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%e examine the question of whether black holes can have associated external massive vector and/or scalar
fields, when the masses are produced by spontaneous symmetry breaking, %orking throughout in the spheri-

cally symmetric case, we show that "no-hair*' theorems can be proved for the vector field in the Abelian Higgs

model, for an arbitrary $R IP I term in the Higgs Lagrangian, and for the Goldstone scalar field model with

$ = O. %e also show that a Minkowski-space analog problem does have nontrivial screened charge solutions,
indicating that the "no-hair" theorems which we prove are consequences of the stringent conditions at the
assumed horizon in the general-relativistic case, not of the interacting field or spontaneous-symmetry-breaking
aspects of the problem,

I. INTRODUCTION

One of the stx'iking features of the physics of
black holes is the existence of "no-hair" theorems,
which state that the only external attributes of
a black hole (such as its mass M, angular momen-
tun1 rf, Rnd electx'1c chal'ge Q) Rx'e those RssoclRted
with massless fields admitting conserved flux in-
tegx'als. "All other types of fields must decouple,
under the assumption of a well-behaved geometry
at the horizon. These theorems have been proved
for a variety of wave equations, including the
massless Dix'ae field, various massive scalar field
theories, and the massive spin-1 Proca field. Our
purpose in the present paper is to extend this list
of equations studied to include classical wave equa-
tions in which masses are generated by sponta-
neous symmetry breaking. This is particularly
important in the vector-meson case, since it is
widely believed that if massive spin-1 fields exist,
they get their masses through a dynamical mech-
anism of spontaneous symmetry breaking, ' rather
than kinematically as in the Proca equation. The
simplest relevant model is the Abelian Higgs mod-
el, ' and so the main focus of this paper is on the
question of whether black holes can have Abelian
Higgs "hair. " We also give some results for the
closely related Goldstone scalar-meson model.
For simpbeity, we assume spherical symmetxy
throughout, since we expect that if interesting
violations of the "no-hair" theorems were to oc-
cur, they would be seen in the spherically sym-
metric case. We find, in fact, no evidence for
such violations, and prove "no-hair" theorems for
the cases we study. We believe it likely that our
proofs will generalize to the nonspherical case.

liminaries. %e assume the general time-indepen-
dent, spherically symmetric line element

ds' = -e"dt + e' dr '+ r '(d8'+ sin 8' ) .
Using a caret to denote components on the or-
thonormal basis

and using a prime to indicate differentiation d/dr,
the Einstein tensor components for this line ele-
ment ax'e

A rr

&-18@r r-2(l &-a 8)r

hatt 8-28pr+r-2(l e-28)

=e '8(Xx" +ct"—a'p'+tx'r ' p'r-').

R = 2r '(1 - e ' 8) + 4r '8-'8(p' txr)

2C-28( rr ~ r2 r pr)

and the Bianchi idenbty is

AA 2 A

(Gfi)r+ +rett gg8+ j+ +Grrr O

The Abelian Higgs model describes a charged
scalar field, with a double-@sell self-interaction,
coupled to an initially massless Abelian gauge
field. The Lagrangian density for the model, writ-
ten in genex'ally covariant form, is

II. THE ABELIAN HIGGS MODEL

Before writing down the Abelian Higgs model
Lagl angian» we begin vQth some geometric px'e-
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~A]i ~Afj
]1 fI @+v

The parameter $ is zex o fox' the usual "minimal"
scalax' @rave equation, while ( =~6 fox' t'he "con-
formal" scalax' wave equation which is confoxmal-
ly 1Dvax"1Rnt 1D the absence of mass terms. SpoQ-
taneous symmetry breaking arises because the
effective potential

1(~)=h(I~i'- ~ ')'

has its minimum at lP I
= P„, rather than at ttt = 0.

