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Inverse scattering problem for quarkonium systems.
I. One-dimensonal formalism and methodology
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The inverse scattering formalism for reAectionless potentials is applied to the reconstruction of confining
potentials from bound-state properties. An explicit algebraic technique is presented and tested on several one-
dimensional examples. The connection with a classical problem of interacting solitons is exhibited.

I. INTRODUCTION

The families of extremely massive hadrons dis-
covered during the past three years are widely be-
lieved to indicate the existence of new flavors of
heavy quarks. The-psions' now are firmly estab-
lished as bound states of a charmed quark and anti-
quark, and it is popular to assume that Y(9.4), Y'
(10.0), . . . ' are bound states of one or more species
of new quarks. The general agreement' between
the spectroscopy of psions and the predictions of
simple nonrelativistic potential models encourages
the belief that heavy quarkonium systems may be
meaningfully discussed in the context of the Schr6-
dinger equation for a central potential,

+V(~) 4(r, t) =i—(r, t).
v2 .84
2p. eg

Such an approximation should be even more reli-
able for the quarks which make up Y than for the

This opens the possibility of studying the inter-
action of quarks in a situation which is greatly
simplified in comparison with ordinary light had-
rons.

Within the framework of nonrelativistic potential
models, the question of how quarks interact be-
comes sharply defined. It is the inverse scattering
problem of the Schrodinger equation: How and to .
what extent does the spectrum of a quarkonium
system measure the interquark potential'P The
mathematical problem this poses has been studied
for many years in other contexts, and a rich for-
malism has grown up around it.' " In this article
and the sequel, we shall explore some of these
techniques and study the possibility of deriving the
interquark potential directly from spectroscopic
data. This first paper deals primarily with for-
malism and methodology. Specific applications to
heavy-quark systems are presented in the follow-
ing paper.

The literature on the inverse scattering problem

is voluminous and we will not attempt to review it
thoroughly. The procedure derived and discussed
in Sec. II is based upon the techniques of Gel'fand
and Levitan' and of Kay and Moses. '2 In order to
bring out the various aspects of the problem in
proper sequence, we shall restrict our attention
for the present to the one-dimensional problem

8
,+ Tr(x)) p(x, k) = k*4 (x, k) .

The extension to the radial equation in three spa-
tial dimensions is mentioned in Sec. V and dis-
cussed at length in the following paper.

Broadly speaking, the Gel'fand- Levitan method
may be viewed as a dispersion theory for the
Schrodinger wave function. From solutions to
(1.2) with k' replaced by a complex eigenvalue r„',
one can construct an analytic function C (x, f) which
approaches unity as ~f ~

-~. Thus, C(x f) is com-
pletely determined by its singularity structure
which consists of a cut along the real g axis and
some number N of bound-state poles on the posi-
tive imaginary axis. The spectral weight of the cut
is essentially a scattering-state wave function mul-
tiplied by the reflection coefficient, both evaluated
at real k. Similarly, the p'ole residues are essen-
tially constants times bound-state wave functions.
Upon Fourier transformation the dispersion rela-
tion for 4 becomes the Gel'fand-Levitan integral
equation which determines the wave functions. The
kernel of this equation is given entirely in terms
of the reflection coefficient and 2N bound-state .

parameters.
.If the reflection coefficient vanishes for all real

values of k, the Gel'fand-Levitan equation can be
solved exactly by algebraic techniques. The only
singularities of C (x, g) are the bound-state poles,
and the integral equation reduces to a system of N
linear algebraic equations for the bound-state wave
functions. Cramer's rule gives an explicit formula
for the bound-state wave functions in terms of 2N
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parameters. A 2N-parameter expression for the
potential V(x) is also obtained. Half of the para-
meters are determined by the bound-state ener-
gies. The remaining N parameters may be fixed
either by some explicit piece of information about
the bound-state wave functions (e.g. , their values
at x =0) or by imposing the requirement V(x)
= V(-x)." The latter procedure is of more inter-
est to us since it forms the most convenient bridge
to the radial Schrodinger equation, for which we
must concern ourselves with boundary conditions
at x=0. The general choice of parameters which
yields a symmetric potential is derived in Sec. III.

