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Solutions of the Euclidean-space Einstein-Yang-Mills equations are presented which describe a dyon black
hole of mass M, angular momentum J, electric charge Q,, and magnetic charge Q,,. In addition to the
usual magnetic-charge quantization rule eQ,, = m (m = integer), the space-time topology of the Euclidean
black hole, in particular the periodicity in the time coordinate, leads to a new electric-charge quantization
eQ, = n(l—r_/r,), where n = integerand r, = M +[M*>+JM > +4m(Q2 — Q2)]"%. Regarded as a
(non-self-dual) Einstein-Yang-Mills pseudoparticle, the solution has finite action, a gravitational Euler
number ¥ = 2, and an SU(2) Pontryagin number P = 2mn.

I. INTRODUCTION

In two previous publications,'** finite-action
pseudoparticle®+* solutions to the coupled Ein-
stein-Yang-Mills field equations were presented
which were characterized by a nonvanishing grav-
itational Euler number, ¥, and an SU(2) Pontry-
agin number, P. Having no flat-space analog,
these solutions served to illustrate how different
families of Yang-Mills pseudoparticles exist in
space-times of different topology.

In Refs. 1 and 2, attention was focused mainly on
solutions for which the Yang-Mills field strengths
were self-dual and for which, therefore, the en-
ergy-momentum tensor vanished identically. The
problem of solving the coupled Einstein-Yang-
Mills field equations was thus reduced to first
solving the vacuum Einstein equations and then
finding field strengths which were self-dual in the
given geometry. In particular, one could take the
geometry to be that of a Schwarzschild black hole
continued to Euclidean space in the way described
by Hawking* and by Gibbons and Hawking.® Two
such solutions were provided. The first had Pon-
tryagin number P=+1 and the second, with P
=+2n? (n =integer), corresponded to a dyon with
equal or opposite electric and magnetic charges.

It was also pointed out, however, that there ex-
ist non-self-dual pseudoparticles of the dyon type,
with nonvanishing stress tensor, in the Reissner-
Nordstrom (or more generally Kerr-Newman)
geometry. The purpose of the present paper is to
examine these solutions in greater detail with
particular reference to the electric- and magnet-
ic-charge quantization rules.

Our results may be summarized as follows. The
Einstein-Yang-Mills field equations admit real
solutions in Euclidean space (i.e., a Riemannian
space with a metric signature +4) with parameters
M, J, Q., and @,, which we refer to by their
“Minkowski” titles of mass, angular momentum,
electric charge, and magnetic charge of the dyon
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black hole. The finite total action is given, in
natural units 7 =¢c=G =1, by

S= 7—2_17—_— (M2 -T?M™)
+41(Q2 +Qn )], (1.1)
where
ro=M+ [M?+J°M 2+41(Q,.2 - @, 2. (1.2)

[The reader may recognize Eq. (1.2) as describing
the location of the event horizon but, as discussed
in Sec. I, JZ and @, enter in Euclidean space
with the opposite sign to Minkowski space.] The
magnetic and electric charges are quantized ac-
cording to

eQ,,=m (1.3)
and
eQe —'n(l - 'r_/r,) ) (1~4)

where m and n are integers and e is the Yang-
Mills coupling strength. We note from Eq. (1.2)
that the electric-charge quantization rule (1.4) is
highly nonlinear and involves both M and J. The
solution carries a nonvanishing Euler number

Xx=2, (1.5)
and an SU(2) Pontryagin number
= 2 7.
P=2e"Q.Qn Py
=2mn=even integer. (1.6)

The paper is divided into five sections. Before
embarking on the Yang-Mills problem and before
discussing the effects of rotating black holes, we
consider in Sec. IT the simpler case of spherically
symmetric (J=0) solutions of the field equations
for an Abelian U(1) gauge field coupled to gravity.
In other words, we consider the Reissner-Nord-
strom solution of Einstein-Maxwell equations
(generalized to include magnetic charge) but pay-
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ing particular attention to the unfamiliar features
of Euclidean space. Although dyons and magnetic
monopoles in curved space have been considered
previously by a number of authors,® our Euclidean
approach will be very different. By transforming
to Kruskal-type coordinates, one is able to see
how the real Reissner-Nordstrom black-hole
inanifold is everywhere free of singularities (in-
cluding the curvature singularity at » =0 encoun-
tered in Minkowski space) provided the Euclidean
time coordinate is periodic. This periodicity
means that the dyon potentials exhibit not only the
familiar Dirac magnetic string singularity but also
an “electric string” singularity. Consequently,
both the magnetic and the electric charges of the
dyon obey a Dirac quantization rule.

