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Charged dust distributions in eq»»brium in Brans-Dicke theory
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This paper shows that, unlike the case in general relativity, the ratio of charge density to mass density

does not have a constant value for equilibrium distributions of charged dust in Brans-Dicke theory.

I. INTRODUCTION

In both the classical and the general relativity
theories, one has the simple result that for static
equilibrium of a charged dust distribution the mat-
ter density and the charge density must be equal
(in units G=c=1).' This result, although indepen-
dent of any symmetry requirement, is nevertheless
subject to some restrictions, such as the absence
of any singularity or of "any hole or pocket of alien
matter" in the charged dust distribution. '

For an equilibrium which is stationary rather
than static, one may have arbitrary values of the
ratio of charge density to mass density as shown
by Som and Raychaudhuri' by considering a cylin-
drically symmetric charged dust distribution in
rigid rotation. However, in their solutions there
were closed timelike lines.

It would be interesting to study analogous situa-
tions in the background of the Brans-Dicke theory
as the problem of charge to mass ratio is of ob-
vious importance in building up a model of the
electron. However, it turns out that the results
are much more complicated in the Brans-Dicke
theory.

II. THE STATIC DISTRIBUTION

The static line element may be written in the
form

ds' =g~t' g;+~dx'dx

with the Latin indices running from 1 to 3. The
Brans-Dicke-Maxwell equations are

v" v=Fv;V
p

R

then give

(g.."),, = -(o&p) P, &,

(7)

(8)

showing thatgpp Q and 0'/p are functionally re-
lated Wri. ting g„=E(Q), Eq. (8) reads as follows:

(9)

where a prime denotes differentiation with respect
to Q.

Now if in the Raychaudhuri identity

-R„„,v"v" = 2((u —Z')+ —,'8'+
H, „v

+ (v', „v"),„ (10)

we substitute for A„„ from Eq. (2) and use Eqs. (3),
(5), and (7), and remember that in the present
static case the vorticity ur, the shear Z, and the
expansion 6) all vanish, we get

pp

g(3 2 )
(~~P),P 2~ g goo, (g

(11)

(6)

where p, v are the mass and charge densities, re-
spectively, v" is the velocity vector of matter, and

g is the Brans-Dicke scalar. For the static case,
v"=gpp ' '5p", and we may write F« = P,„F,„=0,
where P is the electrostatic potential. The equa-
tions of motion,

with

iV &gP

Fi'".„=4movi',

F[Pv;cx] = 0

Dg=
8m 8mpT=3+ 2(d 3+ 2Ea7

(3)

(4)

With the help of equation Eq. (9) this may be fur-
ther reduced to

4+ 2(d 1 0'

F"=F 'g'"y, .

(12)

Using cu-~ and g „-0, the above equation leads
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to the results obtained by De and Raychaudhuri. '
One may be tempted to think that in the present
case Eq. (12) would be satisfied with

0 4+2&@ 1
p' 3+ 247

as indeed was conjectured by Nayak. ' However,
such a relation is not consistent with other field
equations, as may be easily verified. To proceed
further we assume that the distribution is spheri-
cally symmetric.

III. SPHERICALLY SYMMETRIC STATIC DISTRIBUTION

We can now write (I}= ()}(4}), as both are functions
of the radial coordinate alone. Using Eq. (3), we
have

2 I'~gg(4zzo+ F z~g gz}(p p (Fg')'.

igin. Equations (16) and (17) show that in the
Brans-Dicke theory neither o'/p' nor o'(j}/p' is a
constant, though in the relativistic limit ~-~ they
do lead to the relativity results. In fact with p0&0,
np is positive near the origin and consequently o'/
p is a minimum at the origin while o'(t}/p' is a
maximum; they have their general relativity values
right at the origin.

IV. A CYLINDRICALLY SYMMETRIC DISTRIBUTION
WITH RIGID ROTATION

We borrow the picture used by Som and Ray-
chaudhuri' of a cylindrically symmetric charged
dust distribution in rigid rotation in which the Lo-
rentz force vanishes. As in their case we are led
to the line element

d s' = dP —e'"(dr'+dz') Id42'+-2md@di, (20)

with p, , l, and m functions of r alone and

Also, Eq. (12) can be rewritten:
(13) F31 F13 ~- le -2P

F10 F I AD 1~ 2P

(21)

(22)
4+ 2(o FI

4m
+ 1F-2F(z

(j}
F-1 Z}}(jZ (j} (y

(14)

Eliminating o, p from Eqs. (13) and (14) with the
help of Eqs. (5) and (9), we get

where D'= l+ m' and all other components of F~
vanish.

The field equations are now

1 d mm, 1
(4}zp+A'e '")

-g dr 2D

mm, 1 g, 1
2D 5(-g g 2

=2(F5 }i —''F"F '2). (15}—
i 3+ 2(2}

To have an idea about the relation between a and

p, we make use of a power-series expansion of
F, (C} in terms of (j} with the stipulation that (t}-0,
F-1, g„--1, and g„=g33 sin '8- -r' as r -0
(i.e. , the center of symmetry). It then turns out
from Eqs. (14}, (15), (9), and (5) thato', a(t}, 126(5}+67

1 d I +mm2 1

~g dr 2D

l, +mm,

1 Qg'2

m(4zzp+A'e 'g1 d mlz —Im2 2

(23)

(24)

0' 4+2v» 14+ 3

p 3+ 2(5} 25(2+ (2})'

with

(16)

(17)

dr 2D 2D

ml, —Lm,
2D

1

(25)

(26)

2 4+ 240
n & 3+ 2'

~p, =3

(16)

(19}

(Dq, ) = — (4sp-A'e '"}
-g dr

1 g, 1 Clg

The subscript zero refers to the values at the or- (27)
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m'
Dvll- 2D

-Dlvl+Dll

(4mp+A'e '") —eD

(28)

From Eqs. (32) and (30) we get

2a' -A'g 3+ 2'
4mp= ~-2P

4+ 2(d

2aA
4mo =— 8

(34)

(36)

and hence

—ggP

Equation (26) yields

2D
= const = a (say) .

(3o)

(31)

Thus o/p is not a constant. If the solution is regu-
lar at the axis x= 0, we may write in the neighbor-
hood of the axis

Using Eq. (30) in (23), we get

(4wp+A'e '")+—,(32)-ap
2

whereas from Eqs. (23) and (24), we have

g= g, + g n„r"
1

and we get, from Eq. (34),

where 5 is an integration constant. Eliminating D
and m from Eq. (31) with the help of Eqs. (29) and

(33), we get the differential equation for g,

2a' -A'$0
g, (4+ 2&v)

so that, in view of Eq. (36), n, is negative, and
thus both g and ~o/p~ have maxima there.
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