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Five new analytic solutions are presented. One of them has the equation of state P = K~'+" + cr&p,

where crl ——P, /pg ' and Ko and n are constants; both pressure and density diverge at the origin while their
ratio remains finite. Since the second term could be negligible at high densities, this solution caa be
considered as an analog of a relativistic polytrope over a certain range of radius. Each solution has bees
considered in some detail.

I. INTRODUCTION

Towards the late stages of stellar evolution gen-
eral-relativistic effects become important and the
full field equations have to be solved to get realis-
tic models. Even though this problem is mathe-
matically well defined and straightforward, owing
to the nonlinearity of the equations the number of
known analytic solutions hardly exceeds ten. In
this paper we present various methods of treating
field equations and give five new analytic solutions.
One of them can be considered as an analog of a
relativistic polytrope with the equation of state

P = E,p"""+cr,p,

where o, =P,lp,c' and IC, and n are constants.

II. FIELD EQUATIONS AND METHODS OF OBTAINING

ANALYTIC SOLUTIONS

For a static and spherically symmetric system
the l.ine element can be taken as

ds' =-B'dr' —r'de' —r' sin'e dP'+A'df', (2.1)

where B=B(r), A =A(r) and we set from now on
c =G =1. The field equations then take the follow-
ing form for a perfect fluid'.

becomes very difficult. Instead one assumes a
relation among A, B, and their derivatives sgcb
that integrability of the above system is secured
and later one eliminates r among P(r) and p(r) to
obtain an equation of state and checks it for phys-
ical reasonableness. We take a solution to be
physically reasonable if pressure and density are
positive and monotonic decreasing functions of r
throughout the star and pressure goes to zero at
finite radius.

To find a solution we first equate (2.2) and (2.3)
and write the result in the following convenient
form:

d 1-B d /A' ) 1 d A'Ai
dr B r~ drI B'Ar ~ B A2 dr (2.5)

which immediately suggests various possible rela-
tions among A and B which will allow us to inte-
grate (2.5). Using this method Tolman' has found
eight solutions, five of which were new at that
time. We will transform this equation into a diff-
erent form to find other solutions.

Let A'/Ar=C(r) in (2.5) to obtain

d 1-B') d C '~ 1 dC 4r
d. "B I'd. B)~'B d.'2B'

which can be written as

1 2A' 1
I(

18'= —
2 +

Ar r2)l r2 '

1 "A" A'B' 1 A' B't
8mP= —,—— +—

B A AB r A B]

1 2B' 1 18wp=- +Br r2 r2'

(2.2)

(2.3)

(2.4)

(2 7)

which is a Pfaffian differential equation in three
dimensions, in general given as

f, (B,C, r)dB+f, (B,C, r)dC +f,(B,C, r)dr = 0.
(2.8)

Here we have a system of three differential equa-
tions with four unknowns P, p, A, and B as func-
tions of r. The normal way to solve this problem
is to use a physically reasonable equation of state
to complete the set, but owing to the nonlinear
structure of the equations such a physical approach

Here we are treating two of the three variables as
independent and looking for a surface E(B,C, r) =0
that satisfies the above equation. Equation (2.8)
has a necessary and sufficient integrability con-
dition' of the form
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x curlx=O,

where x is the vector field defined as

(fl tf2 tf3) '

(2.9)

(2.10}

tial equations for 8(r), once A(r} is chosen. ""
Now we consider the second possibil. ity, that is

to solve for C(r) for a given 8(r). Equation (2.7)
now becomes

Finding a solution to (2.8) can be geometrically
interpxeted as finding a surface in B,C, z space
whose normal vectors define a vector field normal
to x. For our case Eq. (2.7) is not integrable.
Hence, a single surface which would include al1,

the solutions does not exist. The properties of
Pfaffian differential equations might deserve fur-
ther study as far as classification of solutions axe
concerned in B,C, r space, but that is beyond the
purpose of the present paper.

Next we consider 8 =8(r) and C=C(r) so that
(2.7) reduces to a Bernoulli equation' for 8 =8(r)
once C(r) is chosen:

dB 1, 1/r '+ C-'r+ dC/dr 8dr r'(1/r'+C) 1/r'+C

which has the general form

This is a Riccati equation for C(r) and quite diffi-
cult to solve in genexal.