In Sec. III, we convert these Abelian solutions
into solutions of the SU(2) Yang-Mills-Einstein
equations. Although we are concerned with four-
dimensional pseudoparticles, the time indepen-
dence of these solutions means that we make con-
tact with the work on three-dimensional solitons.
Since there are no Higgs fields present, the re-
sulting solutions are akin to the Wu-Yang mono-
pole” rather than ’t Hooft- Polyakov monopole® or
Julia-Zee dyon.? Indeed, one of the remarkable
features of the Euclidean Reissner-Nordstrém
topology is that the singularity at » =0 normally
encountered in the Wu-Yang solutions is avoided
without the need for Higgs fields. And in sharp
contrast to the Julia~-Zee dyon, the electric as
well as the magnetic charge is again quantized.

In this non-Abelian case, the quantization rules
are of the Schwinger type, rather than the Dirac
type. In this section we also discuss the topologi-
cal invariant of the SU(2) fields, relating it to the
electric- and magnetic-charge quantum numbers
of the U(1) fields, and discussing its effect as an
obstruction to the removal of the electric and mag-
netic string singularities.

In Sec. IV we compute the total action of the com-
bined gravitational and gauge field system and show
it to be finite as a consequence of the space-time
topology. The quantization laws (1.3) and (1.4) al-
low us to eliminate the dependence on @,, and @,
in favor of the integers m and n; and this involves
us in a closer examination of the nonlinear nature
of the quantization law for the electric charge.

Finally, in Sec. V, after examining the effects
of endowing the black hole with angular momentum
J, we touch briefly on some further questions of
topological interest. These include (a) an under-
standing of Eq. (1.6) in terms of the Whitney sum
formula,'® (b) how our pseudoparticles exhibit
“charge without charge” in the Wheeler!! sense,
(c) the Euclidean version of some ‘no hair” theo-
rems,"! (d) the existence of more general solu-

tions requiring, in the self-dual limit at least,

not less than 8 P-6 parameters to specify the gauge
fields (as distinct from 8P-3 in flat space), and
(e) the problems associated with the physical in-
terpretation of the solutions, in particular how the
periodicity in the time obscures the usual vacuum-
tunneling interpretation and favors a viewpoint of
Yang-Mills pseudoparticles at finite temperature.

II. U(1) GAUGE FIELDS

Consider the coupled Einstein-Maxwell field
equations in Euclidean space:

Ryy - 38w R=81T,,, (2.1)
where

Ty =fupfo’ = 58uf "f oo, (2.2)
and

Ve =0, (2.3)
where

Suv =8yay =80, (2.4)

In coordinates x¥ =(7, 7, 6, ¢), the most general
spherically symmetric asymptotically flat solution
is given by the Reissner-Nordstrom line element

ds? = ('V—T,)(V—V_) dr?+ v 2

= G-
+r3(d6® +sin?0d¢?), (2.5)
where
Yy =ME[M +41(Q, - Q)2 (2.6)
and by the dyon potential
a=a,dx"
=@, (% - %) dT+Q,(cosO+k,)d¢. (2.7)

The quantities M, @,, and ,, are the dyon’s mass,
electric charge, and magnetic charge, respec-
tively, while k,, and %, are arbitrary constants.
The Maxwell field strength,

f=afupdxtads”, (2.8)
is given by
f=da
= Q—ez dTady — Q,sin0dond¢ . (2.9)
”

We note that @, enters the line element with the
opposite sign to Minkowski space. This is be-
cause the imaginary-time replacement {— 7=¢/
must be accompanied by a; —a, =-ia,; in order to
obtain a real potential. One consequence of this
is that the field strength becomes self-dual:
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f=i*f) *fuu E% €yv pofpo; (2-10)
when
Q,=FQp. (2.11)

In this case the line element (2.5) reduces to the
Schwarzschild solution with »,=2Mand »_=0,
since the stress tensor of Eq. (2.2) vanishes when
f=£¥.

