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A natural formulation of the Hamiltonian null dynamics of the Einstein-Yang-Mills system is given. In
order to overcome difficulties which prevent the straightforward generalization of the previous results

obtained by Fradkin and Vilkovisky and by Kaku for pure gravity a new null-gauge condition is introduced
for the Einstein field. Using this gauge, both the action measure and the Lagrangian measure of the Einstein-

Yang Mills system are calculated. In the absence of the Yang-Mills boson vector field, both measures

coincide with previous results of Fradkin and Vilkovisky.

I. INTRODUCTION

After the analysis made by Aragone and Chela'
of the dynamics of pure gravity in a family of al-
gebraic null gauges, Kaku' chose a subfamily of
them and was able to prove that their Faddeev-
Popov ghosts do not contribute to the S-matrix ele-
ment.

Therefore, through a mathematical Hamiltonian
formulation of the null Lagrangian in such a way
that second-class constraints appear, Kaku and
Senjanovic' asserted that the Fradkin-Vilkovisky'
Lagrangian measure of quantum gravity is the right
one and the Faddeev-Popov' proposal has to be
abandoned.

In the present article we present a systematic
Feynman-quantization approach for the Einstein-
Yang-Mills system in such a way that we can ob-
tain the Hamiltonian null dynamics with a very
compact expression for the second-class con-

straintss.

This allows us to use the heuristic results of
Senjanovic' in order to calculate directly the action
measure of the system and then, as a consequence,
the Lagrangian measure.

Throughout this article we use a gauge condition
which can be considered as a generalization of both
the Bondi gauge and the Kaku family, and we adopt
the point of view stated by the author in previous
work, ' and later supported in their analysis of the
initial-value problem by Gambini and Restuccia,
that the scalar constraint on the null coordinates
has to be regarded as a first-order differential
equation for g"" instead of a second-order differ-
ential equation for obtaining the two-dimensional
vol'ume, g.

II. THE FIRST-ORDER COVARIANT ACTION PLUS THE
FEYNMAN PATH QUANTIZATION AS THE FUNDAMEN-
TAL GUIDING PRINCIPLE FOR THE PHYSICS OF RELA-

TIVISTIC QUANTUM SYSTEMS

Our aim is to evaluate the S-matrix element for
the present tensor-multivector system:
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where the structure of the functional action mea-
sure dg(TUV) for this gauge system is

dp, (TUV) = 5(G")&(G")p„(fields)Dg""

xDI".DA. Df (lb)

where the structure of the functional Lagrangian
measure dv(TUV) for this gauge system shall be

In this expression, G" are the gauge conditions,
&(G") is their corresponding Faddeev-Popov deter-
minant, g&" is a contravariant symmetric density,
I', „ is the affinity, A, is a covariant vector multi-
plet, f' " is a contravariant antisymmetric density,
and P„(fields) is the weight we attach to the Car-
tesian measure DgDI DADf in the overall mathe-
matical field space.

The action functional A(g; I';A; f) has to be, by
definition, a functional depending upon the fields
(g; I';A;f) and, at most, of their first-order de-
rivatives.

However, one could also try to make all the cal-
culations by using a Lagrangian or second-order
approach. In this case, variations of the 1 and f
fields determine their values in terms of the coor-
dinates (g and A for this system) which, after sub-
stitution in the first-order action A(g; I;A;f), yield
the second-order Lagrangian functional L(g;A)
—=A(g; I'= I'(g);A;f =f(A;g)}. If one thinks that the
matrix element (la) is independent of whether we
develop the dynamics in the first-order fashion
or in the second-order way, one would like to
evaluate instead of (la) the similar expression
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exp — ' dL(g;A) dv(TUV), (2a)
"I i (TUV) )
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given by 9"=m'e" g
j"= g""= 0, dete" =+i,

dv(TUV) = 6(G )&(G")pi(g;A)Dg~ "DA'. (2b)

The function p~(g;A) is the weight assigned to the
mathematical unphysical C artesian functional mea-
sure Dg ~DA.

Physically, if both methods are thought to be eq-
ually relevant, one expects (and this is one of the
main points of this work) that the matrix elements
(la) and (2a) must be the same complex number

(f
I
s(TUV)

I
&)' = &f Is(TUv)

I
f}.

Conversely, we can obtain one of the two weights

P» p~ in terms of the remaining one, assuming that
Eq. (3) holds as a complementary law.

gir hg j ejlg pi ~ur h ~rr
l y y

showing that m can be obtained by

m2 —(det g
~ 9)1/ 2 (6)

(9)

For the description of the Maxwell tensor density
f"",we shall use the variables (e', b', c",d") de-
fined by

Note that we have also introduced the two-di-
mensional unimodular symmetric tensor e j~, whose
inverse ej~ satisfies

III. GEOMETRY OF THE SYSTEM ON THE LIGHT-FRONT

(NULL) COORDINATES

ea —faru ya —g g faeB —
~ hm2ya

aj —1'aju dai —far j+ n&a j+ g iea (10)

(af)'=g"a, fa,f -2m '(a„f+. na, f -N'a, f)a„f,

where

(4a)

(4b)

Our treatment is based upon the choice of null
coordinates for the dynamical description of the
system. The possibility of these types of coordin-
ates is an intrinsically relativistic feature which
brings considerable mathematical simplicity in
most of the usually difficult points encountered in
the Newtonian 3 x 1 approach. For instance, the
null-coordinates dynamics suggests gauges which
in general are determined by algebraic equations
(instead of the partial differential equations one is
used to in the 3 x 1 approach) which, therefore,
lead to simpler estimates of the Faddeev-Popov
determinant.

