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We examine the question of whether black holes can have associated external massive vector and/or scalar
fields, when the masses are produced by spontaneous symmetry breaking. Working throughout in the spheri-
cally symmetric case, we show that “no-hair’’ theorems can be proved for the vector field in the Abelian Higgs
model, for an arbitrary (R !¢1? term in the Higgs Lagrangian, and for the Goldstone scalar field model with
£ =0. We also show that a Minkowski-space analog problem does have nontrivial screened charge solutions,
indicating that the “no-hair” theorems which we prove are consequences of the stringent conditions at the
assumed horizon in the general-relativistic case, not of the interacting field or spontaneous-symmetry-breaking

aspects of the problem.

1. INTRODUCTION

One of the striking features of the physics of
black holes is the existence of “no-hair” theorems,
which state that the only external attributes of
a black hole (such as its mass M, angular momen-
tum J, and electric charge @) are those associated
with massless fields admitting conserved flux in-
tegrals.'»? All other types of fields must decouple,
under the assumption of a well-behaved geometry
at the horizon. These theorems have been proved
for a variety of wave equations, including the
massless Dirac field, various massive scalar field
theories, and the massive spin-1 Proca field. Our
purpose in the present paper is to extend this list
of equations studied to include classical wave equa-
tions in which masses are generated by sponta-
neous symmetry breaking. This is particularly
important in the vector-meson case, since it is
widely believed that if massive spin-1 fields exist,
they get their masses through a dynamical mech-
anism of spontaneous symmetry breaking,® rather
than kinematically as in the Proca equation. The
simplest relevant model is the Abelian Higgs mod-
el,’® and so the main focus of this paper is on the
question of whether black holes can have Abelian
Higgs “hair.” We also give some results for the
closely related Goldstone scalar-meson model.
For simplicity, we assume spherical symmetry
throughout, since we expect that if interesting
violations of the “no-hair” theorems were to oc-
cur, they would be seen in the spherically sym-
metric case. We find, in fact, no evidence for
such violations, and prove “no-hair” theorems for
the cases we study. We believe it likely that our
proofs will generalize to the nonspherical case.

II. THE ABELIAN HIGGS MODEL
Before writing down the Abelian Higgs model
Lagrangian, we begin with some geometric pre-
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liminaries.* We assume the general time-indepen-
dent, spherically symmetric line element
ds®=—e*dt® + e*Bdr® + r*(d6® + sin*6de®) . (1)

Using a caret to denote components on the or-
thonormal basis

of=e*dt, a*=ebdr, @)
d;é = r&@, @%= rsineﬁd) ,

and using a prime to indicate differentiation d/dr,
the Einstein tensor components for this line ele-
ment are

s

2
G"=;e‘25a’ -r%(1-e728),

G‘A'A=%e“2 B’ +7r~2(1-e7%B), (3)
TSP
=e (@ +a?-a'f +a'rt-pgrY).
The curvature scalar is
R=2r"%(1-e"%8) +4r~te28(3" - @)
~2e%(a"+a - a'p), @)

and the Bianchi identity is
F7\ 7 1 AEE 2 96 2\ s
(G +a’'G -G+ oz'+; G*=0. (5)

The Abelian Higgs model describes a charged
scalar field, with a double-well self-interaction,
coupled to an initially massless Abelian gauge
field. The Lagrangian density for the model, writ-
ten in generally covariant form, is

L= ("g)l/z[‘%FuyF“y - dud*“ - §Rl¢'2

-n(lpl*- 9.1, (6)
with
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24, 24,

Fuy axy oaxH*?

(7)

a, =(-£j - ieA“)cp .
The parameter £ is zero for the usual “minimal”
scalar wave equation, while £ =1 for the “con-
formal” scalar wave equation which is conformal-
ly invariant in the absence of mass terms. Spon-
taneous symmetry breaking arises because the
effective potential

(e=@*Biy241) = r2e5-926%A, %,

(e Br2p) = r2e* B[=e=2%¢?A 20 + 21 (° — 6.2)] , . “minimal”
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V(g) =h(|¢[* = ") (8)

has its minimum at |¢ | = ¢.,, rather than at ¢ =0.

Following the analysis of Bekenstein® in the
similar case of charged scalar electrodynamics,
we use the fact that in the time-independent case
of interest in black-hole physics we can choose a
gauge in which ¢ is real, A;=0, and 4, is time
independent.® In this gauge the field equations of
motion which follow from the Lagrangian of Eq.
(6) are

(9a)

(9b)

(e Prig’) =r’e" *[-e~*e’A*¢ +L R +2h¢(¢° - ¢.7)], “conformal”.