Similarly, in the case of the Kerr solution, the
squared angular momentum J2 would enter the
real Euclidean line element with a sign opposite
to the Minkowski metric. In this respect, our ap-
proach differs from that of Gibbons and Hawking,®
who start with real Minkowski solutions and per-
form only the Wick rotation, thereby obtaining a
complex potential when @, #0 and a complex metric
when J #0. Here we are seeking real solutions to
the field equations directly in Euclidean space in
the spirit of Belavin, Polyakov, Schwartz, and
Tyupkin.® The criterion for the existence of a
black hole, rather than a naked singularity, is
that », be real. In Euclidean space this now be-
comes

M?+J*M ™% +471Q .72 > 41Q,2, (2.12)
and hence 7_ obeys the inequality
¥, <v_<7,. (2.13)

For the moment we shall confine our attention to
the case J=0. Rotating black holes are mentioned
in Sec. V.

Our difference from Gibbons and Hawking, how-
ever, and our inclusion of a magnetic charge, do
not prevent us from repeating their analysis and
thereby finding solutions for which the metric is
positive-definite and everywhere free of singu-
larities, but for which both the potential and the
metric are everywhere real. To make this ex-
plicit, we transform to the Kruskal-type coordi-
nates x* =(¢, 7, 6, ¢) since in (7, 7) coordinates it
is not yet apparent that the Reissner-Nordstrém
solution (2.5) satisfies all these criteria. We de-
fine

& =exp(kr)(kr — kv, )! é(m, - mf_)"-2 /ary? sinkT,
(2.14)
n=exp(kr)(kr — kv, ) /Z(Kr - Kr_)"—2 /21,2 aoskT .

where the quantity «, usually referred to as the
“surface gravity,” is given by

Vo=7_

K=—t—=
272

(2.15)

The line element (2.5) now becomes

_ (kr - KV_)”'-z /r?

2
ds K47'2

exp(—2k7)(d&? +dn?)

+7r%(d6? +sin®9d¢?). (2.16)

From (2.14), it follows that I, the region » =7,
is a complete smooth manifold without singular-
ities provided 7 is periodic with period 27x™!.
Thus 7 behaves like an angular coordinate about
the “axis” » =7, (n=£=0). The topology of I is
R?xS?, and the Euler-Poincaré characteristic of
the manifold is given by

1
M) = o [, 4 VE Rz o

=2. (2.17)

The important point is that we have succeeded
in removing not only the coordinate singularities
at = r,, but also the curvature singularity at
7 =0 encountered in Minkowski space. This will
have far-reaching consequences not only for the
gravitational field itself but also for the gauge
fields defined on M. In particular, the field
strengths (though not the potentials) will be every-
where nonsingular. [We note that the metric (2.16)
is also real, but singular, in the region » <»_.
However, this region is disjoint from » =7, and
we need not consider it further; it can have no in-
fluence on the functions or fields defined on IN. ]

From Eq. (2.9), it follows that the scalar

_2(Q72+Q,%)

gupgvofuufpo° 4

> (2.18)

tends to zero as » —«. This boundary condition
means that, as far as the dyon solutions are con-
cerned, the (£, n) plane is equivalent to the sphere
S2, and we shall shortly discuss the implications
of this for the dyon potentials.

Before doing so, however, it will prove instruc-
tive to introduce a third set of coordinates x*
=(6,,,,0,, ¢, defined by

1-cosf, _
1 +cosé,

£+, ¢.=kT=tan™! % R
(2.19)
8’":9’ ¢m=¢’

so that 6,=0 corresponds to » =7, and §,=7nto »
= and such that ¢, has period 27. From Eq.
(2.16), it follows that the induced metric on the
surface with constant 6 and ¢ is conformal to the
standard metric on the (6,, ¢,) sphere S,2:

do? +sin®6,dp,?,
just as the induced metric on the surface with con-

stant £ and 7 is conformal to the standard metric
on the (6,,¢,) sphere S,
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d6,’ +sin’ 6, d¢ ",

but that the conformal factors are different in
each case. (Were they the same, I would be con-
formally equivalent to S, XS,.2.)