Using null coordinates, the metric and the grad-
ient squared have the form

ds' =g, ,(dx'+ N 'du)(dx'+ N'du) —2m'du(dr - ndu},

while A; are still useful for representing the iso-
vector potential. '

Then the action of Eq. (la) is given by

dA(g; I';A;f) —= dA r(g; I')+ K'dA «(A;f; g), (11a)

where the pure gravity first-order action is (g„
g..g "=6",)

dA r(g; I'}-=d 'x(I'„a, g
'" —I'„„a g""+g" "I'„rs

-g "r,,r'„.) (1lb)

dA (A f'g}=dx[gf'"—"(a A' —a A'+gf'~A A')

+ 'f'""f' 'g g (-g-)"']. (11c)

On a curved space it is convenient to distinguish
between f~" (which shall be a metric-dependent
quantity) and its metric-independent part A'„„:

A' =-a„A' —a A'+gf'~'A'A'=-(- g) ' 'f'

(12s,)

4gjd 2gU& giu i gjj & gjr

gig gjg giu guu 0

(5a)

(5b)

For instance, the second of Eqs. (10) can be
written

ba =Aa = —'& j~Aa.
12 2 jj' (12b}

The n2+ 3 gauge conditions we shall use are G"
=—(G~;G') =0, where

ir m-2N j gur m-2 grr 2nm G" =—gu" —h gu" Ga=—Aa, ho&0, (13)
In these coordinates, using the variables defined

in Eqs. (4) and (5), the four-dimensional volume
element d4v has the value

d 7 =m'"' g' d xdudh-=m2hd xdudh,

and the contravariant density g'" =—g""(-,g}' ' be-
comes q, l real, G; —= (-,g)'g"" -q""=0, (14a)

and g"" is the flat metric tensor in the null-plane
coordinates g"= gj~ q~= -g qju=gjr=g~=qr"=(}
O' =-A'„= 0 is the Tomboulis gauge condition. "

In this purpose, note that one could also take into
account gauge conditions of the two related types"



2778 C. ARAGONE

(14b)

Actually, forq W L, G,"=Ois equivalenttoG",
&, &=0,

with 2l(q) = q(1 -q) '; q = 1' corresponds to a finite re-

presentation ofl = v ~ andq = + ~ is representedfin-
itelyby 2l = -1. Inthis sense, one can state thatthe
gauge choice (13) is not represented by any finite val-
ue of the Kaku real parameter l."

IV. THE INTEGRATION PROCESS

We start from the matrix element (la):
« lf&

(f[S(TUV)[i)= exp — [dA (g I')+x'dA(A f g)]Ig(g"')
@~I i&

&& &(g"")6(g""+h, )6(A'„)&(G")p (g; I';A f)Dg""nDI"„nDA'„nDf

In order to take advantage of the simplicity of the generalized Bondi gauge, we first integrate this ex-
pression with respect to g"' and g"". This gives us (s,f =f'; s„f=f)—-

[ lf&

(f~ ('(Z'UV)~i)= exP — J([d dA (A f g)+d x[(g' dJN+"}I'„—g", I,', —g"I'",
q

—g
' I',

q
—h I -2N, qi,

+ (N', —h —28')I'~ + (gI~~+ N")I',"„—h'I'"„„+ (N (, —2it'+ h)I'„", -2N'I'"„,

2h eF[ +(I [—N')I', „+gh
& F[ eIh', +2AF + (N', -h)t +N(F))))

&&6(h —h, )6(A'„)n(G4)p„Dg (~nDN 'nDhnDftnDI"„„nDA'„nDf~T, (16a)

where Q(I') is the quadratic (in I') part of the gravity
action

Q(r} =- g'"I"„„I'., g""r„,l'„. . (16b)

Now, in order to spare the reader the details of
the lengthy calculations one has to perform, we
shall roughly summarize them giving what we feel
are the more relevant steps.

We observe that the quantities

where I",, is symmetric and pure traceless, i.e. ,
I'.=I"' g' I". =0=I'. . (17c}ij ij ij &

and we understand that I' and M ', respectively,
mean g "I',. and g(~M~. [Therefore, each term of
Eq. (17b) depends only upon I', and e"
—= g(~(detg "}'~', the unimodular part of the two-di-
mensional contravariant density g".]

