
PH YSj CAL RKVIK% 0 VOLUME 18, NUMBER 8

Selfwonsistent torsion potentials
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The absence of an autonomous dynamics for the torsion field in the usual version of the Einstein-Cartan
theory can be avoided through introduction of torsion potentials which yield the contortion tensor upon
covariant differentiation. The ensuing self-consistency problem is solved in closed form for the special case of
totally antisymmetric contortion tensor. The gauge-invariant feature of the torsion potentials, in the weak-

field approximation, is the propagation of a longitudinal massless tordion mode whose parity is that of an
axial vector.

I. INTRODUCTION

More than half a centux'y ago Cax'tan' pointed
out that the lines of reasoning which led Einstein
to his equations for the gravitational field can be
followed through even if one aims at conceiving
gravitation as a geometrical feature in an affine
space which admits the presence of torsions
through a nonsymmetrical connection

with a contox'tion tensor g,~ = -g~„of 24 compo-
nents. The ensuing theory has been rediscovered
repeatedly by Acyl' and others, "Rnd has re-
cently been the object of a thorough review. ' It is
derivable from an action principle with the Lag-
I'RDg1an den 81ty

8 =~gI. , 2 =k Raak+, R, +k„I.„.
8,=g({]) is the Riemann scalar serving as the
action function of the gravitational field in Ein-
stein'8 theory, g1 is the bilinear combination

representing the contribution to the cux'vature
scalax' made by the contortion, L,„is the action
function of the material sources, and ko, k„k„
are three constants. Most authors take it for
granted that ko 3nd 0, are identical, but this is
not necessary. '

The Einstein-Cartan theory does not fit into the
mold of conventional field theories, because it
does not prov1de, 1n 1ts usual form, an auto
nomous dynRmlcs fox' the tox'81QD f1eld. Indeed 1f
one treats the components of the contortion tensor
as independent field variables, and invokes the
pr1Dclple Qf minimal coupl1ng to f1x tile fox'Dl of
I.„, e.g. as in the case of a spinor source field

&~ = (g,. 0r- A'0,.) &+ a" (4~q.Var. g 4)

then the field equations obtained upon vax'iation

with respect to K',~ ax'e the pux"ely algebraic rela-
tions

which connect R cex'ta1n 11neRr comblnRt1QD of the

g„„the "Cartan tensor" C„„with the spin ten-
sor o,~ of the material source. Thus, the con-
tortion can be eliminated, enabling one to look
upon R, as a modification of the source describing
contact interactions' only.

The purpose of this paper is to demonstrate how

th1s troublesome feature' of the E1nste1n-Cartan
theory can be avoided through introduction of a
6-component potential tensor p„= -(I)~, by wxiting
the components of the contortion tensor as covari-
ant der1vat1ves

+ah 4 aI):c '

There is, of course, no fundamental reason why

the contox'tion should be "curl-fx"ee." Just as one
studies in hydrodynamics the case of curl-free
flow prior to getting entangled in more genexal
veiocity fields, the arrangement (1.6) aims at
providing R simple spec1flc proposRl that will
yield a dynamic equation for the torsion, without
sacrificing the tensor character of the contortion.
Alternative QptloD8 8uch R8

C C C
+ah 4 a:5 0 1:a

ox'

+abc Aaa:c eall j( ) ~ a)ic

which m3y merit fux'ther study are eschewed for
the purpose of this paper because they lead to
more complicated field equRtions.

The work reported in this papex also aims at
x"etaining as many featuxes of the Einstein-Cartan
theory as possible. In particular, the coupling of
torsion to sources and to itself is envisaged to be
governed by the principle of minimal coupling,
which 18 implemented by' employing 858/'p&A8/8
covariant derivatives with the nonsymmetrical
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Cab Cab !t ab ab ba &
(1.7)

where Q, is an arbitrary vector field. The gauge-
invariant feature of the torsion potentials is the
propagation of a. massless longitudinal phenome-
non whose parity is that of an axial vector. Its
particle aspect (the "tordion") may be obtained,
in the radiation gauge, by application of the
Gupta-Bieuler method (Sec. III).

Notations and conventions used throughout this
paper are summarized in an appendix.

connection (1.1). Also, the Lagrangian density
(1.2) of the Einstein-Cartan theory will be re-
tained. This has the advantage of avoiding intro-
duction of additional arbitrary parameters re-
quired, for example, if one were to consider the
most general quadratic expression in K,b, . The
introduction of terms involving the derivatives of

K„, into the Lagrangian, which has been sug-
gested' as a possible means of acquiring dynamical
equations for the torsion, is also excluded by that
premise.

After completion of the work reported here there
appeared a paper by S. Hojman, M. Rosenbaum,
M. P. Ryan, and L. C. Shepley [Phys. Rev. D 17,
3141 (1978)] in which a scalar potential is used
to generate torsion. Although these authors also
aim at retaining the principle of minimal coupling
without compromise, and obtain a dynamic equa-
tion for their torsion potential, their specific
proposal [Eq. (21)] is contingent upon a. modifica-
tion of the usual form of gauge invariance and
differs substantially from the proposal (1.6) put
forward here.

Since the covariant derivatives in turn contain
the contortion through the connections (1.1), the
proposal (1.6) raises a self-consistency problem.
For the special case of the totally antisymmetric
contortion tensor, which governs the coupling to
a spinor field as in (1.4), this problem is solved
in closed form (Sec. II).