Now consider the dyon potential (2.7). For
arbitrary &, is exhibits a magnetic string singu-
larity along the entire z axis (the Dirac string)
since

dpp=dp = P (xdy - ydx). (2.20)
The novel feature of Euclidean space is that, for
arbitrary k,, the potential also exhibits an “elec-

tric string” along the “axis” » =7, (£ =1=0) since
1

dp,=kdr= Fnt (ndg - gdn) . (2.21)
Nor does the potential vanish as » =«. We refer
to the vanishing of a as » becomes large as “reg-
ularity at infinity” (this statement can be made in
a coordinate-independent fashion, i.e., g“"apa,,
is not regular at infinity). In summary, the po-
tential ceases to be regular at

0n=0, O,=m,

6.=0 (r=r,), 6,=m (r=wx),.
Although there exists no choice of gauge for which
the potential is everywhere regular, it is never-
theless possible to cover the manifold M with four
overlapping regions such that there exists a
regular potential in each region and such that in
the intersection of any two regions the corre-

sponding potentials are connected by a gauge
transfcrmation. To see this define the regions

1. 6,>0, 6,>0 (r>7r,),
2. 6,<m, 6,>0,
3. 0,>0, 6,<7m (r<=),
4. 6,<m, 6,<m,

and the corresponding gauges
(1) k,=0, k,=+1,
(2) ~,=0, k,=-1,
(3) ke=1, k,=+1,
(4) k,=1, k,=-1

In the gauges (1), (2), (3), and (4) the potential is
regular in the regions 1, 2, 3, and 4, respec-
tively. As an example, consider the gauge trans-
formation which connects 1 and 2:

a,=a,+2Q . d¢ . (2.22)

In the presence of a spinor field y with charge e
transforming under (2.22) as

U= Q¥,, ), =exp(ie@n,o), (2.23)
the requirement that © be single-valued,
Ap) = Q¢ +2m), (2.24)

leads to the well-known Dirac quantization condi-
tion

2eQ, =integer. (2.25)

In an analogous fashion, consider regions 1 and 3;
then

Q

a1=a3+7f— dr, (2.26)
and

Q,, = exp(ie@,7/7.). (2.27)
Periodicity in 7,

A7) =1+27k7Y), (2.28)

leads to a new electric-charge quantization rule:

Qe

=integer. (2.29)
.

The two integers in Egs. (2.25) and (2.29) are in
general distinct and coincide only in the self-dual
limit @, = @, for which k7, =3. These Dirac rules,
valid in the presence of spinors transforming ac-
cording to the U(1) gauge group, are not the ones
with which we are primarily concerned. Our pur-
pose in discussing Abelian gauge fields was to pave
the way for the treatment of pure non-Abelian
gauge fields, to which we now turn.

III. SU(2) GAUGE FIELDS

In this section we shall consider the SU(2) Yang-
Mills potentials

A=A dx*, A,=AlT'(i=1,2,3), (3.1)
where

o . ; ot

LT, T/ =€**T*, T'=?i—, (3.2)

and the corresponding field strengths
F=dA+AAA =3 F}, T'dx"adx"” . (3.3)

We have absorbed the Yang-Mills coupling con-
stant, e, into the definition of the potentials, so
that the action takes the form

sYu= .71 Trf FA*F. (3.4)

We may repeat in curved space a procedure well
known in flat space. A solution of the coupled

Einstein-Yang-Mills field equations (g,,,4) may
be obtained from a solution of the Einstein-Max-
well equations (g,», @) by keeping g,, unchanged
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but setting

A=eaT?, (3.5)
so that

F=efT3. (3.6)

The solution so obtained will, of course, exhibit
the same singularities as those of the Maxwell
field. In particular, it will possess electric and
magnetic string singularities when the Maxwell
field it taken to be the dyon potential discussed in
Sec. II. Now, however, the SU(2) gauge trans-
formations which connect the different regions,
e.g., 1—2 and 1—3, are [cf. Egs. (2.23) and
(2.27)]

,; = exp(—ieQud0,) (3.7
and
Q, =exp(-ieQ,70,/27,). (3.8)

Therefore the Q’s will not be smooth functions
with values in SU(2) unless

eQ,, =m=integer (3.9)
and

e, _ _.

2, =n=integer. (3.10)

These quantization rules are of the Schwinger
type rather than Dirac type. Hence only half the
Maxwell solutions provide SU(2) solutions. [Note
that we have identified the Yang-Mills coupling
constant with the Abelian charge e of Sec. II. As
pointed out by ’t Hooft, however, the group SU(2)
admits isospinor fields with an elementary charge
equal to one-half the Yang-Mills coupling strength.
In this case the rules (3.9) and (3.10) would deserve
the Dirac title. ]

The gauge fields carry a topological number (the
second Chern number) often referred to as the
Pontryagin number, given by