It is also convenient to split I'&j, I ~, I'~&, and
I'j& into the addition of their traceless parts plus
the corresponding multiple of the unit tensor

gg f gg rF]j a i j+2Sij P. , F]j=-Fij+29]jP, (18a)
either do not appear in the linear part in I' in Eq.
(16a) (for instance I'„'„,I'"„„)or they do not have fac-
tors containing a "time" derivative a„or a 9„de-
rivative. At most they have factors which contain
two-space derivatives s( (as is the case for I'„,.).

We start the process integrating I'„'„, I'"„„, I'",„,
and I "„~ Then the integrations with respect to DI'„",.
and thereafter with respect to DI'„'„are immediate.
Then, in order to proceed with the integration pro-
cess it is convenient to define the quantities I', and

M~,

(17a)

These quantities are useful to decompose alge-
braically the three index object I",j in the form

(18b)

where

p, =-i I ij, v=-I'&, p=-g Iij, and &=I„j.ij — j — ij r j

Through Eqs. (17) and (18) we go from the initial
set (I',&, I",d, I';d, I',„, I'„) to the new independ-

where we have to take into account the five differ-
ent functional Jacobians (the g" can be considered
constants because their exterior product &De'
already appears in the functional volume element):

det g"

l g 3——,5,'M ——5,'. M, + —
g, M', (17b}

(de g )
Df' DI' D Mgll g22 &j j[' e g (19a)
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8DI""„',
„g D(~; gg). (19c)

JE

=
2(gg2(DFgg D(& p} ~ (19b)

Intxoduction of the new independent variables in

Eq. (16) makes terms appear less coupled, and

some immediate kntegrations can be pel formed.
Integration with respect to ~", &, p, and +

yields

&6a D~„"„D&Bp,Dv=k2h '& 16a p, =k', a = eh, '+2K'" (2(})

Next we integrate %'ith respect to I, I, p, and I„„.
Symbolically, the result of these four integrations can be vrritten in the form

(2O}DI" Dl"" D DI";, =h4h mx(29)[lg =lg', gg=(ggig)', I'„"„=0, 1"",„=(lnm2)']. (21a)

Furthermore, as the variables I'„'; -=(I ~g, I'„1, I"'„„F'„,=- &~g) enter in the amplitude (16) as I agrange
multipliers, the functional integx ation can be easily performed with respect to them and later on with
respect to the I'~~;:

(2»)DI'.;Dl",g
=@'& '"(2») (I'.

g
=& 'g 'I'pg ). (21b}

inctdentallp, lt is wol'thwlllle to observe tllR't 'tllls VR1118 (21b) obtRllled fol' F„g ellslll'es 1'ts spmmetl I
(ln t118 sellse 'tllRt F„g = g ggg F„g).

After this process let us write in full detail the matrix element (16). One finds the reduced expression
~)y&

(f ( S (TUV )~ g ) = exp — ( gggd A"+ d'x(N. "1", —g*', I",
g + (ln m')

g
I' —I'",

g g
gg —I,g g g1 —lg'(in ggg')

—(lnh}'r —2V',. g;1 g" I"„+(gg',,P')r",„+(gg, X")r",„

i (Ng
g j)(ln m2)—g+ 2/gh 'g" I

g g
I",„gnlg)'¹I'g„+kg (lnig)' I'",.„

—2gg'tink)'-2gg(lnh)'(inggg )'+2Ah 1 g" g'~I'gg I~pg +gg(ink)'2+~ ggg Mg Mg
A A-g"Mg [lg gN'I',".g+~(inmg) g

—~ ggg g
'~ p- I'".„—1"",.„]—g

g Ffg I'gp

jfg 4r jtggg Fu Is ggg Ir I r 2 gigg th-ger gal 2I-gag Pg ggPI u
iP

+ Pgg I' h 'I'"„.—I" (2&i'g —2h, g
+2Ãg I'",,+ ggg N' h')) ),

m4 «5»
&& 6(i'1- h )5(A,')dP„gg „„DA'„Df "DI'1,Dl"; DM; DI'f, D. l"g~DI'g„D1'"g„DI ~g Dggg DN~DADgg .

Fortunately, it is still possible to make other integrations,
The integration vrith respect to I' provides another & functional, which suggests that me proceed to inte-

grate Fg. TllRt gives (lip 'to R llu11181'lcR1 fRctog')

22 D&„'„Dlq-k2h ~ 22 I') - lnh;-N'1), -~ g;~¹h'

Then we observe the quadratic structure of the reduced action (23a) in the variables Mg .
Iy& W

(f(s(TUV))g}-
Jl

Cexp —
l (—g' M M —g M gg )dx DM, (23b)

where C gneans the remaining part of (23a), not containing terms in these variables, and gg; means

A
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As this expression is equivalent to

C exp
&

[g' (sMt —at )(,' M—,—a&) —g' at a& ] dsx D gd, ,
Ie&

we can perform the integration, since its first part is a typical Gaussian expression"