Solution II. If we assumeB =su, C(r},m, =con-
stant, one can find the following solution:

2 sin I~ 2 ~ goal/a +Cyp (2.16)

0

( r4+C~2+~ 2)l/2 (2.19)

This is a new solution.
Solution III. With B=gv(r)C(r) Eq. (2.17) be-

ComeS

dC 0) ' ~ K 2 2 tg——-- C —r-'C'+ —+r' [C'. (2.20)dr te r te r )
dB -g (r)8'—+f(r)8. (2.12)

Assuming nP/r+r'=0 one gets our second new
Solution

The solution can be immediately given in terms of
two quadrat res,

2 y&~- &~~c,
A(r}=C, r+

Co )

gS =Xl. +72~

Q~=Coe ~ g~= 28 8 g f' &'p

(2.13)

(2.14)

Next we try the substitution

1 dB & —1 1 dB
+— C = 8(r)Cr~B dr rs 8 dr

(2.22)

(2.23)

-1/r '+ C'r+ dC/dr 1
1/r +C r' (2.15)

the solution of which is

We now describe seven explicit forms of solutions
depending on assumed relations between 9 and C.

SoLution I. In order to secure integrability of
(2.14) we choose

in (2.17), with e(r) to be guessed. The differen-
tial equation now becomes

(2.24)

which cRIl be x'educed to quRdx'Rtures lIIlmedlately.
Solution IV. Let 8=1/r; this gives the follow-

ing solution, which is also new:

(2.25)

and A' = (a, +a,r}', and 8' is found to be

1
C,r' —(2/C, )r+(4r '/C, ') ln[(C, +2r)/r[+1 '

(2.16)
where, Co and C, are constants. This solution has
also been discovered by Kuchowicz, ' by studying
R different dlffel entlRl equRtlon. VRrlous Ruthox's

have studied other forms of fix'st-order differen-

(3C,+4r')4'i'
B =

Solution V. 8=0 gives A =a~+a, r2, which was
found by Kucllowlcz, ' Adlel, ' Rnd Adams Rlld Co-
hen. ~

Field equations in isotropic coordinates

We will also tx'y to solve the field equati, ons in
isotropic coordinates, where the metric is of the
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form'

ds' =-e"(dr'+ r2d8'+r ' sin Bede'}+e"dt2 (2.27)

r, is the boundary of the star which can be defined
as the value of the radius where the pressure van-
ishes,

The field equations for a perfect fluid are now given
as

8wP(r2)=O=B ' + —,2A' 1 ) 1

Ar~ r~'i r,' '

Jl V p +v
8mP=e ~ + -+

4 2 r )i' (2.28) B 'i y + 1) - 1=0., It 2A'
A

v" v" p'+ v'
SmP=e "i + —+ —+

2 2 4 2r (2.29)

l2 2 I
8mp=-e- p, +" + "

i

4 r I' (2.30}

Buchdahl has also studied the field equations in

this form and found a solution whose equation of
state resembles that of the polytrope of index 5.'

To find a solution we will make the substitution

Also from the requirement that the interior solu-
tion has to be connected smoothly to the exterior
solution, one easily sees that we must have B,A,
and dA/dr continuous at the surface. Hence, B(r)
should have one integration constant, while A(r)
will have two.

In this respect Wyman, " I eibovitz, " and re-
cently Whitman' generalized some of Tolman's
solutions so that they have the proper number of
integration constants.

A(It)-a e"= Bp (2.31) IV. DETAILED STUDY OF SOME OF THE SOLUTIONS

Solution II. In Sec. III we have found
where 4 = 4(r), into the equation obtained by equat-
ing (2.28) and (2.29) which will give us a differen-
tial equation to be solved for 4(r),

-2r2+ C, '
lnA = ——,

' sin ' " i+ C, ,

1
4, t —

Q4 r
where

1 2 & 2zb2- 2a2- ab+b —a
C(constant) =

b —a

Solution VI. For C =1 we obtain

(2.32)

(2.33)

p

( r4 4, C r2 +~ 2)1/2 1

q= (C,'+4w ')'/'

8wP(r) =, [2(w,' +C,r ' —r') ' '+ C, —r '],1

wp

(4.1)

(4.2)

4 = C, exp(CBr2), (2.34)

e"=AC, 'exp (-a Cr ),2e" =BC,'exp(bC, r').
(2.35)

3Cp
8wp(r) =,r'—

wp wp

At the origin we have

(4.3)

Solution VII. For C W1,

e'-~=C r'+C
p 1&

ev —A(C r2 + C )-4/(1-c )

e" =B(C r'+C )2/" c'.

(2.36}

(2.37)

2 Cp P 2w y 3Cp
8wP =—+ ', , 2=-——s- —', , 8wp, =—',. (4.4)

wp wp p& 3 Cp wp

In order to have positive pressure and density at
the origin we must have CB(0 and 2o2) iC, t/2. The
radius of the star is defined by P(r) =0, which
gives

So far we have found seven solutions, where
five of them, Solutions II, III, IV, VI, and VII
are new.