Thus, when the physical situation is such that the
continuum part of the spectral function can be ig-
nored, the inverse, problem is completely and ex-
plicitly solved. The result is a symmetric, reflec-
tionless potential which binds N states at arbitrar-
ily adjustable energies. For a strictly confining
potential there is perforce no continuum, but it
would be impractical to, reconstruct a potential
from an infinite number of bound states. We there-
fore must ask how well the inverse scattering for-
mulas work with only partial information, namely
the energies of a few low-lying bound states. The
behavior of the sequence of approximations V„(x) to
V(x) obtained as more bound states are included
poses a well-defined mathematical question of con-
vergence, which we shall not address here. In-
stead we study the successive approximations ob-
tained for three simple examples: The linea. r,
harmonic-oscillator, and infinite-square-well po-
tentials. The results, described in Sec. IV, clear-
ly suggest that an arbitrarily accurate local ap-
proximation to any reasonably smooth confining po-
tential is provided by a ref lectionless potential as
more bound states are included. For any finite
number of bound states, the potential constructed
in this fashion is evidently not unique. It is possi--
ble to imagine a great variety of 'other parameter-
izations which may be adjusted to fit the observed
bound-state spectrum. , The method we propose is
attractive because the parameters which arise are
directly related to the bound-state energies, be-
cause the reconstructed potential is given algebra-
ically in terms of those parameters, and because
successive approximations to the potential are eas-
ily generated. Moreover, in the region of x for
which the relevant bound-state wave functions are
not negligible, the approximations are quite good
even for N =3 or 4. An interquark potential con-
structed from information aboutg(3095) and/'(3684)
corresponds to the ease if N=4 in one dimen-
sion. Consequently, we expect to obtain from
the accessible data a fairly accurate impression of
the interquark interaction.

Iri the next section, we derive the Gel'fand- Levi-

tan equations in the form most convenient for the
quarkonium problem. The connection between the
inverse scattering problem of the Schrodinger
.equation and the nonlinear Korteweg-de Vries
equation" is explained in Sec. DI. We compare in
Sec. IV approximate potentials and wave functions
with exact results for confining potentials. Discus-
sion of these results and the application to quark-
onium systems occupies Sec. V.

II THE GEL'PAND-LEVITAN EQUATIONs

Consider the eigenvalue problem of the Schro-
dinger equation for a potential V(x) in one space
dimension,

82
,+ V(x) if(x, k) =k'Q(x, k) .

Bx (2.1)

In order to formulate the direct and inverse scat-
tering theory for (2.1), we shall assume that V(x)
approaches at infinity a constant which we take to
be zero,

V(x} =0.
txt

(2.2)

y,(x, k) = a(k)y~(x, k)+b(k)y, (x, k) . (2.5)

The usual reflection and transmission coefficients
are related to the coefficients in (2.5) by

f

fi(k) = k(k)/a(k),

T(k) = 1/a(k) .
(2.6a)

(2.6b)

The Wronskian of any two solutions 4,(x, k) and

4,(x, k} of Eq. (2.1) is independent of x,

&„(4,8„4',) =4',4',"-4,'4, =0. (2 'I)

Thus we may compute the Wronskian of Q, (x, k) or
p,*(x,k) with both sides of (2.5), evaluating the
right-hand side in the asymptotic regime x-+~.
By this device we arrive at expressions for the
scattering data directly in terms of the wave func-
tions:

From an operational standpoint, the restriction
(2.2) will be removed in Sec. IV where we show that
confining potentials [V(+~) =~] can be locally re-
constructed by the same analysis. The scattering
data for the potential V(x) can be defined in terms
of particular solutions to (2.1}which obey pre-
scribed boundary conditions at infinity. Let Q, and

P, be solutions to (2.1) with asymptotic behavior

y, (x, k)-e""as s +~, (2.3)

p, (x, k)-e-'~as: x-- ~. (2.4)
I

For real values of k, the function p,*(x,k) = p, (x, -k)
is also a solution to (2.1) which is linearly
indepSndent of Q, (x, k). Hence Q, can be written as
a lineajr combination of Q, and p,*as
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a(k) =—(y, e„y,), (2.8)

b(k) =
2k (4i 6A 2) ~ (2.9)