Following the analysis of Bekenstein' in the
similax' case of charged scalar electrodynamics,
me use the fact that in the time-independent case
of interest in black-hole physics me can choose a
gRUge 1D Which Q 1s x'eal, A.; =0, and g& is time
independent. In this gauge the field equations of
motion o'hich folio% from the Lagrangian of Eq.
(6) are

(e-&"'&~'~ ) =~'e'-"2e'~ y'

(e sr'p')'= '2"e' [2e2"-e'At'p+2htft(p' —p„')], . "minimal"

(e 82"tlt')'=2 e""'[ e'"e-At p+~2RQ+2hp(ttt' —g„')], "conformal".

The stx'ess-enex"gy tensox' components in the toro cases are the following for the "minimal" model:

Ttt t -2 tetr tt t(pl)2 + e-28(y t)2 + e-2tte g 2y +h(y2 y 2)2

Trr t e 2 (tt+ 8)(ttl)2+ e 28(yt)2+ e-2tte2g 2y2 h(y2 y 2)2

Iytttt I e 2 (ted tt jQ /) e 2 tt(yt)2 e 2tte g 2y2 h (P2 P 2)

and the following for the "conformal" model:

f'= y'=4ht '(4' —0 '),
Ttt t gn+ te-2 (tt+ sj(~I) +tee 28(yl)2+ 2e-2netg 2y 2

Trr i 7 te-2 (a+ 8t(gr)2+e-28(~t)2 + t -2tt 2p 2~2

,'ttte (e ttt')'-+, tit'ft + ,'P'G + ,'ttt'h(-ttt - p„')-,
T08 t rp+ te 2(tt+Stgt)2 te 28(yr)2+ te-2ae2~ 2y2

(ioa)

ln both cases these components satisfy the equa-
tion of stx'ess-enex"gy consex'vRtlon

AA 2 AA

(Trr)r +&rhett T66
~

&t+ Z rr 0
y

which detex'mines Tee given T""and T". The two
independent Einstein equations ax'e then

AA AA6"= 8rT'",
(12)

6""= 8n T""

%e proceed now to prove a "no-haix" theorem
for the Abelian Higgs model. %e assume that the
coupled system consisting of the vector and the
Higgs scalar field Rnd the spherically symmetric
space-time geometry, described by Eels. (1) and
(2) above, has a horizon at r = 2 „at which all

physical scalaxs axe finite. %e show that these
assumptions imply that the vector fieM A, vanish-
es identically outside the horizon. Multiplying
Etl. (9a) by At and integrabng from 2„to ~ gives,
aftex' an integration by parts,

2'tf~[e '"' s'(ttt')'+ 2e 2 e'At'tft']

=A.,A.,'r'e &"'&)"„„. (12)-
The contribution fx'om ~ to the right-hand side
vanishes, since A& fans off asymptotically at
leastas 1/r. The assumptionthat the physical sca-
lar E»E""is bounded at r=x~implies that
8 «A,

&
is bounded Rt the hox'izon. HeDce if A, ~

= 0 at 2 „,the right-hand side of Etl. (18) vanishes,
and the fact that the left-hand si,de is non-nega-
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tive (note that the metric components e' and e'
are non-negative outside the horizon) then implies
At=—0 for all r~~H. So we get a "no-hair*' theo-
rem unless' A., jH WO.

The remainder of the argument consists of
showing that having A, jH 10 contradicts the as-
sumption that all physical scalars are finite at
the horizon. ' W'e do this by examining the be-
havior of the scalar field equation near the hori-
zon. We note first of aO that in the "minimal"
model boundedness of T" jH, and in the "confor-
mal" model boundedness of' T j H, both imply that
the scalar field P is bounded on the horizon.
Hence when At jH0 we have

(o,—')Rlf +2hy(lf' —lfl„'}
e~2+e2+ 2y

g2~
, x(bounded) ~ „= 0, ~(]4}

t H

and the scalar field equation can be approximated
near the horizon by

It proves convenient at this point to change the in-
dependent variable from r to A. , with A. the affine
parameter of an incoming null geodesic. The dif-
ferential equation relating A. to x is

metric, the conjugate momentum Po is a constant
of the motion, " and so after rescaling A. to make
P, = 1, the second line of Eq. (16) gives

(o+ g}
dX (»)

p e-2 (a+ 8}

so that dr jdA=p' ', th.e approximated scalar field
equation becomes

—~ql
—+1' e A, q

2&4 2 2 a

dA.