P=—-—12f (TrFAF = TrFaTrF) (3.11)
87 m

2

= 1o Lt (3.12)
on using Eq. (3.6). [Usually the term TrFATrF is
omitted since it vanishes identically in the case of
SU(2). Here we exhibit it explicitly in order to
emphasize that P itself would vanish for a strictly
Abelian field.] Substituting for f the dyon field
strength of Eq. (2.9), and remembering the range
of integration 7, <» <« and 0< 7<27«™!, we find
from Eq. (3.12) that

€*QeQnm

K7,

P= , (3.13)

P=2mn, (3.14)

on invoking the quantization rules (3.9) and (3.10).
Hence, the Pontryagin number of the dyon solu-
tions is given by twice the product of the electric-
and magnetic-charge quantum numbers of U(1)
dyon and is thus an even integer. (An Einstein-
Yang-Mills pseudoparticle with odd P is discussed
Refs. 1 and 2.) This may be understood as fol-
lows. For a potential of the form (3.5) we can de-
compose the integration over I, which is ef-
fectively S,?xS,?, into the product form

—of_€_ £
1.0-2(47r fs 2f>( = [s 2f). (3.15)
e m
But
e e T e =n
4n fs,,z 4 [o o r: 0 2kr,
(3.16)
and
e

e g X 2r
- s,,zf = fo desmef0 dp Q. =eQ, =m.
(3.17)
Therefore, we have (3.14). The nonvanishing of
P, that is to say, the nontrivial topology of the
SU(2) field, means that the singularities in the
solution which are manifest in the gauge of Eq.
(3.5) cannot all be removed by means of an SU(2)
gauge transformation even if this transformation
is itself singular. However, in the case where the
solution is of the pure electric type (@, =0), or
the pure magnetic type (@, =0), it ought to be pos-
sible to remove the singularities completely since
P vanishes. We shall now demonstrate that this
is indeed the case.

The removal of the Dirac string is by now famil-
iar,®+!2 but we repeat it here to aid the under-
standing of the electric string. Consider the solu-
tion with @, =0 and %, =1 so that the magnetic
singularity is situated along the positive z axis.

In the notation of Eq. (2.19) we have

A =eaT*=m(cosf, +1)d¢,T* (3.18)
and

F=efT?®. (3.19)
Next we make the gauge transformation

A'=QAQ"'+QdQ™t, aQ'q=1, (3.20)
under which

F'=QFQ"!, (3.21)
with
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sinfa  cosiae'?

1 -iB —aind
Q(a,B) = <c°SZ ae sz a ) . (3.22)

Then
A’ =[m(cos8,, +1)d¢p,, — (cosa +1)dB] ¢

~[4,a4] (3.23)

and

F=efd, (3.24)
where

b=¢'T, (3.25)
and ¢ is the unit vector

#* = (sina cosB, sing sing, cosa) . (3.26)
The choice

a=6,, B=mo,, (3.27)

will not only remove the string at 6, =0 but will
remove it completely since [ $, d$] will be every-
where regular including 6, =7.

We now repeat the analysis with @,=0and k, =0
so that the potential is singular atr» =7, i.e., at
6, =0 in the notation of Eqg. (2.19). We have

A=—e§&drT3=2n1;— d¢,T°. (3.28)
+

Under the transformation (3.22),

Al = [zn% do, — (cosa +1)d6] é

~[,dé]. (3.29)
The choice
a=6,, B=ng, (3.30)

will remove the singularity since cosf,+1—~2as»
-7,. Moreover, [(5, d]willbe everywhere regular
including 6,= 7. Inother words, the potential willnot
only be regular at » = r,, but will also vanishas » -,
Note that the term in (3.29) along the direction
$(62¢e), though regular, does not vanish every-
where in contrast to the term in (3.23) along the
direction $(6,,, ¢,,). This merely reflects the
fact, mentioned in Sec. II, that although the (&,m)
plane is conformal to the (6,, ¢,) sphere, the con-
formal factor differs from the (9,,, ¢,,) Sphere,
and the topology is really R 2xS2 rather than S*

X S2,

In summary, when both @, and @,, are nonzero,
it is possible to remove either the magnetic string
or the electric string but not both simultaneously.
It is, however, possible to obtain Yang-Mills
solutions of the dyon type with no singularities at
all by enlarging the group to SU(2)x SU(2) and

assigning to one SU(2) subgroup a purely electric
potential, a,, and to the other a purely magnetic
potential, a,:

3
Aze |®T 0 . (3.31)

0 a,T?®

Therewill then existan SU(2)x SU(2) gauge in which
the potential is everywhere regular. Such a topo-
logically trivial solution would have vanishing
topological invariants.