The functions P, (x, f) and &f&,(x, g) can be analytical-
ly continued- into the upper-half f plane. (We shall
use k and f when referring to real and complex
values, respectively. ) Analyticity for Imp )0 fol-
lows' from the Volterra integral equations which
incorporate (2.1) and the boundary conditions (2.3)
and (2.4):

4,(x, f) = e' "+— dy sin[K(y —x)]V(y)P, (y, l),
~ x

(2.10a)

4,(x, 0) =e '~"+— dy sin[)(x —y)]V(y)Q, (y, g) .
m OQ

(2.10b)

Equation (2.8) also allows us to regard a(k) as
the boundary value of an analytic function a(f). be-
cause of the reality of the potential V(x), it follows
from (2.1) that

to the reflection coefficient. From the integral
equations (2.10) it is easily shown that 4 (x, g) ap-
proaches unity as

~
f ~-~. Thus the function

4(x, f) can' be reconstructed from its singularities
as

~ g- iv„a'(iv„)

1 "dk'p(x, k')
2~i (2.16)

~ g —iv„a'(ix„) (2.1 I)

From (2.5) it is seen that the bound-state wave
functions Q, (x, i~„) and Q,(x, iv„) are proportional,

The Gel'fand- Levitan equation is obtained from
(2.16) by letting g - k —ic and Fourier transforming
with respect to k. For our purposes, however, the
dispersive form will be more useful. For the rea-
sons outlined in Sec. I, we shall be particularly
concerned with ref lectionless potentials, for which
R(k) vanishes for all real values of k. Thus we set
p(x, k) =0 in (2.16), whereupon

y,*(x,g) = y, (x, -g*),
P+(x, g) = y,(x, g*),

and hence, using (2.8),

a~(g) =a( g*).

(2.11)

(2.12)

(2.13)

Q,(x, iv„) = b(iv„)P, (x, iy„) . (2.18)

Thus if (2.1V) is evaluated in the lower h'alf-plane
at the N points f =-iv, m =1,2, . . ., N, it yields a
system of linear algebraic equations for the N
bound- state wave functions,

From this result it is easily shown that the zeros
of a(g) in the upper half-plane must lie along the
imaginary axis at g = g„—=iv„, n =1,2, . . . , N, with
e„real As show. n by (2.6), these zeros correspond
to bound-state poles in the S matrix.

In essence, the Gel'fand-Levitan equation is a
dispersion relation for an analytic function 4 (x, f)
which is defined as"

a '(f)Q, (x, f)e'~", Imp) 0 (2.14a)4 x, f
y+(x, g*)e'~", imp&0. (2.14b)

The choice of (2.14a) is suggested by the fact that
a '(k)Q, (x, k) is a wave function which obeys scat-
tering boundary conditions. It consists of an in-
coming wave (from the right) with coefficient unity
and transmitted and reflected waves multiplied by
the S-matrix elements T(k) and R(k), respectively.
In addition to the poles at f =iv„, C (x, f) will in gen-
eral have a cut along the real axis with discontinu-
ity

4(x, k+i&) —e(x, k —ie) -=p(x, k)

c„'= —ib(ik„) /a'(i~„) (2.2o)

and m runs from 1 to N.
A more symmetric form results from the defini-

tion

g„(x) = c„P,(x, iw„), (2.21)

where $„(x) is a normalized bound-state wave func-
tion, which satisfies

dx[(„(x)]'=1.
a 00

We rewrite (2.19) as

(2.22)

A„„g„(x)=X (x), (2.23)

where

X„(x)-=c„e "~"

and the symmetric matrix A is defined by

(2.24)

28~ kffX

g, (x, iv„)e"~* = 1 — " P,(x, iK„), (2.19)
n- ~m+ ~n

where

b(k)= („)e'~y,( kx). (2.15)
'h

&m+ &n
(2.25)

Thus, the choice of (2.14b) in the lower half-plane
provides a function with discontinuity proportional

Finally, we define a matrix A&"' which is obtained
from A by replacing the nth column by its deriva-
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tive. Noting that

n

« «„) (2.26)

we write the bound-state wave functions explicitly
3,S

1 DetA~"'
~„DetA ' (2.27)

Equation (2.27) gives the bound-state wave func-
tions in a ref lectionless potential in terms of the
2N parameters v„and c„. The potential itself may
be expressed in terms of the same parameters by
considering the function

c2
A =1+—e '"",

2'

so the potential obtained from (2.36) is

d
V(x) =-2, ln(A)

(2.37)

Equations (2.36) and (2.25) form the basis of our
subsequent analysis of specific potentials in terms
of their spectral properties.