To proceed, we need some information on the

behavior of q and its derivatives near the horizon.
This can be obtained by rearranging Eq. (3) for
the Einstein tensor components into the form

dA,
(20a)

Gtl + Grr q (pl/2)
dX

(20b)

Since the horizon must be a finite affine distance
away from any x&xH, the value A, H of X at the hori-
zon is finite. In terms of A. , and making the defi-
nitions

CN 28 ~dt~ds'=0=-e'" —+ e"
i
—

)dA. gA. j

1 d (2 1dgGS6 (pl/2 )+
y' dA. 2 dX

(20c)

Since t is a cyclic variable for a time-independent

From the boundedness at the horizon of the left-
hand sides of these equations, and the fact that
both terms on the right-hand side of Eq. (20a) are
non-negative, we deduce the following:

d
Eqs. (20a), (20b) ~ pq~s, p'/'„„, q

—p'/' =bounded ~ —(p'/'q) =bounded ~p'/'q~„=bounded,
i H

d q' l ckr I

Elf. (20c)~, =bounded ~ ~ =bounded.
dX,'

H dk,
, H

Hence writing dp 1/2 !

+ 2TIlq + 2pqi» =bounded,
dX (23)

we have

d6 ~

dA IH
H dA H

H f+ 2y' qp ( =bollllded and

d'8 ', d'q '

dw2 H dX' H dX

and in terms of 0 the scalar field equation near
the horizon takes the compact form

d'P d8 ~d Klfl

dX dA. dA. 0

~=e & &1'ls» ~

(24)
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The final ingredient needed for the argument is
the fact that boundedness of T" )„requires

q 'y'~„=bounded (25a)

in the "minimal" model (since in this model all
terms in T" are non-negative), and

dy~' dd'+ K, —
I

+ K,p =bounded
dg)

in the "conformal" model, with

K, = [q/(5e'A, ')]„, K, = [(dq/d X)/(5e'A, ')]„

(25b)

(25c)

two bounded constants. The strategy of the argu-
ment now is to show that Eqs. (23)-(25) are in-
consistent. We consider separately the two cases
where d8/dX I„)0 and where d8/dX 1„=0.

When d8/d a I „=C) 0, we can approximate 8
= C(y-1„) near the horizon, and Eq. (24) takes the

form

d'p 1 +d K
dA. X —A.e dX C (X —A. „)

which has the general solution

K1/2

p = p, cos(x+ 6), x = In(X —X „).

(26)

(27)

Hence in this case we find near the horizon

q 'f +K, +K,Q

~ (X —A „}'(cos x+ C, sin'x

+ C, sinx cosx), (26)

which is unbounded at X„for all values of the con-
stants C, , In the second case, when d8/da le=0,
we make an exponential substitution P = e/ in Eq.
(24), giving

which vanishes at the horizon, justifying the as-
sumption of Eq. (30}. So we find in the second
case that the two linearly independent solutions of
Eq. (24) have the following approximate form near
the horizon,

xexp +iK' '
dA. 001 2 (33)

Both solutions are singular at the horizon, again
giving a contradiction with our initial assump-
tions. The conclusion of this somewhat lengthy
analysis is that A, |~ c0 is not allowed, and thus

by our earlier arguments, A, must vanish identi-
cally outside the horizon. That is, a black hole
cannot support an exterior massive vector-meson
field, even when the mass is generated by spon-
taneous symmetry breaking.

