inva. riant expression of the
usual geodesic equation. To rewrite Eq. (4.4) in and substituting this Eq. (4.12) gives the accelera-
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a rr=-a 1+ —2.,ixr-~x(~x r)
CZ

2(a. r)r 2(a r)(~»& r)+ +
(1+a r/c')c' (1+a ~ r/c')c'
R ' ~ X I'(I'+ &ry X r)+ 0

{1+ R ' I'/c2)c2
(4.15)

The fourth term on the right-hand side of Eq.
(4.15}can be rewritten as

2(a r)r 2[(r'/c')a —2(or x r]
(1+a r/c'}c' (1+R ' r/c')c'

Using Eq. (4.16) in Eq. (4.15) and further restrict-
ing Eq. (4.15) to a particle at the origin, r = 0,
one obtains

(4.16}

4
~ ~ 2 0

2rr=-a. 1 — —2(w+2t.)r}x r.
C

(4.1?)

From Eq. (4.1'?) it is clear that the Coriolis force
is increased by the Thomas precession. Another
interesting consequence of Eq. (4.1?) occurs if r
is parallel to ~+ 2&}~. For this situation when

~

r
~

= c/v 2 the partiple is instantaneously unaccele-
rated, whereas lf

~

r
~

& c/W2 a particle will "fall
up" along a.

To generalize this to a collection of N free pa, rt-
icles one can simply addend a subscript i, 1 ~i
~ N, to r. If r had been restricted to the origin at
the very beginning as in Ref. 20, this would not
be possible. The expression corresponding to
Eq. (4.17) for the null reference frame is included
for completeness in Appendix A.

tion in a noninertial frame as
~ 0 '+a rr=-R 1+ —2~ x r- ~x (~x r) —~x r

QZ

(r+ (ox r)+ t, a ~ r+ a, ' r+a„~ (1) X rj
c'(1+ R r/c' (4 14)

where the factors of c have been inserted. This
equation is exact and illustrates the power of
invariant methods. '4

Lastly, Eq. (4.14) is specialized to more familiar
cases for ease in interpretation. The quantity
~r= r x R/2c' is called the Thomas angular velo-
city. If a, and &g are constant in time, Eq. (4.14)
reduces to

of Fermi-Walker transport in special relativity.
This provides a non-negligiable improvement over
the traditional approximate treatments' "of
noninertial frames. The next-to-last term in our
Eq. (4.14) has a factor of 2 different from Eq. (20)
of Ni and Zimmerman. " This difference is due
to the differences in our respective calculations:
Theirs is approximate and ours is exact. Their
method is terribly complicated compared to ours,
but we believe that they are correct given their
Rpp1'ox1111Rtloll. Slllce 0111' Eq. (4,14) ls exRct it is
not necessary to use their formula.
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APPENDIX A

In order to give the equation of motion of a.

single free particle as it appears in the null
reference frame, choose the null vector as

y=-rg+ r. (A1)

where r c Sz(&) and r = {r, )'~~' For .R and (o uni-
form, a calculation parallel to that of Sec. III
yields

~ 0 0

r = -(1—21.+ a. ~ r + Bl.)a + r((u x R) —R((o x r)

—(u x (( i x r) —B(r+ ~ x r), (A2)

f? = [2(~ x r)+ (1 —2r+ R r)a —r(~xa),
+ Q) X (Q7 X r)] 1 (A4}

where

?? (r x ~p)'
8 = ——+ —2a r+ y(a)' —a ~ ((g x r)

(A3)

with

V. CONCLUSIONS

We have used modern differential geometry to
formulate Ekstein's presymmetry. This yielded a
geometrical construction which is independent of
local-inertial-frame considerations, and thereby
provided a simpler, and ega(.",3, treatment of a
particle in a flat-space noninertial fra, me and also

Note that Eq. (A2) is complicated by aberration
and the Doppler shift of light emitted from the
free particle. It should be emphasized that Eq.
(A2) represents the actual motion as seen by the
noninertial observer.
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