(23b)=C(detg ) '~sexp (-—g' a, at
~

=Cpm texp~- —g ~a, a,
~

( i;t ) t f i
(23e)

~o proceed we call 8~ the functional, giving rise to the null-coordinates scalar constraint"

2tsr = 2nh g"gtt I' t, I'&t+n(lnh)'s- 2tt'(Inh)' —2tt(inh)' (ln ms)' (24)

and integrate f'&&. Details of this integration are given in Appendix A. Taking into account Eq. (A15), the
matrix element (23e) can be cast in the form

(f ~
S(TUV)(i) = exp — (zsdA" +d'x( I',"tk -t —h'(lnms) -(lnh)'h + g' (lnms), t(lnh) &

—(lnm')'h
J

—I'~tq (g'~' y 2h ' g"g't I'",t )-N"
¹

I',"q —3g" (ln m'),. N' I'"t~

—h' I"
tz

N' Nt —g»(ln m') ~, (ln ms) z
—2[%',. y I'»' ' N' ]g~' 1 ",

&

+ m'e ' I'„(e}I&t (e) +N'
& (1 nm')' —m'(ln m'), 9 —2 g

't I',"., I'ts N' Nt

+N" (lnh), —sh'gt; N 'N~ —sh'(In m ),N' —2 g ~i'&, I'&„+h'1P I'",

+N" I',",+ 4N g" I'"„I',"„—2g' I't„i';, +3g"(ln m'), r;„-2g"I"„r
+(h'N —hN")I'&„+3g

'(turns)

&
I'&„+2g N' I',&I'&„ i28r])

xg(h- h )6(A„')np~ msh 'sh's( 's) sDA~Df &DI';";DI't, D1;"„DP~,Dg't DN'DhDtt . (25)

Our next step is to introduce the new independent variables

pi = m21 i~, 0 -=—m2I'", , (26a)

N =-h 'Ni

0
» = mse» gls = msels gss = ms[I + (e12)t] /e»

+l

(27)

(28)

where yi and Pi have been chosen in order to decouple I'i„ from I'" . This change of variables has the
Jacobian

DI'" Dl",zDN'Dg" DI',"„DI",„=m hs(e») 'DP, Da DN De"De' Dm'Dy Dil, (29)

In this stage we can get rid of the two exact Gaussians by integration with respect to y; and P&. We ob-
tain two residual phases and a factor - ~ 4 stemming from the existence of the nonunit matrices 0' in the
exact Gaussians.

The matrix element (25) and the scalar constraint reach, respectively, the reduced forms

IX&

(f~S(TUV)~i)= ~ exp — [tc'dA +d x[p,ze" —h'(1mn') (1n)m'h '—-(lnh)'h+e"m', (lnh) &+8,~(e"' —2h 'p't)
li&

+ 28 + m'e" I't, l"' (e) —(m') 1'(e)+ s e'~(m') (lnm')

-2N'D' "p' —N'h(lnm')' +h. 'N'(lnm') —N'h(lnh)'
t 1 , i

h2, ,",...v'v i))

xm sh og s(e z) (e -)- p n6(h-h )6(A )DA Df Dp D& Dm De De DN DhDfi (3o)
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28 r = 2&th 'P,'. P', + 8(lnh}" —2&I(lnh)'(1nm')' —2it'(Inh)' . (31)

Then we start to consider the contribution of the vector action dA» to the matrix element ( fS(TUI/) ~i) in
terms of the 2 x 2 intrinsic variables defined in E(ls. (10).

[We are considering the non-Abelian vector multiplet linked by the local gauge group SU(n); therefore the
internal indices run from 1 to n —1 -=d, the dimension of the gauge group. ] We denote by 8» the generator
of the Coulomb constraint of the vector fields

Aaeea+Aa(S ca&+gfa&)cA &1 ec+gfa&)(&A&)c(«}
V u tt

The integration of (30) with respect to h, A'„, and h' is completely straightforward. One obtains

/ lf)
(f(P(xcv)(')= exn( — d'xIP, P"—h'()n ') —()n ')'h ()nh) 1+—n(

'"' —hh '/")+x'c"d;
"li &

+ 28 + A«'h 'c"A"+ «'dc (c" —e A ) + -,' e"m' (lnh'm')
f 1

h~
+ m'I' c(e&)I' (/&e)e'/ -m, X. (e)+ z e,./N 'N"

+ N '[ 2D/I') e&-+ h'(lnm'); —h(lnhm')'&+ «e Aac&+ &('ca/ e»A&, ]+&('8„

'h 'H — K' 'h '(d' )' )12

X &~pA &( m+ &7h-(n 19)/2(el&)-1(e&2)-2DAaDAa Dea
ti

x Dc"Dd"Dm'De"De"DN'DIP�. D"

where the vectorial constraint Cv has been reduced to the expression

8 = -A«ca+Ac(8;c«+Npaz(&Ahc ') =Aa(e«+ ea) -(A'e')f .