III. THE GOLDSTONE MODEL ["MINIMAL" ()=0)CASE]

With A, =0, Eqs. (1)-(12}of Sec. II describe the
Goldstone model of a self-interacting scalar field,
as generalized to curved space-time. We will
now show that for this model in the "minimal"
($ = 0) case, a further "no-hair" theorem can be
proved, stating that P =—P„ for all r) r~. That is,
outside the horizon the scalar field reduces to an
unobservable constant, and [cf. Eq. (10a)] the sca.-
lar field stress-energy tensor vanishes identical-
ly. Our argument does not apply to the "confor-
mal" ($ = 6~) case, where the scalar field stress-
energy tensor has a considerably more compli-
cated structure than in the "minimal" case.

The argument proceeds from the scalar field
equation, which with A, —= 0 takes the form

(p'/'qr'y')'=r'p '/' ', V(y)-, -
(34)

v(y) = a(y' —y„')',

dz2 dX dX dX e
(29)

and from the Einstein equations, which with A, =—0
may be rearranged to give

Assuming

d f/dh'.
(df/d A)'. (30}

then Eq. (29) is simply a quadratic equation for
df/dA, which can be solved to give

p'= -16vrp(y')',
(pl/2 ) g p

-z/2 6 2p -z/2
V(~)

(35)

Multiplying Eq. (34) by g' and integrating from r„
to ~ gives, after use of Eq. (35) and an integration
by parts,

From Eq. (31) we get

(31) 0= d~ —,
' p' 'p'~'qr+-, ' ' 'p-')'z

~e

+rp

d f/dA'id8/dX 1 .8d'8/dA' —(d8/dg)
(df/d A)K'/ 2. K 7

(32)

(36)

Since all terms in Eq. (36}are non-negative ex-.
cept for the final one, we see that if [p'/'q(p')']e
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= 0, then we can conclude that (t) =—(p„ for r» r„,
and the desix ed "no-hair" theorem follows.

To complete the pxoof, we must exclude the pos-
sibility Lt)'/'q(P')']etO. Just as in the preceding
section, this is done by a local analysis in the
vicinity of the hox'izon. Vfe begin by noting that
since dq/d/) j()(~0) Eq (20a) implies

~ llm -- =bounded
s (r)

r r + ~a8

= dlvergeQt »a(r)

in c»t»di«i» with Eq. {39). Hence we must
have &=O, which completes the proof.

(42}

G +—z =bolH1ded

p d5(, pl/2f ~ (p)./2 }2
j./2

Q

~ q xbounded ~ (p '/'q}'

p"'q"'I, = 0 (37)

(33)

Furthermore» since T IH ls bounded» Rnd siDce
both terms ln 7 Rl'6 positive semideflnite %6
have that p'/'q /'(p' i„is bounded. Since the first
equation in Eq. (35) implies that dp/d(-r) ~ 0,
and since p (~) = l, we have p ~ l, which puts the
boundedness of p'/'q'/'(t) ' into the form

1/2 1/2~ I
Ipl/4 )./2y)) p q 'Y H bounded

p 1//4
I

Suppose now thatP q
~

@ I~-KwO. Then

d(P(, ( "a.„a=fa.,-' =b.,a.a
~a

&
, = convergent, (3

(r'A,')' = r'2.e'w, 4',
(r (p')'= r [-e'A, '(p+2h(t)((p'- (p„')], (43)

4(rg)=o, &t(re) =-

which apart from the absence of the metric fac-
tors e", es have essentially the same structure as
the system of equations RDalyzed ln Sec. G. How-
ever, unlike the situation found in the general
relativistic case, the Minkowski model of Eq. (43)
has R nontx'lvlRl scx'eened charge solution To
px'ove this» %8 consider the enex'gy functional