To illustrate the use of these formulas, let us
consider the case of a ref lectionless potential with
a single bound state, N= 1. Equation (2.25) be-
comes

(2.28)

From the Schrodinger equation (2.1), we have where

= -2((."sech'[)(:(x-x,)], (2.38)

X + 2&~X' = ~X ~ (2.29) 1 I' c2'Il

2)(: (2x &

(2.39)

1 ", , 1
q(x, g)-1 . dx V(x )+O —,.

2C
(2.30)

This is to be compared with the
i
0 i- ~, Imp (0 limit

of (2.17)

(t)i«'(x, g«)e'~" - 1 ——. c„'e "«"y,(x, i)(„)
1

where prime denotes a derivative with respect to
x. The function y(x, r) may be expanded in inverse
powers of f as

(1)(x) =
d

=
i
— sech[((:(x —x,)] .

XA dx i2

The Schrodinger equation

(2.40)

This result clarifies the significance of the para-
meters c and x in this simplest case. The binding
energy v2 fixes the depth of the potential, and the
parameter e is related through (2.39) to the posi-
tion of its center. We compute the bound-state
wave function using (2.27):

(2.31) —,, + V(x)
i y(x) = -~'y(x) (2.41)

or may be verified directly from (2.38) and (2.40).

N Detg~n)—ln(DetA) =gdx DetA (2.34)

which leads to

J ddx'V(x') = 2—ln(DetA) .
dx (2.35)

We therefore find a 2N-parameter formula for a
ref lectionless potential with N bound states, "

d2
V(x) = —2 —,ln[Det A(x)] . (2.36)

«(e, ()-(-—' c„'e ""*(,(«, i«„)e()(—,) . (2.82)

By comparing (2.30) and (2.32) we obtain the inte-
grated potential in terms of the bound-state wave
functions,

J
OO N

dx'V(x') = -2 g X„(x)P„(x). (2.33)
x n=1

A concise expression for the potential follows from
the substitution of (2.27) into (2.33) and the obser-
vation that

' IH. REFLECTIONLESS POTENTIALS, SOLITONS, AND THE
KORTEWEG-DE VRIES EQUATION

Some very useful intuition about the formalism
constructed in the preceding section can be gained
by reviewing the famous connection""' between the
inverse scattering problem of the Schr5dinger
equation and the nonlinear Korteweg-de Vries
(KdV) equation, '~

v, —6vv„+ v„„„=0 . (3.1)

Here v(x,tt) is a. function of x which depends on a
time parameter t, and the subscripts denote partial
derivatives. The KdV equation first arose in the
study of shallow water waves and is relevant to a
variety of systems which exhibit a balance between
nonlinear and dispersive effects [the second and
third terms in (3.1), respectively]. A most con-
spicuous result of this balance is the existence of
soliton" solutions to (3.1). In this section we shall
review these well-known results and bring out the
direct connection between ref lectionless potentials
of the Schrodinger equation and N-soliton systems
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of the KdV equation.
The ref lectionless potential formula (2.36) is

precisely a puce N-soliton configuration at a fixed
time t„ the potential V(x) being identified with the
KdV "field" v(x, t,). The parameters c„and v„are
directly related to the positions and sizes of the
individual solitons. The speed of a KdV soliton is
not independent, but is determined by its size. In
addition to providing us with a better perspective
on the nature of ref lectionless potentials, the KdV
connection allows us rather easily to construct po-
tentials with certain desired properties such as re-
flection symmetry by manipulation of solitons.