(33a)

( 33b}

V. CONNECTION BETWEEN THE LAGRANGIAN MEASURE AND THE ACTION MEASURE

If we go on in this way, we have to integrate the remaining components of f ""and l"'„„in the expression
(33): {e',c",d",P;„()»}.This can easily be done because each of these integrations involves only either
quadratic or linear exponentials in the integrating variables.

More precisely, integrations with respect to d; and p;& induce us to proceed with the integration of c" and
P", and thereafter one can integrate with respect to e', obtaining a Gaussian residue.

Symbolically, we have

(33a) Dd'Dc' =&(-d(n~»)&a(az-»(33a)(c" =e'/Aa ) . (34)

e(he A

Taking into account the symmetric traceless character of both (T&/ and (e'/' 2h 'p&/) —= (I'/, wefindfor the
bilinear expression o ~ (e' —2h 'p) the explicit form

Pa A

O (e —2h 'p) = O (r / ll (Q&11[1 (e&a)z]+ O&22(el&)2} 22 (+(&(ezz)2 +22 [I (e&2}a]}
2(e&z)a + 2(ezz)z

A e&hh

Thus, the integration with respect to 011 (f22 gives two 6 functionals

(35a)

l (34)Do D&/ =—(34)(e")'n'6(e" —2h 'p")5(e'" —2h 'p") (35b)

which suggest following the process with the integration of P'~, which in fact can be easily performed

(36}

In order to reach a second-order (Lagrangian) formulation for the matrix element (f ~S ~z), we have
still to perform the integration with respect to e', which appears quadratically in the matrix element
(33a), and then leads us to integrate an exact Gaussian plus a residual phase.

In this way we found the second-order expression



+&{2e'~A A'; +28 ry {{2nh 'e"A At/+ —'e'~m2 (tnh2m2)

h2
~m2 I'«(e) I'~&2(e) e'& m', &1'(e) y 2 e,.&N" N~t

+N' [ 2D&-p~ + fl'(1 nm'); —I&(lnhm2)', +i{'e~'A{'e~, A;, ]

c'A„'(c,. c"„vr" t&,'. c")+ —, ' 'tt(A„" —tc'A')' ——,
' c' 'I)'(A' )'I )

(37)&{ gp &{
6{tt I)

i&
3(tt -1)c20 (el 1) 1(him 2) BDAttDA{tDm2Del)De)2DNt D&2A 8'

Shouid we have started with the Lagrangian (second order)
If&

&fl&(rvv)I ) = f ctcv — «(t &) ct (rrrv)

If&

&r(tt(rvv)( )= f .m — c'*Il... ,.t""t" 1 () *) (& 1 *)i
li&

with the Lagrangian measure having the form

dv (TUV) = t)(G")6'(G")P~( fields) Dg'"DA;, (38b)

we should have found the same phase, with the same reduced density as we have in Eq. (37},times an
apparently slightly different functional factor stemming from the fact that in this case we had only to per-
form integrations with respect to A„' and g"" .

The gauge conditions are the same already considered for the first-order calculation; they are described
by Eqs. (13). As they depend only upon the coordinate fields (g"",A', ), their Faddeev-Popov determinant
lI)t{Gt{) g(Gt{)

That means that Eq. (38a), after integration with respect to DA„', Dg"" shall achieve the form

&r(3(rrtv)() = fcztt —'-«(c" 'tv c t&' ~ ) c v 0c 0c 0 0")t'0'*ttt('0t& (t. t)
+ I f&

As expressions (37) and (39) must give the same
value, P~ and P„are linked through this condition.
%e obtain

[P2( ) 1/2])0(g 2)3{tt 1)p

VI. THE EVALUATION OF THE MEASURE

In this section we shall perform the direct
evaluation of the action measure, following the
work of Senjanovic' for systems which only have
second-class constraints.

In the first step, we integrate with respect to
N . Using the standard definition of (8„')„,'

(8„")xy -=[(&2 —1}i]'(x —y)" '-,' e(x —y),
we introduce the vector m~,

» {= S ' [-2D~"P'; y f&' (lnm '), —ll (1nhm ')';

&{
2 e ttA &tt ~ {{2 cttj e A tt ] (42)

Then we obtain the result that the termsdepending
upon N' can be transformed into the addition of
a quadratic form plus a "constant" complement,
allowing us to carry out the integration we wanted:

A2 If&
exp — d'x, e„N"N~'+N'&{', . DN'= exp — d'x, e,~N" N" —v;N" +(&{,N')' DN'

-If& 2m2
j& ( m

@'m2 i If& 1 m2

li&
) ~

x exp —(&{,N ){~{&& (43)
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One can also perform the integrations with respect to A'„, e', n, and m'. In fact, n andA' are essentially
Lagrange multipliers linked vrith the scalar-tensor constraint 5~~~ and the Coulomb vectorlike constraint
6„, respectively:

erU„=- (lnm')'(lnh)' ——,
' (lnh)" —h 'P&j P/i (1nh)~ —~ &&'h 'c"AP =0, (44)

=-e" +e'(A; c'/) =o.