IV. FINITENESS OF THE ACTION

In sharp contrast to flat space where the Yang-
Mills action (3.4) of the dyon solution would
diverge, in the Reissner-Nordstrom geometry it
takes the finite value

Sym=412%(Q,2 +Q, ) /kr ., (4.1)
which is consistent with the inequality
8r 2 8r?
Sym = . |p| = - 1Q, Q!
167 2
==, (4.2)

the equality holding in the self-dual limit @, =£¢@,,.
As shown by Gibbons and Hawking the gravita-
tional action is also finite, and nonvanishing, even
though the curvature scalar vanishes. It is given
by

Se=1M/k. (4.3)

Hence the total action of the Einstein-Yang-Mills
system is

S=SG +SYM
=£[M+M]. (4.9)
K r

+

(In the absence of a magnetic monopole, @, =0,
S reduces to

S=ur,?, (4.5)

which is just one-quarter the area of the event
horizon.) The action is the same, of course,
whether we regard the Yang-Mills field to be U(1),
SU(2), or SU(2)x SU(2), and its dependence on the
parameters M, @,, and @,, is reasonably straight-
forward.

However, if we wish to eliminate @, and @, in
favor of the integers n and m, then the action looks
rather complicated because the electric-charge
quantization rule is highly nonlinear:

eQ, =n2«kv, =n(l-v_/r.), eQ,=m, (4.6)

with »,, as given by Eq. (2.6), themselves de-
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pending on M, @,, and @,,.

The novelty of this quantization rule justifies a
closer examination of its implications. Define the
parameter o by

eQ, =na , (4.7)
then
a=1-r_m,, (4.8)

and from Eqgs. (4.6) and (2.6) we see that o takes
on discrete values according to the equation

- 1 —-[1 +a2(7l2(12—m2)]1/2 }
a=1- { 1+ +a2(m2a® —md)| 72 ( (4.9)

where the dimensionless parameter a? is given by

2 47 fic fic 1
a®= =41~~~ 7
e?M?* e’ G M

(4.10)
upon restoring the units of charge and mass to e
and M. Furthermore, « lies in the regions

0<a<1l, Q,%<Q,?,

a=1, @°=9,°% (4.11)
l<a< 2, Q7% Qq,7%,

The actions may now be rewritten in terms of »n,
m, and @. For the gravitational action, we have

167 2 1
¢~ %% a-a) (4.12)

_4r? (2-a)nBa?-m?3)
T el ale -1)

, a#l (4.13)

upon using Eq. (4.9), and for the Yang-Mills ac-
tion

Syw= - 2™ (4.14)

Note that the self-dual limit Q,=¢q, 2, for which
a =1 and n®=n?, is a special case in that ¢ is in-
dependent of M. In this case, therefore, the
total action becomes

1672 ( 1
Sz%(? +"2>, P =t2n? (4.15)

while for @+ 1, we have

5= 4 2 [ r2a®+m330 - 4)
2 ala-1)

e
with o given by Eq. (4.9), an equation which is
difficult to solve explicitly except for special
values of a®. (For example, when a’m?=1, we
have a nontrivial solution o =2 =n/m.) Note also
that as M~ 0, o~ 2 and from (4.14)

], P=2mn (4.16)

2
S— '4:T (4n®+m?),

which, when n =m, differs from the M- 0 limit
of Eq. (4.15). Hence the value of the action as we
approach flat space (but still with nontrivial topol-
ogy R2xS?) differs according to which of the two
routes we adopt, butremains finite in both cases.

We may also ask, for fixed » and m, what value
of the mass minimizes the action (4.16). For a
pure electric charge (m =0), the minimum occurs
at @ =2, i.e., M=0. For a pure magnetic mono-
pole, however, the minimum occurs at o =%.
This corresponds to»,_ =37 _, i.e., to the non-
vanishing mass value

_ 167

ME= = Q'

_16mm?® hc Tic

T3 2 G

In general, the action is minimized by M=0 only
when the electric charge exceeds the magnetic
charge.