Our treatment follows the approach of Lax.~ We
define a differentia, l operator

.8, 8 8B —=-4i, +Si ~—+—v (3.2)
8X 8X 8X

where v(x, t) is a solution to the KdV equation (3.1).
At a given time t, the function v(x, t) may be inter-
preted as a scattering potential, with the corres-
ponding Schrodinger operator

responding equation at time t, mth the same eigen-
values,

L(t)(„(x,t) = -v„'(„(x,t) . (3.9)

The unitarity of U enables us to verify the normali-
zation condition (2.22) at t= ~, -when all solitons
are widely separated. Thus, as a ref lectionless
potential (an N-soliton system) evolves in time ac-
cording to the KdV equation, its bound-state energy
spectrum remains unchanged. "

Equation (3.7) can be rewritten in differential
form as

8
i "(x,t) =B(„(x,t) . (3.10)

g„(x, t)-c„(t)e "+ as x-+~). (3.11)

The idea of the inverse scattering approach to KdV
solitons is to locate an individual soliton in the sys-
tem by studying the asymptotic behavior of the cor-
responding bound-state wave function. It follows
from Eqs. (2.3) and (2.21) that

82
,+v(x, t) . (3.3)

In the asymptotic regions x -+~, the operator B
assumes the simple form

The commutator of the operators defined by (3.2)
and (3.3) is found, after some calculation, to be

. 83B- 4i -(x-+~).
8X

(3.12)

.8L
[B,L) =-iv„„„+6ivv„=i (3.4)

Thus (3.10) simplifies to an equation for the time
dependence of the coefficients c„(t),

the last equality following from the KdV equation
(3.1) for v. Thus B may be interpreted as the gen-
erator of time evolution which propagates the po-
tential v (and its Schrodinger operator) according
to the KdV equation. (The propagation of v gener-
ated by B should not be confused with the usual
time evolution of the Schrodinger equation gener-
ated by L, which propagates particles through a
fized potential. )

Since the operator B is Hermitian, the time evo-
lution of the potential is effected by a.unitary
transformation

(3.5)

The Schri5dinger operator L(t) is expressed in
terms of its form at t =0 by

"(t) =4~„'c„(t), (3.13)

with the solution

c„(t)= c„(0)e'""" (3.14)

To recapitulate, if a ref lectionless potential is
written in terms of the parameters c„and v„by Eq.
(2.36), and if the coefficients c„(t) are permitted to
vary according to (3.14}, the resulting time-depen-
dent function is an N-soliton solution to the KdV
equation.

Since our ultimate aim is to consider the radial
Schrodinger equation for a system in three spatial
dimensions, we will be particularly interested in
the reconstruction of potentials which are sym-
metric about x =0,

L(t ) = V(t)L(0)U'i(t) . (3.6) (3.15)

L(0)P„(x)= —v„'$„(x), (3.8)

then the functions defined by (3.7) satisfy the cor-

Moreover, the potential associated with L(t) sup-
ports N bound states with wave functions given by

(3.7)

That is to say, if the wave functions P„(x) satisfy
the Schr'odinger equation at t =0 [with v(x, 0) —= V(x)],

For the remainder of this section we will use the
intuition derived from the foregoing discussion of
solitons to find a general ansatz for the parameters
c„which will guarantee symmetry of the potential.
If there are no degeneracies in the spectrum of
V(x) =v(x, 0), which we hereafter assume, (3.15)
can be satisfied only if each of the N solitons de-
scribed by v(x, t) is located at the origin at t =0.
Let us order the eigenvalues as
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)ooa (3.16) 1, ~(c„(0) (a„+~

By transforming to a reference frame that is co-
moving with ~th soliton

g =x —4v„'t,

it can be shown22 that

lim v(x, t) = 2-e„'sech'[v„(x —4e„'t $„)-] .
t~ aa

f fixed

This is precisely the expression. for an isolated
KdV soliton, all others having moved off to x =+~
where they may be neglected. The nth soliton is
displaced from the origin of the comoving frame by
an amount

Thus the total shift of the soliton's trajectory is

1 + K„+v„"-' ( v„+ v„~-

It is.clear that a symmetric potential is obtained at
t =0 if we choose the parameters c„(0) to ensure
that

(3.23)

which requires

c„(0)' - a +a (3.24)