The stress-energy tensor components in the two cases are the following for the “minimal” model:

Tz‘:‘:%e-z(m DA +e28(g') +e %A, 20 % +h(9® - p.2)?,
TH == T BAN +e72%(¢") + €A, 29" ~ (9 - 6.7)°, (10a)
708 - Lem2 @ BY ALY _ o728(g7)? 4 o207 202 — p(g? = %)%,

and the following for the “conformal” model:

T=T%=4h¢. (¢’ - 9.7,

Ttt =—§T+%e‘2‘°"' 8’(A{)2+%e'28(¢')2+§e'2°‘ezAt2¢2

+ia'eTPpg’ ~ $9°R+36°C" — §¢%h(g7 - 9.7, (10)
%T- %e—z (ot B)(A:)2+e—28(¢1)2 +?1;e-2ae2A‘2¢2

-30e B(eBp") + 3’ R+10°G7 + 507 (9 - ¢.7),

TO0 =174 Le2 @By (Al - Lo 28(p7)? + Lem20p2A 2?

T

- %%e"”w +30'R+44°6%0 + 104 - 9.7).

r

In both cases these components satisfy the equa-
tion of stress-energy conservation

physical scalars are finite. We show that these

assumptions imply that the vector field A, vanish-

es identically outside the horizon. Multiplying

(T“r‘r)/ + oz’TA‘A‘ _ETéé + (a’ +?_)T‘r?» =0, (11) Eq. (9a) by A, and integrating from 7, to « gives,
4 4 after an integration by parts,

which determines 709 given T% and 7:'}. The two

independent Einstein equations are then

G'=8gT",
G7=8nT™,

f ridre= “*B(A]) + 2e8-%%A,2p?]

TH

(12) =A,Alr’e” <u+3>|:ﬂ . (13)

The contribution from « to the right-hand side
vanishes, since A, falls off asymptotically at
leastas 1/7. Theassumption that the physical sca~
lar F,, F"? is bounded at » =7, implies that
e”“*®A7 is bounded at the horizon. Hence if A,
=0 at 7y, the right-hand side of Eq. (13) vanishes,
and the fact that the left-hand side is non-nega-

We proceed now to prove a “no-hair” theorem
for the Abelian Higgs model. We assume that the
coupled system consisting of the vector and the
Higgs scalar field and the spherically symmetric
space-time geometry, described by Eqs. (1) and
(2) above, has a horizon at » =7, at which all
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tive (note that the metric components e2* and e??
are non-negative outside the horizon) then implies
A,=0for all =7, So we get a “no-hair” theo-
rem unless® A, |, #0.

The remainder of the argument consists of
showing that having A, |, #0 contradicts the as-
sumption that all physical scalars are finite at
the horizon.” We do this by examining the be-
havior of the scalar field equation near the hori-
zon. We note first of all that in the “minimal”
model boundedness of T*|,, and in the “confor-
mal” model boundedness of T|,, both imply that
the scalar field ¢ is bounded on the horizon.
Hence when A, |, #0 we have

(0,2)R¢ +2np (9% - ¢..2)
_e—2ae2At2¢

e2d

~;1_F X (bounded) =7, 0

» 1(14)

and the scalar field equation can be approximated
near the horizon by

( a-B 2¢r)r+1, ea+5 —2ueA ¢ 0. (15)

It proves convenient at this point to change the in-
dependent variable from 7 to A, with A the affine
parameter of an incoming null geodesic. The dif-
ferential equation relating A to 7 is

ds?=0=—e?® (d)\)+ A
2
=—e‘2"‘P02+e2“(3d—:) . (16)

Since ¢ is a cyclic variable for a time-independent

J

metric, the conjugate momentum P, is a constant

of the motion,® and so after rescaling A to make

P,=1, the second line of Eq. (16) gives
dr (a+ B) .

—=e”

ar (17)

Since the horizon must be a finite affine distance
away from any »>7, the value A, of A at the hori-
zon is finite. In terms of A, and making the defi-
nitions

= pla
q=e )
—p=2(atB)
p_e )

(18)

so that dr/dx =p‘/2, the approximated scalar field
equation becomes

a (qrzﬁ)

To proceed, we need some information on the
behavior of g and its derivatives near the horizon.
This can be obtained by rearranging Eq. (3) for
the Einstein tensor components into the form

2 2At2 “1$=0. (19)

- 1/2

G L 2 (20)
G G"——-?:q;d; 2172, (20b)
.14 142

-3 g 34 00

From the boundedness at the horizon of the left-
hand sides of these equations, and the fact that
both terms on the right-hand side of Eq. (20a) are
non-negative, we deduce the following:

Egs. (20a), (20b) = pg| 4, p*/* & » q %pml”=bounded = %(pl/zq) H=bounded = p'/%4| ,=bounded ,

x|y

2
dq| _ dq| _
Eq. (20c)= P bounded gdx,,, bounded .