B (r ) =A (r ) = 1 (3.1)

HI. BOUNDARY CONDITIONS

From the Schwarzschild exterior solution we
know that, at r=r„

2R' = -3 iC, i
v 2(28C,'+ 3226,')'/'. (4.5)

The pressure and density are positive and finite
throughout the star, but, even though pressure is
a decreasing function of r, p increases from cen-
ter to surface. Thus this solution is not generally
physically reasonable according to our criterion,
although it may be a suitable solution for the case
where density inversion occurs. '

Solution III. We have



(4.6)

from the boundary conditions as follows:

1
(2/R'-C, )'" (1-2M/R)'~' '

C, R+ R'- —
'~

' = 1-— . (4.11}

2
8wP(r)= ——C ir +———

r(C r' —2}'" r' r' '

(4.V)

These give Co and C1 as

(4.8)

(4.9)

(1 —2M/R}'~2
[R+(R' 2/C )'~2]'~~c '

One can also obtain a IQass-radius x'elation as

The pressure and density both divex'ge at the origin
while their ratio remains constant; they are also
monotonic decreasing functions of z. The radius
is defined hy P(r) =0, which gives

(4.10) (4.14)

which leads to the following px'essure and density
distributions:

(C,r'- 2r'+SC.)(7r'+SC, ) 1
(SC, +4r')(3CO+ ')rr'4'~' r' '

(C,r' —2r'+ SC„) 4C,r'+ 54C,r- 6C,C,
( SCO+4r') 4'~' (C,r' —2r'+3C, )(SC,+4r') r' )I+r' ' (4.16)

(4.17)

This solution has a pressure distribution which goes to negative infinity as x appxoaches zero.
Solutions III and IV, even though they can be used to represent pox"tions of stars, can not provide a phys-

ically reasonable model for the entire star, so @re @rill not discuss thexn any fux"ther.
~~&« V. In isotropic coordinates me have found the foBovring solution:

e" =AC, 'exp[ (aC,r'-)], eBC,' pe(bxC, r'),

8wP= (C, '/B) exp[ (C,br')][(O-'C, '- 2C,'ab)r'+2C, b —2C,a],

(4.18)

(4.19)

8vp=- (C, '/B) exp[- (Cobr')](6bC, +O'C,'r'),

8np, =- (C,'~/B)6bC , 0

8vP, = (C, '/B) [2C,(b —a)].

The surface is defined by P(R) =0, which gives

2(b-a)
bC, (b —2a)

'

There are bvo possibilities which give physically reasonable answers:

(i}

(4.20)

(4.22)
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b&Q, C &0, b-a&0, and b —2a&0. (4.25)

Both have positive pressure and density vrhich decrease outward.
Now vie connect this solution to the Schmarzschild exterior solution in isotropic coordinates,

(4.26)

One obtains the following expressions for C„C„and 8 in tex'ms of M and R:

2(a —b)
bR'(b —2a) '

(1 -M/2R)-'~' „,, 2(a —b)
(1+M/2R) 'i' b(b —2a)

(4.27)

(1+M/2R)'-"~
(1-M/2R) "~'

a&here a, b, and A axe arbitrary. %e can also find an expression for M in terms of p„using
5

8', =- ' 6bC, (4.28)

—2R
b —2a amp, ] 2 b —2a

(4.29)

Solution VI. %e have, from Sec. 0,

8"=A(C r'+C ) '~" a' e"=R(C y'+C )~«~-&l

6~I = 1
C ~2+C -~&~i-c~ C. b & —2abC. ~ (C,r'+C, )+2C.(b-a)(l C)(C ~'+C )

C (-&-1+C'i/r~-C &

B(1-C)

12C.(b-a)
C &, „„,&,„J1 a

(1 —C) ' ' ' p 3

(4.33)

The radius of the star is given by

-2abC, 'R'+ R'[b' —2abC, + 2(b —a)(l —C)]C,+ 2C, (b —a)(1 —C) = 0.

This solution has positive pressure and density @which are also decreasing functions of r. %e determined

Co, C„and B from the boundary conditions in tex'ms of M and R, and found that

2III+F+ [(2'--E)2 —4(I'-R')(II' —G)]'"
j. 2(I' —E') (4.35)

1 M/2R -'&'-'» -A"-'» 2III Z[(2III Z)2 -4(I2 Z-2)(II' -G)]'-~'-
1+M/M B 2(I'- Z')R' (4.36)
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(1+M/2B)'
(C@2+C )(y(i-c) ~ (4.37}

1 —M/2B
~~

" ' ' „,(, b' 2(b — )(1 —C)
1+M/2R ) 4ab 4ab

(4.38)

E= [2(b —a)(l —C)+b ](- 4a b) +16a b( b—a)(l —C),

G = y(b —.}(1—C)+b']'.