We conclude this section with a brief comment
on duality transformations in Euclidean space.
The Einstein-Maxwell field equations (2.1) to (2.3)
are invariant under the transformation

f—=f'= fcoshy +*f sinhy, y=constant, (4.17)

For our solutions, this means that a dyon with
charges

Q; =Q, coshy +Q, sinhy, eQ]=n'a,
Q). =Q, coshy +@, sinhy, eQ! =m’

will yield the same geometry as a dyon with
charges @, and @,,, since @2 - @, (and hence the
parameter ¢) are left invariant. The solutions are
topologically distinct, however, since the action
and the Pontryagin number of the dyon are not in-
variant but transform as

(4.18)

8r2
Sym =Syy cosh2y + pe; Psinh2y,

(4.19)

8 2 8 2
eﬂ"’ p= ;2 P cosh 2y +Syy Sinh 2y .

S’ and P’ will again be given by Eq. (4.16), but with
the integers n and m replaced by the integers n’
and m’.

V. FURTHER ASPECTS

In this final section we address ourselves to
some further questions. First of all, we shall
summarize the effects of endowing the black hole
with an angular momentum J. Again, we may
refer to Gibbons and Hawking, but again we must
replace their J by #J in order to obtain a real
solution in Euclidean space. As in Sec. II, the
regularity of the metric on the horizon means
that the radial coordinate is constrained by » > » .
where », are now given by
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v, =ME[M? +J M2 +41(Q,2 - @,)]2.  (5.1)

The analysis is most easily carried out in a
coordinate system rotating with angular velocity

JM™?

S——7 . 5.2
w 7,+2 —J2M2 (5.2)
Regularity of the metric on the horizon then re-
quires that we again identify T with 7 +2rx~!, and
¢ with ¢ +2m, where
¢=¢ +wr. (5.3)

In this frame, the arguments proceed along simi-
lar lines to those of Secs. II and III. The quantiza-
tion laws are

eQ,=m

and

__eQr, . eQr. .
U =TI ", -l (5.4)
We note that when J# 0, the self-dual limit @,
=+@, no longer implies that » =+m. Rather, as
can be seen from Egs. (5.1) and (5.4), it imposes
a relation between M and J:

2nFm)ir2=AnEm—-n) M. (5.5)
In general, the action is given by Eq. (1.1), and
the Pontryagin number is

2

[4 v

p= K(1’+2 -JZM-?)’ (5.6)
and hence
P=2mn (5.7)

as before. The generality of this result may be
understood from the point of view of the theory of
characteristic classes, We refer to Milnor and
Strasheff!® for the relevant definitions. The U(1)
bundles we have constructed (for Reissner-
Nordstrom or Kerr-Newman geometries) have in
general a nonvanishing first Chern class ¢,. We
have designated by n and m the integral of ¢, over
the electric and magnetic spheres, respectively.
The SU(2) bundles, by construction, split as the
Whitney sum of a U(1) bundles and its conjugate.
In general they have a nonvanishing second Chern
class ¢,. We have designated by P the integral
of —c, over M. Equation (5.7) follows from the
Whitney sum formula and the definition of the

cup product, quite independent of the functional
dependence of the field strength f,,, on the coor-
dinates. The SU(2) bundles are not “characterized”’
by P since different values of » and m can yield
the same value of P. It is, however, necessary
for P to vanish if the bundle is to be trivial, and
this will not be the case unless either @, or @,

vanishes.

One other point of topological interest is that
throughout the paper we have referred to the
quantity @, as the electric charge, since this is
consistent with the @,/r behavior of the electro-
magnetic potential as » becomes large. Similarly
we have identified @, with the magnetic charge.
Yet the field strengths are completely free of
singularities; the Maxwell equations are quite
literally source-free:

d* =0, df=0. (5.8)

This situation is reminiscent of Wheeler’s “charge
without charge,” and is simply a consequence of
the unusual topology of the space-time manifold:
M has a nonvanishing second Betti number. (See
Misner, Thorne, and Wheeler, Ref. 11, jp. 1200,
for a discussion of “wormholes”; but note that in
contrast to the wormhold, our pseudoparticle
does obey an electric-charge quantization condi-
tion.)