Similarly it is found that, at large negative times,
the N-soliton solution reduces in the frame (3.17)
to

lim v(x, t) = -2~„'sech'[g„(x —4g„'t —g„)],(3.20)
g ~ee

g fixed

where

The construction of a symmetric potential at t=0
by the coalescence of several solitons is depicted
graphically in Fig. 1. For large negative values of
t, the N potentials (each of which supports a single
bound state) are isolated and do not interact. At
t =0 the (nonlinear) superposition is the symmetric
potential which supports N bound states with the

(gas
)C

~bl

I

0.5

a)

O-
I

b)

t 0=

-0.5
-5 I I

/
I

0
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I I I I I

0 5

- ~ c)

t~ CV-,

Co
I

0.5 =
~ CV-&
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, r(
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X X

FIG. 1. The scattering of solitons appropriate to the reconstruction of a symmetric potential. The negative of the .
KdV field vz(x, t} is plotted for a better visual effect. The isolated disturbances for large values of

~ t ~
correspond to

potential wells, each supporting a single bound state with energy eigenvalues of the harmonic-oscillator system. The
symmetric disturbance at t = 0 corresponds to the approximate potential reconstructed from N bound states: (a) two-
bound-states case, (b) three-bound-states case, (c) four-bound-states case, (d) five-bound-states case.
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prescribed energies. The individual solitons re-
cover their initial shapes as t-+ ~. The phase
shift (3.22) is immediately apparent.

A simple semiclassical argument serves to illus-
trate the importance of the symmetry condition
(3.15). Let V(x) = V(—x) be monotonically increas-
ing for x&0. The WEB quantization condition may
be written as

Xo

2 dx[E„V(x-)]'~'=(n+-,')v, .
0

(3.25)

where the classical turning point x, is defined by
V(x,) =E„. If (3.25) is differentiated with respect
to n, and the variable of integration is changed to
V, one finds

dV dx dEI -'

@&0) (E —V) dV dB
&

We may invert (3.26) by multiplying by (V —E) ' '
and integrating with respect to E. The result is
that

(3.26)

v dE (dE -i'
t

'~~~ f (v z)"' ~(s )' (3.27)

Hence, knowledge of the bound-state spectrum suf-
fices to determine a unique, symmetric, monotonic
potential, in the semiclassical approximation. In
this limit, moreover, information about levels be-
low E =E, determines the potential for all values of
x ~x(EO) We shal.l find very similar behavior in
the examples to be discussed in the following sec-
tion.

IV. RECONSTRUCTION OF SIMPLE POTENTIALS

A. Harmonic osciHator

We first discuss the harmonic-oscillator poten-
tial

V(x) =x',

which supports bound states at energies

(4 1)

Using formulas (2.36) and (3.24) we are able to
explicitly construct a one-dimensional potential
which is symmetric in x and has any desired bound-
state spectrum. The result is unique, provided the
potential is required to be ref lectionless. That it
is possible in principle to derive a potential direct-
ly from experimental data is evident. However, it
is not immediately apparent how well the method
can be expected to work if, for example, we are
trying to reconstruct a confining potential knowing
only the energies of a few low-lying bound states.
The purpose of this section is to test the method on
some simple potentials. The results encourage the
application to quarkonium systems which is re-
ported in a companion paper. "

E„„=2n+1, n=0, 1, 2, . . . . (4.2)

The normalized bound-state wave functions are
&-X /4

(„„(x}=(„,),),H„(x)e" ~',

where H„ is a Hermite polynomial

(4.3)

H„(x) =(-1)"e"
~

„~e * .
d (4.4)

tc„=ED—E„, n = 1,2, . . . ,N (4.5)

where E„ is the energy of the nth level. We view
this "E, ambiguity" in the following light. If E, is
chosen equal to E„, then the N-soliton formula
(2.36) is identical to the (Ã-1)-soliton formula
which ignores the Nth bound state. This is obvious
from the fact that the depth of the Nth soliton is
proportional to v~'=E, —E„. It seems reasonable
to conclude that if N levels are to be included in the
approximation, the value of E, should be restricted
to the range

N 0 N+j. ' (4.6)

In specific examples we find that the best approx-
imation is obtained for E, = ,(E„+E„„). .Th—e vari-
ation of V4(x), the N = 4 approximation to the har-
monic-oscillator potential, as E, is varied over the
range (4.6) is shown in Fig. 2. Hereafter we shall
consistently make the choice

Eo = ~(Eg+ Ejy ~) (4.7)

for the N-bound-state approximation.
In Figs. 3(a)-3(e) we compare the first five ap-

proximations to the potential with the exact result
(4.1). The agreement is excellent in the region of
x relevant to the specified energy levels. Succes-
sive approximations to the wave functions are
plotted in Figs. 3(f)-3(j). It is seen that they are
converging rapidly to the exact solutions shown in
Fig. 3(k).