The mass M =M(p, ) can he evaluated from

C -&/(&" &)
&c B ' (1-C)C

In Solution &II we have a, b, Co, C„A, B as constants. Kith the boundax'y conditions we can determine
three of them in terms of M and 8, leaving the others arbitrary. So even if we set C, =0 we will still have
a sufficient number of constants and also obtain a solution which has an interesting equation of state.

The solution thus takes the form

e"=~(C r') '(' " e =B(C ~2/«' ')

1, ~((, c b'+2(b —(()(1—C} 1 2abC,

1, (, ( () c) (1 —C)2b + b' 1
7rp y = — Or (1 —C)'

The pressure and density diverge at the origin while their ratio is constant:

P 2(b —(()(1—C) + b' 'b' ——,'a' —-ab+ b —((

p, (1 —C}2b+b' '
b —(2

(4.42}

The equation of state can he obtained hy eliminating r among P(r) and p(r),

2abC C '~" c) (C —1)2b —b'

(1 —C)2b+O'. BwB (1-C)'

This has the form of a polytropic relation except for the second term, which could be negligible at high
densities. Also (4.43) reduces to a polytropic relation in the classical limit o, -0,"so our solution can
be considered as an analog of polytropes in general relativity.

If we take Co, 5, A as our constants to be determined by boundary conditions we get

((+2b (1+M/2&)4
2bB' '

((+2b
& (1 —M/2B)' a+2b

2b ' (1+M/2B)' 2b
(4.44)

V. SUMMARY AND CONCLUSIONS

We saw that once the two equations (2.2) and
(2.3) are equated we get a coupled differential equa-
tion for the metric coefficients, which can be solv-
ed when a relation between them is assumed. The
most common path taken in the literature is to as-

sume either A(r) or B(x) and then solve the remain-
ing differential equation for the other metric co-
eff icient.

The differential equation to he solved for B(r) is
of first oxder and can be reduced to quadratures
immediately. On the other hand, the equation for
A(r) is of second order and cannot be solved in
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dC ( 1 dB B~-1 1~+ ——C- yC'2B dr r 3 (5.1)

%lth the substitution

1 dB B2 —1 1 dB+ ——C = 8(r)Cr'B dr r B dr

the equations to be solved become

(5.2)

(5.2)

d8 8(r)r'C-1
&

1
(1+r'C)r (1+r'C)r

general.
In this paper @re have studied the second altexna-

tive and managed to reduce the probl. em to the sol-
ution of two first-oxder differential equations, both
of which can be &written in terms of quadxatux'es.
The equation to be solved for C =A'/Ar is

Both are Bex'noulli equations and can be solved
immediately once 8(r) is chosen. Note that once
C(r} ls found one need not solve anothet' lntegt'ai
to get A(r), since ail the physical consequences
follow from P(r) and p(r) which involve only C(r);
see Eqs. (2.2} and (2.4).

We have also substituted 8 = w(r)C into (5.1),
where in this case m(r) is the function to be
guessed. By trying vax'ious functional forms for
cu(r) and 8(r) we have found three new solutions;
solutions II, III, and IV. %'riting the field equa-
tions in isotropic coordinates also leads us to hvo
neer solutions, where one of them has an equation of
state that might be used to approximate analytic-
ally numex'ical solutions fox polytropes at high
densities, as discussed by Tooper. "

It is a pleasure to thank R. I . Sears fox his con-
stant guidance and help throughout the preparation
of this work. I vrould also like to thank D. Hegyi
for a critical. reading of the manuscript.

~B. C. Tolman, Re/atieity, Thee'modynamics „and Cos-
mo/Ogy {Oxford Univ. Press, New York, 1934), p. 244.

28. C. Tolman, Phys. Hev. 55, 367 {1939).
3I. N. Sneddon, E/ements Of Partia/ Differential Eqga-

tioes {NcGraw-HQl, New York, 1957), p. 21.
46. M. Murphy, Ord&urry Differential Equations and

TheA' 80/Itious (Van Nostrand, Princeton, 1960), p. 26.
~B. Kuchowicz, Acta Pol. 33, 541 {1968).
~8. J. Adler, J. Math. Phys. 15, 727 {1974}.
78. C. Adams and J. M. Cohen, Astrophys. J. 198, 507

{1975).
8P. G. Whitman, J. Math. Phys. 18, 869 {1977).
H. A. Buchdahl, Astrophys. J. 160, 1512 {1966).
M. %'yman, Phys. Bev. 75, 1930 {1949);%yman studies
a similar solution, where the density distribution is
given by p=ar", where a and n are constants.
C. Lelbovitz, Phys. Hev. 185, 1664 {1969).

~28. A. Bludman, Astrophys. J. 183, 637 {1973).
~38. F. Tooper, Astrophys. J. 140, 434 {1964).