Hence writing

9=q1’2 y (22)
we have

dx = HZ% +27,qp"?|,=bounded and >0,

iz—g =y 231_21 4 1/2@_

dx? ”_ H 432 H+ THP dax "

(21)

dpl./z
+2¥,q—5— Iy +2pq|y=bounded , (23)
H

and in terms of 6 the scalar field equation near
the horizon takes the compact form

2
oLg, 2048 Ko
d)\ d)\d)\

— 52,4, 2 (24)
K=e*r"A,%|,>0.
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The final ingredient needed for the argument is
the fact that boundedness of T*‘ |, requires

g *¢?| ,=bounded (252)

in the “minimal” model (since in this model all
terms in 7°% are non-negative), and

[q"¢2+K (Ef) +K2¢—9] =bounded (25b)

in the “conformal” model, with

=(q/(5€°A )y, K,=[(dg/dN)/(5€°A,)]y
(25¢)

two bounded constants. The strategy of the argu-
ment now is to show that Eqs. (23)-(25) are in-
consistent. We consider separately the two cases
where d6/dx | ;>0 and where df/dx | ,=0.

When d6/dx | ,=C>0, we can approximate 6
=C(A-A,) near the horizon, and Eq. (24) takes the
form

e, o K _¢ g, (26)

an: - x,,dx T -y

which has the general solution
K1/2
¢ =¢,cos(x+5), x=—z" In(A =x,). 27)

Hence in this case we find near the horizon
g lP*+ K (E‘f) +K2¢>—2

(A = x,) "M (cos®x + C, sin’x
+C, sinxcosx) , (28)

which is unbounded at A ; for all values of the con-
stants C, ,. In the second case, when do/dx l,=0,
we make an exponential substitution ¢ =e’ in Eq.
(24), giving
2
e[ﬂ . (—iﬂ G .K . (29)

dx® adr "6
Assuming
d’f/dx®

(df/d\)? | o

then Eq. (29) is simply a quadratic equation for
df/dx, which can be solved to give

=0 (30)

)

4 A( 148 . ip
aco\Taan K 31)
From Eq. (31) we get
di/dr’ _ ido/dx 1 6d”9/d)®~ (d6/dr)*
(@/dx)? = KY* T2 K ’
(32)

which vanishes at the horizon, justifying the as-
sumption of Eq. (30). So we find in the second
case that the two linearly independent solutions of
Eq. (24) have the following approximate form near
the horizon,

¢t=—c-g;2§£xexp(iiK‘/2fd)\/9) ) (33)

Both solutions are singular at the horizon, again
giving a contradiction with our initial assump-
tions. The conclusion of this somewhat lengthy
analysis is that A, | ,+0 is not allowed, and thus
by our earlier arguments, A, must vanish identi-
cally outside the horizon. That is, a black hole
cannot support an exterior massive vector-meson
field, even when the mass is generated by spon-
taneous symmetry breaking.

III. THE GOLDSTONE MODEL [“MINIMAL” (§=0) CASE]

With A, =0, Eqs. (1)-(12) of Sec. II describe the
Goldstone model of a self-interacting scalar field,
as generalized to curved space-time. We will
now show that for this model in the “minimal”

(¢ =0) case, a further “no-hair” theorem can be
proved, stating that ¢ =¢,, for all »>7,. That is,
outside the horizon the scalar field reduces to an
unobservable constant, and [cf. Eq. (10a)] the sca-
lar field stress-energy tensor vanishes identical-
ly. Our argument does not apply to the “confor-
mal” (¢ =}) case, where the scalar field stress-
energy tensor has a considerably more compli-
cated structure than in the “minimal” case.

The argument proceeds from the scalar field
equation, which with A, =0 takes the form

(6"qr*e") =7"p 74 V(9) (34)
V(¢) :h(¢2 - ¢,°2)2 ’

and from the Einstein equations, which with 4,=0
may be rearranged to give

’r_ 72
b —‘167"71’((1’) s (35)
(px/zq,r)/:p-l/z_ 8111"21)"1/2V(¢1) .