In our treatment of gauge theories so far, we
have not considered the possibility of spontaneous
symmetry breakdown in the presence of Higgs
fields. An isotriplet of Higgs scalars ¢ = ¢ T*
could be introduced without changing the gauge
field solutions or the total action, provided that

Dp=d¢ +[A, $]=0,
which implies

[F,e]=0,

so that in the unprimed gauge of Eq. (3.20) the
solution is the trivial one ¢ =cT?, or ¢ =cé

in the primed gauge, where the constant ¢ is
chosen so that ¢ corresponds to a zero of the ef-
fective potential. In other words, the solution
satisfies everywhere the boundary condition at
infinity imposed by ’t Hooft.® In this case, both
the Yang-Mills source and the Higgs stress
tensor would vanish. It may be that the only
solutions compatible with the existence of an
event horizon are these trivial D¢ = 0 solutions.
Unfortunately, we have been unable to prove this
since the usual “no hair” theorems!! do not ap-
pear to go through in the same way for theories
of scalar fields which suffer spontaneous symme-
try breakdown. On the other hand, one can prove
Euclidean versions of the “no hair” theorem for a
single scalar field which satisfies the coupled
Einstein-Klein-Gordon equation and which van-
ishes on the boundary so that the effective topology
of the manifold remains S2x S2, In this case, one
can easily see by integrating

1
w3 au(pvg g o, ) =9pDp+a,92 ¢  (5.9)
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over 9 and using Stokes’s theorem that this im-
plies 8, ¢ = 0. Nontrivial Maxwell fields, of
course, are permitted since S*x S% does support
nontrivial harmonic 2 forms.

In the particular case @, =*¢@,,, the Yang-Mills
solutions we have found satisfy the self-duality
condition

F=%%F,

on the Euclidean Kerr manifold with even topo-
logical number P. Because of the quantization
laws, our gauge fields have zero parameters [J is
no longer a parameter since it is determined by
Eq. (5.5) in terms of M, and, in any case M is to
be regarded as a parameter of the base space
rather than the gauge field]. However, one knows
from recent work on the Atiyah-Singer index
theorem!? that there exists a family of self-dual
solutions with at least 8P — 3y’/2 parameters,
where y’ is the Euler number of the effective
topology. In the present context the effective
topology of the base space is S*xS? and hence y’
=4, (Contrast with flat space where the effective
topology is S* and y’ = 2.) Therefore we have in
general at least 8P — 6 parameters. The particu-
lar solutions we have found happen to have no
parameters at all. Since the Kerr-Newman solu-
tion is believed to be the unique black-hole solu-
tion of the Einstein-Maxwell equations, these
more general Yang-Mills potentials are presum-
ably not simple SU(2) versions of the Maxwell
potentials but rather of the intrinsically non-
Abelian type, like the P =+1 solution discussed in
Refs. 1 and 2.

We note that our solutions, though carrying a
nonvanishing gravitational Euler number y, do
not possess a nonvanishing gravitational Pontry-
agin number and will hence make no gravitational
contribution to symmetry-breaking via the axial-
vector current anomaly.®* However, the Yang-
Mills pseudoparticles will presumably contribute
via their Pontryagin number in a way quite inde-
pendent of the strength of gravitational coupling,
whose presence was nevertheless responsible
for their very existence. We also note that when

we relax the self-duality constraint and allow a
nonvanishing stress tensor, our pseudoparticles
are no longer “free,” in the sense that the Yang-
Mills part of the action for P pseudoparticles is
no longer P times the action of a single pseudo-
particle.

There is one other vital difference from the flat-
space solutions discussed in Ref. 3. In flat space,
the Yang-Mills pseudoparticle interpolates be-
tween inequivalent pure gauge solutions as the
imaginary time tends to plus or minus infinity,
and hence gives rise to the quantum interpreta-
tion of tunneling between topologically distinct
vacuums with an amplitude of order ¢~S. For the
solutions discussed in this paper, such an inter-
pretation is obscured by the periodic nature of the
time coordinate. Our Yang-Mills potentials are
either periodic in time with period 2mnk~!, an
integral multiple of the black-hole period, or
else, depending on the choice of gauge, completely
time independent.

This periodicity does, however, lend itself to
finite-temperature interpretation. Indeed, from
the historical viewpoint, it was Hawking’s treat-
ment of the thermodynamic!* properties of black
holes which first led him and others to consider
an imaginary-time analysis. The connection with
the parallel developments in Euclidean-space
pseudoparticles did not come until later. While in
no way claiming that the desired grand synthesis
of these ideas has yet been achieved (indeed our
sign difference from Hawking and Gibbons would
seem to require further investigation), we do
hope that the Einstein-Yang-Mills solutions pre-
sented in this paper will throw more light on the
fascinating interplay between recent develop-
ments in quantum field theory, algebraic topology,
general relativity, and thermodynamics.
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