We now wish to use the bound-state spectrum (4.2)
as input for the inverse formalism and investigate
how well (4.1) and (4.3) are approximated by (2.36)
and (2.27).

At this point we encounter an ambiguity which is
characteristic of conf ining potentials. Because the
true p'otential does not approach a constant for
large values of ~x ~, as was assumed in (2.2}, we
must select a criterion by which the zero of energy
is set. In other words, in order to construct a re-
flectionless potential which supports N bound states
at the same energies as the first N harmonic-oscil-
lator levels (4.2), . it is necessary to choose a para-
meter E, to define the binding energies
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FIG. 2. Effect of the choice of the parameter ED upon the N = 4 approximation to the harmonic-oscillator potential.
(a) V4(x E0 7) V3{x;ED = 7), (b) V~(x; E0= 7.5), {c)V~{x;E0= 8), (d) V~(x; E0= 8.5), (e) V~{x;E0= 9)= Vq{x;E0= Q) . The
exact potential V(x) =x~ is shown for comparison.
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potential. The true potential is shown for comparison. (f)-(j): wave functions obtained in the N =1,2, 3,4, 5, approxima-
tions; (k): Exact wave functions.
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V(x)= /xf, (4.8)

for which the bound-state energies are given by the
zeros of Airy functions"

AV(-E„) =0, n =1 13, 5, . . .
Ai(-E„)=0, n=2, 4, 6, . . . .

(4.9)

The bound-state wave functions are the Airy func-
tions

Ai(x E„),-x &0
1

Fl

4.(x) = &

( 1)n-1
Ai(-x —E„), x & 0

Z~

where the normalization integral g„ is given by

(4.10)

2„=2 dx[Ai(x —E„)]'
0

2E„[Af(-E„)]', n =1,3, 5. . .~

~2[Ai'(-E„)]', n = 2, 4, 6. . . .

(4.11)

With the energy spectrum given by (4.9) we obtain
the approximate potentials and wave functions dis-
played in Fig. 4. The results are again extremely
impressive.

C. Infinite square well

Finally we examine the pathological case of an
infinitely deep square-well potential,

0, Ix i& vr/2

9. Linear potential

As a second example we consider the linear po-
tential

v '~'cos. nx, n odd, ~x~ &v/2

$„(x)= v '~'sin'nx, p even, ~x~ &v/2

0, ~x~)./2. (4.14)
The approximate results obtained from (2.36) and
(2.2V) are shown in Fig. 5. The manner in which
the wave functions are increasingly confined to the
allowed region of space is noteworthy.

V. DISCUSSION

We have presented a method for systematically
and explicitly calculating the shape of a symn&etric,
one-dimensional, confining potential from its
bound-state energy levels. Approximations to the
bound-state wave functions for all the levels in-
cluded in the calculation are also obtained. As ad-
ditional levels are included, the approximation to
V(x) is improved locally and is extended to larger
values of ~x ~. The extension of the method to the

' s-wave radial equation in three dimensions is
straightforward and will be described in the follow-
ing paper. In this case two pieces of information
are required for each bound state, namely the en-
ergy and the magnitude of the wave function at x=0.
The latter is measured by the leptonic decay width
of the state.

It is particularly encouraging that in the specific
examples of Sec. IV, the approximations are al-
ready excellent for N =4, which corresponds to
four bound states in one dimension or two bound
states in three dimensions. In the following paper
we shall calculate the charmonium potential using
the g and P' masses and leptonic widths. There we
explore in detail the ambiguities of the quarkonium
problem and the additional experimental data
needed to resolve them.
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