Therefore, the integration with respect to e' and m' provides for the matrix element (33a) the value
[Dm' = m'D(lnm')]

(f~~(TI/1') lf) = Jt exp — d'&&[J'&/e&/ —h'(lnm')' —(inm')'h
I~&

-(lnh)'h+ —'e'/m' (lnh'm') +& (e'/' 3h 'p'/)

+&&'d'(c" —e&/g ™)+m' e&I/'&' (e) I' (e) —m' &&( e)
'( m-/h') e&«,«

--'»*»»'a '(» -'»'&*--'»* '»'(~
& &)

g-(ff2-1& /2-&2

[v f&/& gaea, 3n(1~)r]l/& p x-3&n -»ff20»&3/a& ~ -&
~s

~

»» mn &3
li& (lnh) '

(ell)-&(el')-RD+ODcMDdcDe&IDe12Dp Do

lnm'=(s ') {[in(lnh)']'+-,'(lnh)'+ h '(h') 'p'p ~ —,'&&'(h') 'c"A ]. (46h)

To reach the typical structure of a second-class constrained Hamiltonian system, we parametrize the
unit contravariant tensor e' in the following way:

&&q, (I+&&'q,')(1+&&q,) '

(1+&&'q,')(I+&&q,) ' —&&q, (47h)

Then we explicitly calculate p, /e'/+o&/(eU' 2h 'e" e/ p, „). In order to attain the canonical structure
for the dynamical germ p„.0'~, we have to change the independent variables p», p» and define new momenta

P»P, associated to q, and q,. This redefinition of the momenta suggests the introduction of new variables
o'„&r, to replace «» and o» (or &&») in order to ease the expression of the gravitational second-class con-
straints.

More precisely, the expression

I
If&

exp — [p&ze&/+ao(e'/' —2h 'e&'e/ p, )]d4&& Dp„Dp»Do„D&/»

is transformed into

&&'h(1 &&'q ') q' hq&&
(41)a)=—

J expl d'&& p, q, +p, q, o, p, —

+ o, p, + ' ' h&&'q',
~

h'(e&2)'Dp, Dp, Do, D&r, , (43h)



where P„P„e„and o., are given by

2x2I( 'q. . . (1+xq,),(1 )(2q,2)
Il+

~
~22 P2 2~ ~ ~2

~ 2 2 P~l+2K~
~ 2 ~ P12(+Kg~ 1+K g2 1+K g2

(1+Kq, f' ' 1+zq,

It is also convement to absorb I( 'x2 into c" (keeping the same notation for the new variables I( '/('c")
and transform the term -I('(Inm')' appearing in (46a) in a way that clearly shows the nondynamical char-
acter of the variable m', as it has been discussed in Ref. 1."

In terms of these new variables, the expression (46a) becomes

(f IAAF«)I')='I hhhl' A'* h f)+h ii.+~, h, — ' *. lh+ —h

K $2 ~ K+o' p +h. — 2 q' —h —q'I 1+~q,

-hh'h()h ')' —ll'h()hh)'+h'~A +A)(h" —h'~A)'II

xhhh — [;iV'- „''-Ah() hh)' h1 ')']A*hh I„";}

I (I ~2)fd2xdr I 112 gp ~2-5(5 l)g22h(5/2){2 1)
A

y
~yo (tf2 g ) /2

x ~s-1I""2m"'-»
(lnh)'

(e") 'DA4;. D c5/Dd~' Dq, Dq2Dp, Dp2Do, Dc2)'
where the dynamical germ has the canonical
bilinear st.ructure P&g &+c"A',.'in terms of the
proper degrees of freedom (q„A;) and the cor-
responding momenta (P;,c+). As always happens
in the light-front dynamics, the whole set of
momenta enter associated with the coordinates
through second-class constraints 8;,D' whose
multipliers are, respectively, 0, and d;:

g h e)~
(1+xq, )

At, this point let us recall that the Poisson brackets
of two functions f„f, of the canonical variables
(q", P„) is usually defined by

gravitational and isovector coordinates

(q"; pA) =-(q'*" (u); &/„"(u)/p, (u), c/'„-(u))

Moreover, we shall take into account that the
one-dimensional & function satisfies

s.5(x-y) =- s,5(y-x) =- s,5(x-y) =s.~(y-x).

(52)

%e need these two results in order to compute
the Poisson brackets between pairs of second-
class constraints which constitute the entries of
the functional determinant whose value determines
the measure we are looking for.

They turn out to be

efh sf. sfh sf2
{flh f2) (iqhh (ip Qp Sq

where the generalized index A runs over the

(51a)
/S, (xr', u)D5/(yr", u) }-=C5/(xr', yr", u),

@((xr',u), S/(yr", u)) —= C;,(xr', yr", u),

(D"(xr', u), D /(yr', u))=—C"5/(xr', yr", u).