The resulting field equations for the torsion po-
tentials are highly nonlinear. In the weak-field
approximation they are invariant under the gauge
transformation

for the four components of the dual vector

K'=e""K.„,1.e. , K.„=(1/3!)e.„,K'

where, using the symmetry of the Christoffel
symbols,

~d &dabc~ &dabc~

(2 3)

(2.4)

& a
= &'~+ 3 4''~i i

The solution of the equations (2.2) is

K' =A -'A. ',.y',
where

A2 —62 2 y2 (86/27)y2

A = 1 —
2 a —(4b/9)',

and (I)) is the dual tensor,
1 ab ah I abed

lcd 2 cdabg', l.e. , !I
= —

2 6

which satisfies the well-known relations

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

with the two invariants

aba=-2'y yba~

& = -2 &ab.d4' 4'

(2.12}

(2.13)

Since traces g „vanish in this special case, the
action scalar (1.3) reduces to

R, =K'2, K ' = (1/3! ) K2 K (2.14)

and upon substitution of the solution (2.6) one ob-
tains by a simple calculation, aided by the rela-
tions (2.10) and (2.11), the scalar action function

III. THE WEAK-FIELD APPROXIMATION

I'1 (K1/ }
1 2 (4k/9)2 r K1 = (4/3 . ) k1

9

(2.16}

which describes the dynamics of the self-consis-
tent torsion potentials p, b.

H. THE SELF-CONSISTENCY PROBLEM

By definition of the covariant derivatives, Eqs.
(1.6) read explicitly

+abc Cab;c 4b Knac 4a Knbc ' (2.1)

gc KA (2.2)

In general, for given (II)„, these are 24 equations
for the 24 components K„,. In the special case of
the totally antisymmetric contortion tensor &„,
=K~„,~ they reduce to four equations

The field equations arising out of the action
function (2.15) are obviously highly nonlinear. To
gain some insight into the propagation properties
of the torsion field neglect in I, all terms of
quartic and higher order in the contortion and its
derivatives. Also, neglect in this "weak-field
approximation" the effect of the torsion on the
metric by setting g,b= p,b. In the language of the
elastomechanical analogy' this amounts to con-
ceiving space-time as a Minkowski space with
dislocations.



The resulting action function for the "free"
tox'sion field

Lo=(a,j4)y, y"

is invax'iRnt under the gauge transformations

Aeb Ac& 4 gb Ca, b Cb,e ~

(3.1)

(3.2)

gRuge 1nvRr1RIlt, lt describes R long1tudlnally
propagating massless phenomenon whose parity
is that of an axial vector. Its particle aspect (the
"tordion") makes its appearance upon transition
to quantum field theory, which proceeds without
difficulty upon application of the Gupta-Bleuler
method.

where C, is an axbitrary vector field. The field
equationS

ab, e + 4
ca.& +~le.e 0 or &ale44 0 (3 3)

1n conjunct1on with the 1dent1ty

(3.4)

sho% thRt the torsloQ potentlR18 Rx'e dex'1vable from
a scalar massless field satisfying Dq =0 so that

Among the six possible polarization modes
of the torsion potentials p„only one has a gauge-
1nvar1ant meaning. Th1s featuxe 1s most cor-
veniently exhibited by work1ng 1Q the radiation
gauge

The canonical formalism requires addition of the
Fermi terDl '

(g /2)(pal y, e + gab 4
.0)

Throughout this paper partial and covariant
derivatives are denoted, respectively,

(A2)

@os:e tea, e I act'na I &clan .
The Minkowski metric is taken to be 5,~
= diag(-1, -1, -1,+1), and the Levi-Civita density
&,~,„ is normalized in Minkowski space to &»3~
=+1. For a given propagation vector there are
four independent polarization vectors ~(S) (8
= 1, 2, 3, 4) which satisfy the orthogonality and
completene ss x'elRt1ons

e' (S)e, (S') = 6~ ~, = diag(-1, -1, -1,+1),

to I„o, and the field equations

(3.7)
gg 6„,e, (S)~,(S') = 6„.
z s'

are solved by the expansion in plane &&aves

A.,b)=(&87) Qg (2~) '~'a. ,(P)

x [b(Tc, P)e '"*+bt(X,P)e'"'].
(3.8)

The radiation gauge (3.5) affects only the polariza-
tion modes p4 3

h(1) f(5)=0, f(2) f(4)=0, 5(6)=0. (3.9)

Accordingly, only the mode P= 3 (j =1, m=0) is

Their components 1Q an RngulRr moDlentuIQ x'ep-
resentation associate $' = j. , 2, 3, 4 by convention
with (j,m) = (1, 1), (1, -1), (1,0), (0, 0). From these
vectors the six polarization tensors e„{P)

q„(p) are obtained by a composition which as-
sociates P= 1, 2, 3, 4, 5, 6 with (j,m) = (1, -1),
(1, 1), (1,0), (1, 1},(1, -1), (1,0). They satisfy the
orthogonality and completeness relations

e"(P)e„(P')= 6pp, = diag(1, 1, 1, -1, -1,-1),
(A6}

gg 6„,e„{P}~,„(P')= -,' (6„5„-6„6„). (A7)
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