IV. AN ABELIAN HIGGS ANALOG MODEL IN

MINKOWSKI SPACE-TIME

As our final topic we briefly investigate R Min-
kowski space-time analog of the Abelian Higgs
model analyzed in Bec. II. VVe consider a sphere
of radius r~, impenetx'able to the Higgs field, and
carrying charge Q, surrounded by the Higgs sca-
lar medium. The differential equations and bound-
Rx'y conditions descrlblng the time-independent be-
havior of this system are

with

a(r) =-p'/' '/'r ' s(

E(r„,())=4rI r'dr(-,'(A')' s'A, '()'
H

+&(4'- 4 -')'] (44)

But on the other hand, the differential equation
for (P in Eq. (34) gives

(p "qr'y')']„=bounded,

which on substituting (p' =K/(p "/'q'/') gives

s ~&
= bounded

dr'r"2e'/t, (r ')p'(r') —q
8

which when substituted into Eq. (45) gi, ves the new
functional,

(45)

and use th«fferential equation for A, (the charge
conservation constraint equation) and its associa-
ted boundary condition to write

(46)

Extremizing *E with respect to vax'iations in A,
and (p fwith an endpoint condition 5(p(re) =0] is
easily veriGed to lead to the differential equations
of Eq. (43). Hence these equations describe the
field configuration which minimizes the field en-

exgy, subject to the eonstxaint that the inaccessible
region ~~ ~~ contains total charge Q.

81Qce the functional E ls posltlve semideflnlte
and since there is a nonempty class of functions
Ag» (III) fox' %'hieh +E ls bounded fx'om above» func-
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tions A„P which minimize E must exist, and
thus the coupled equations in Eq. (43) have a solu-
tion." Near r = ~„ the solution has the behavior

the general-relativistic case is a result of the
stringent conditions for the existence of a horizon,
not of the interacting field or spontaneous-sym-
metry-breaking aspects of the problem.

and as expected, the Higgs mechanism results in
screening of the charge Q from view at infinity.
The conclusion from this analysis is that the ab-
sence of screened-charge black-hole solutions in
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SNote that A& is the time component on a coordinate
basis.

In the mRssless vectox' cR86, Rn exterior vectox' fleM
is present precisely because the possibility A, [s ~ 0
cRn be reRllzed.

At this point in his analysis of the charged scalar-
meson case, Bekenstein tJ. D. Bekenstein, Phys.
Hev. 0 5, 1239 (1972)] introduces the assumption that
the charge per meson which he def ines by (-f f~)

Q, y'&'+')'"/y' e A., ls bounded at the horizon,
which would imply the vanishing of A, ~s with no further
detailed analysis. However, it is not clear to us that
the requirement of boundedness at the horizon shouM

Rpply to phy8icRl scR1Rx'8 fox'Ined Rs the ~otientg of
other scalars, when the denominatox is a physical
quantity (such as/) %'hich cRn develop nodes. In our

analysis, we only assume boundedness at the horizon

of F~q I Rnd of Gft„G = (8%)

Tidal

T . Since G ls
diagonal, boundedness of G» G"" implies that all
coIDponents of G Rx'6 lndividuaHy bounded Rt, the
hox'lzon.

88ee C. W. Misner„K. S. Thorne, and J. A. %heeler,
Gmvitation (Ref. 4), Chap. 25.

90ur variational argument for existellce of a screened
charge solution applies when the boundary condition

$(~H)=0 is generalized to $(rH) =Q, with PH any

spec lfled constRnt, .
~OThe proof does not extend to the limit xz 0 because a

point charge has infinite Coulomb self-energy, as a
result of which the functional ~E is not bounded from
above. In the point charge case, an analysis of the
indicial equation for Q around x=0 suggests that, for
(e Q)2 & 4, there may be a solution which would behave

as Q- Qx", X=-z+ I.~-(eQ)2/~2 near~=0, and which

joins on to an exponentially decreasing asymptotic
solution at x=~. However, we do not have an existence
proof in this case.