Multiplying Eq. (34) by ¢’ and integrating frcm 7,
to « gives, after use of Eq. (35) and an integration
by parts,

0= [T ar B gy Koo or
TH
+rp™ 2 V(g)]

+5lr V@) g - (Y%7 *5(6) ]y - (36)

Since all terms in Eq. (36) are non-negative ex-,
cept for the final one, we see that if [p*/%q(¢’)?],
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=0, then we can conclude that ¢ =¢., for r=7,,
and the desired “no-hair” theorem follows.

To complete the proof, we must exclude the pos-
sibility [p*/?q(¢’)?];#0. Just as in the preceding
section, this is done by a local analysis in the
vicinity of the horizon. We begin by noting that
since dg/dx1,>0, Eq. (20a) implies

:_p_]iz ﬂ +p1/21)zil(pl/2q)2

r \dx r] riq
— g Xbounded > (p'/%)?
=1, =0. 7

Furthermore, since T | » 1s bounded, and since
both terms in 7% are positive semidefinite, we
have that p*%4"/?¢’ |, is bounded. Since the first
equation in Eq. (35) implies that dp/d(-7) >0,
and since p(x) =1, we have p >1, which puts the
boundedness of p*/?4*/2¢" into the form

1/2 _1/2 4 l
p1/4q1/2¢ll”=.p_7?74_'_:i_ﬂ=bounded. (38)
Suppose now that p¥/%¢"/?¢’ |,=K#0. Then

¢{y=bounded =°f drg-(E =bounded
- dr

dr
= [H J;) =convergent , (39)
with
a(r)=pYg"*r?, aly=0. (40)

But on the other hand, the differential equation
for ¢ in Eq. (34) gives

(p*?q7r%¢")’| y =bounded, (41)

which on substituting ¢’ =K/(p'/g*'?) gives

a’| ;=bounded

a(7) =bounded
Y=y

= lim

-
TT”

dr

—— =divergent
”f,” alr)~ VETEE (42)
in contradiction with Eq. (39). Hence we must
have K=0, which completes the proof.

IV. AN ABELIAN HIGGS ANALOG MODEL IN
MINKOWSKI SPACE-TIME

As our final topic we briefly investigate a Min-
kowski space-time analog of the Abelian Higgs
model analyzed in Sec. II. We consider a sphere
of radius 7, impenetrable to the Higgs field, and
carrying charge @, surrounded by the Higgs sca-
lar medium. The differential equations and bound-
ary conditions describing the time-independent be-
havior of this system are

(r2A}) =7r"2e%A,0°,
(r*¢") =v’[-e’A ¢ +2he (0% - 6.)], (43)
¢(rll) = 0’ A:(’V”) = —;,—QT 1)

H

which apart from the absence of the metric fac-
tors e®, e® have essentially the same structure as
the system of equations analyzed in Sec. II. How-
ever, unlike the situation found in the general
relativistic case, the Minkowski model of Eq. (43)
has a nontrivial screened-charge solution.® To
prove this, we consider the energy functional

By @ =4n [ 7ar[HA) + £A%¢?
r
H

+h(¢® - ¢.))°] (44)

and use the differential equation for A4, (the charge
conservation constraint equation) and its associa-
ted boundary condition to write

A; - ;15 [frdr’r’QZezA,(r’)¢2(r’) - Q] s (45)
TH

which when substituted into Eq. (45) gives the new
functional,

o« . r 2
*E(VH, Q) =4 f 72d"’{2,'1,4 [f dr;,},pzzezA‘(,r;)qu(r,) - Q] +e2A‘2¢2 +h(¢2 - ¢m2)2} . (46)
TH

Ta

Extremizing *E with respect to variations in A,
and ¢ [with an endpoint condition 8¢(r,) =0] is
easily verified to lead to the differential equations
of Eq. (43). Hence these equations describe the
field configuration which minimizes the field en-

ergy, subject to the constraint that the inaccessible
region 7 < v, contains total charge Q.

Since the functional *E is positive semidefinite,
and since there is a nonempty class of functions
A,, ¢ for which *E is bounded from above, func-
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tions A,, ¢ which minimize *E must exist, and
thus the coupled equations in Eq. (43) have a solu-
tion.'® Near 7=, the solution has the behavior

p=ds
A, =r exp[-7/(2¢°¢.})'"],

(4m

and as expected, the Higgs mechanism results in
screening of the charge @ from view at infinity.

The conclusion from this analysis is that the ab-
sence of screened-charge black-hole solutions in

the general-relativistic case is a result of the
stringent conditions for the existence of a horizon,
not of the interacting field or spontaneous-sym-
metry-breaking aspects of the problem.
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