(58a)
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(S,(xr', u), S,(yr", u)}=—[«2hh '(1+«q, ) 'e»](xr, u)6(x —y)8„.6(r' —r")
+[«'hh '(1+«q, ) 'e»](yr" u')8„.6(r" —r')5(X—y),

(S,(xr', u), S,(yr', u)}=[-«dhh '(1+«q, ) 2q2q,'+«'hh '(1+«q, ) 'q', ](xr', u)6(x y)-6(r' —r")

+([«3hh 'q -(1+«q, ) '](xr', u}8„6(r'-r")-[«3hff 'q, (1+«q,) '](yr", u)8„-6(r' r"-)}6(x y),
(S,(xr', u), S,(yr", u)}=[«'hif 'q, (1+«q,) 'q', —«3hh '(1+«q, ) 'q', ](xr', u)6(x y)5-(r' —r")

+([«'hh 'q, (1+«q,) '](xr', u)8„.6(r' r")-[«3-M 'q, (1+«q,) '](yr", u)8, .6(r' —r')}6(x y)-,

{S,(xr', u), S,(yr", u)}= —(«'M ')(xr', u) 8, 6(r' —r")5(x y) +(«2hh ')(yr", u)8„6(r" —r') 6(x y)

(S,(xr', u), D'1(yr ', u)}=«'h 'A, '(xr', u)5(y —y)6(r' —r ),
(S,(xr', u), D62(yr', u)}=—«35'(I '+«q2)2(l +«q, ) 'A, '(xr', u)6(x y)6(-r' —r"),
(S,(xr', u), D 1(yr", u)}=«'h 'A6'(xr', u)5(x —y)6(r' —r"),
(S,(xr', u), D'2(yr", u)}=«'h '[A, '(xr', u) +2«q, (1+«q,) 'A,"]5(x—y)6(r' —r"),
(D"(Xr', u), D61(yr", u)}=«'I '[e"(yr, u)8„„6(r'—r') —e'/(Xr', u)8, 6(r' —r"))6 "5,(X y). -

After the analysis given by Yabuki and SenjanoviP for Hamiltonian systems with second-class con-
straints, and in accordance with the calculations recently performed by Nakano" for nonlinear models
quantized along null planes, the functional measure corresponding to the second-class constrained action

p„g" +e„D"—H is given by the square root of the determinant of the Poisson brackets {D (xr', u},
D (yr", u)}.

In the specific problem we are concerned with here, the second-class constraints are Eqs. (50}. We
want to compute

C;/(xr', yrn, u) C; (xr', yr", u)

C/" (xr', yr", u} C"6/(xr', yr", u)
(54)

After the values obtained in (53b) for the elements of this determinant, and owing to the simplicity of
the constraints (50), the measure (54) turns out to be

d)2(p, .q', c";A/) =det(«'h 'e") " " '[det(«'h 'h)e;, (1+«q,) ']' 26(S,)6(D")Dp;Dq'Dc" DA',

=(«2h ')"'h(l +«q, ) '6(S,)5(D")Dp,. Dqr Dc"DA/ . (55)

Using the fact (detailed in Appendix B) that

a = h3h'(8, )"",
we obtain for P&

p —h -23(«2h -1)(7 /2)(n2-1)(hm2)6 —(1/2) (n2-1)hn

(57)

(58)

Therefore, taking into account Eq. (40), one
immediately obtains the corresponding Lagrangian
measure PL,:

This result determines P&. In fact, the functional
measure appearing in Eq. (49) has to be identified
with the "canonical" measure (55). Then the action
measure introduced in the matrix element (1}
will have the form

/p —h-23(«2h -1) 7/2 (rr —1 (hm-2)(1/2 (n2-1 -6I

(56)

P (hhm2}-3+ (n —1 /2(«2h 1) 1 2m 2m (59)

which, for n' —1 =0, exactly coincides with the
result first given by Fradkin and Vilkovisky' for
the pure gravity system and thereafter confirmed
by the calculations of Kaku and Senjanovic in Ref.
3.

The measures p& and pL, can also be expressed
showing their covariant structure. In fact,
det g"" = I = —h'm4=detg„„, and introducing
a pair of associate null vectors (in the momentum
space) )I(„,„» —=—6(, „» we have (n2 —1 =d)

P = jg 23(«2/1)(7/2)d( g )3—(1/4)d( rrrr
7) )I )d+1

(60)

and

(61)
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VII. DISCUSSION AND COMMENTS

After defining the action measure P~ and the
Lagrangian measure PL we reviewed the geometry
of both the tensor-Einstein field and the vector
Yang-Mills field on the null coordinates.

The connection between the new gauge g
""

= hog"" used in this article and both the Kaku family
and Bondi choice was established. Later on,
dynamical reasons were also given.

Then the Feynman integration process was per-
formed, starting from the first-order covariant
action of the system.

Through convenient choices of 2 ~ 2 variables,
the system was considerably decoupled and a lot
of functional integrations easily performed, lead-
ing us to establish the connection between the
measures P& and PL,.

Proceeding along slightly different lines, a re-
duced first-order canonical null structure for the
a,ction of the system appeared, with the whole set
of second-class constraints expressed in a closed
and natural form.

This allowed us to make use of the heuristic
results of Senjanovic in order to compute the
Poisson brackets of the Hamiltonian system and
thereafter the measure.

The Einstein field wa. s parametrized using
rational functions of its dynamical coordinates and
their respective momenta defined in a natural
way.

The ghosts' contribution to the S-matrix element
was explicitly given, and contrary to what happens
in the case of pure gravity in the Kaku subfamily
of gauges, it was found not to be constant.

Finally, the results of P& and P~ were explicitly
given, and it was shown that they agree with the
results given by Fra, dkin and Vilkovisky when the
isovector field vanishes.

APPENDIX A

In this part we shall calculate the integral

We want to transform this expression in the
product of an exact Gaussian integral (which we
know how to evaluate) times a factor which will
likely depend upon the coefficients 8 'i, + (N'i)i~
+N'9'~)r~, of the term linear in I',', , the vari-
ables we are integrating. The quadratic expo-
nent appearing in Eq. (Al) has the form

S"I.'I' +A"r'. =-I"r'- I' +A"r'.il jP P il il jP P il & (A2)

where

A" -=8"+ (x'I"+x'I")r" (A3 }

and A" is the symmetric, pure traceless, third-
rank object

A-p =- ~p —2 &p~ —2 &p~ + 2 S ~p+ 4 &p S p,
"il il I j l & l i I il j i la

with

l ia 3 il+~&pS Pa —4 S (A4)

4'=—A" p. =—Sjj,h'j (A5)

+ ypg 2~ l e i aI" I ~ 2 e i i~ s
ap sp &

with A' defined by

x' =- -e",=+e"r,', (e) .

(A6)

(A7)

The first derivatives e", can also be expressed
through the Riemannian affinities I'(e)

e", = -e"I",, (e) —e"r,', (e) . (A8)

The classical value OI', j for the affinity I"',j can
easily be expressed in terms of hp":

2pI ij Nip Sja S +r Niphj
l — lr Pa Pl pl (A9)

Then the nonexact quadratic expression (A2} can
be shown to be identical to the addition of two
exact quadratic forms

(A2) =- u "(r—,r)', , (r —,r),', —8",r',.„r,',

Introducing the factorization of S' as S"=-m'e",
dete =+1, one finds that Ap" is given by

~" -m e ' + —m O' A, '+ —rn O' A.p 2 p

——m e"e Xa+m'W'ie"l "
2 pa ap

~ (w's" ~ n 'I")il, i'!,]a'xIDr'',

(Al }

+kA &Aij (A 10)

Substituting in this equation the value of A,
'j

found in (A6), we have a new form for Eq. (A2):

(A2)-=I'i(r-, r)«(r —,r)~~~ —m' 'eir«(e)I', ~(e) —,m'e, ~A'(e)X—(ei)

—m r" Z (e)iV + 2m'e 'r" I' iV~'- m'I'" e'~r" ~i~i.
l j jp il jp (Al 1)

Now we can perform the integration (A1). In fact, because of the symmetric, double traceless structure
of both I'jj and, I'jj, if we introduce the new variables Xj,

(A12)
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expression (All) becomes

e'&X,X —'e'&I'„r ' (e) ,'—m—'e, ~'X&(e) m—'I;"X'(e) &&
e e

+ 2m'e"r;, r'„(e)nr' m-' r" e''I" x'N' (Als)
A

Therefore, the integration of (Al) with respect to I'I& = (I'~», I'„) gives a phase [stemming from the "con-
stant' part of (A13)] times a, factor arising from the exact Gaussian, i.e.,

f I f) 4~2 I 4~2 lg @11+22exp, d~ „„8X, X, +X/ det + (AI4)

and, consequently, me arrived at the result
el1 22

(Al) =)I, exp — d'x [ m'e"I't I,', (e) ——,'m'e„X'(e)X'(f)
4m

—m. 'I" l„a(zlivs 2m. 'za f I f~(glÃo I
~

~ef z~NaNsJI

APPENDIX 8

The value of &(6") can be obtained by direct
compQtatlon after its deflnltlon.

In fact,

n(G") = det[«-"(x)/&h (y), ~C'/f p(y), fo /tq'(y)]

These functional derivatives can be easily de-
rived after the hie derivatLves of RD the gRUge

conditions 6"=0, vrith respect to the infinitesimal
vector [f'( y), ri'(y)]. It is completely straightfor-
ward to make these derivatives

Pl'=g ~S&- g, gus ~C ~gp( g q f) )

+ g
QB p

9' + g
ttp (gg

+gfCher)5+ 6 s ria(x}

Introducing the values given in Eqs. ("I), (82)
becomes

I"'= -hf" +m'e'
P,
" I'""= 2h)"

F "= (h f, ) + h ("—2nh (" + N (" + h '$"

I'" '= -A', E' —q' .
Prom this set of expressions one directly sees
that (up to constants)

n(GA) hshi ~s (n
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