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The possibility of long-range forces between quarks which are constituents of different hadrons is

considered, in analogy to the van der gals forces between electrically neutral atoms. The two-virtual-gluon-

exchange force, implied by quantum chromodynamics, can be estimated and is uninterestingly small even if
there 'exist rather low-lying color-octet hadrons. If there are van der Waals —type forces associated with a
quark-confining potential, then there may arise a conflict with the experimentally well determined one-pion-

exchange tail of the nuclear forc0 unless any color-octet baryons lie very high. in energy. This condition is

not met in the model in which the confining potential arises from the small-k singularity of "dressed" one-

gluon exchange.

I. INTRODUCTION

Experimental and theoretical developments in
the last few years have led to the view that the
observed hadrons are color-singlet bound states
of colored quarks and antiquarks. The quarks and
antiquarks are permanently confined. It is further
speculated that a non-Abelian gauge theory built on
the SU(3) of color is the fundamental dynamical
theory (called quantum chromodynamics —QCD);
the forces between quarks are mediated by mass-
less-colored-gluon exchange. In the nonrelativistic
limit simple one-gluon exchange (OGE) leads to a
static interaction potential between two quarks, or
between a quark and an antiquark, which falls off
as 1/r, just as in QED. . Thus simple one gluon
exchange does not lead to confinement. No one has
yet been able to calculate the long-range interac-
tion and demonstrate confinement, starting from
QCD. Rather one may proceed phenomenologically
and assume that somehow there exists a confining
potential, i.e. , a potential energy between a color-
symmetric qq pair, or between the qq pairs in the
color-antisymmetric three-quark system, which
goes to + ~ as x- ~. Because one has not pro-
vided a derivation from QCD, one does not liow
the theoretical domain of validity of the potential
picture of long-range quark interactions; for ex-
ample, it is believed that the confining-potential
description may break down at large distance
through polarization of the vacuum. Neverthe-
less, the considerable phenomenological success
of the nonrelativistic quark model argues for the
validity of a potential picture over distances com-
parable to the sizes of observed hadrons (say 0.1
to a few F).

In any event, whether one describes the interac- .

tion between quarks bound in a hadron by virtual-
gluon exchange or by a sum of two-body potentials,
the question of the interaction between quarks in

'
~

different hadrons presents itself. This interaction
would be the color analog of the electric dipole-
dipole van der Waals interaction between neutral
composite systems in atomic and molecular phy-
sics. In QED, the interaction between the elemen-
tary constituents of atoms (electrons and nuclei)
is the Coulomb interaction arising from single-
photon exchange. In the static limit, the van der
Waals interaction between two neutral 'composites
can be computed in second-order nonrelativistic
perturbation theory' starting from the Coulomb
interaction between pairs of constituents, one from
each composite. The result is an interaction en-
ergy -const &&R '. For atoms, for distances
greater than 13'7a„retardation effects become
important and the leading interaction term is
-const' &&R '. This result can also be obtained by
a relativistic dispersion relation treatment of the
sum of two-photon-exchange Feynman diagrams. '
In this paper we investigate the conditions, if any,
under which the quark van der Waals forces be-
tween different color- singlet hadrons are absent,
or at least negligible compared to the known one-
pion-exchange tail of the observed nucleon-nucleon
interaction.

II. THE TYCHO-GLUON-EXCHANGE INTERACTION

We first consider the two-virtual-gluon-exchange
interaction because it surely exists if QCD is the
underlying theory, and because we can fairly re-
liably estimate it by making simple modifications
of the analogous atomic calculations. We prefer
to make the required modifications in the static
calculation, even though we will see that the re-
tardation effects probably enter for any interesting
distance in this problem. Our first reason is that
to the required order of perturbation theory QCD
differs from QED just by the replacement of a
numerical coupling (charge) by a matrix coupling;
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+ eight more diagrams
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FIG. 2. One-gluon exchange between two baryons.

FIG. 1. One-gluon exchange between two quarks.

so the cancellation of leading multipole terms be-
tween different pairs is more complicated. %e
want to demonstrate this cancellation explicitly,
which requires a consideration of. the quark con-
stitutents of the hadrons, which is not included in
the dispersion approach to two-photon (two-gluon}
exchange. Second, the dispersion approach de-
pends on the threshold behavior of the spectral
functions, which is not the same in higher orders
of perturbation theory for QCD as for @ED. In-
deed, one speculation is that confinement in QCD
arises from a more singular infrared behavior.

In the next section we will consider this specula-
tion; its implementation is simple in the nonre-
lativistic perturbation approach. Third, since one
knows the effect of retardation in two-photon ex-
change, ' ' one can simply take it into account at the
end by multiplying the static result by (&E) 'R '.

The starting point is the static interaction po-
tential between two quarks, arising from one-gluon
exchange (Fig. 1}.

(2.1)

where i, j, 4, l are quark color indices and n, is a
coupling constant (g'/4m) estimated to be 0.2 & o.,
&0.5 when renormalization is carried out at a
mass on the scale of hadron masses. Then one
can write the one-gluon-exchange interaction be-
tween two baryons (Fig. 2):

a'=~&(x,),5,~5„a[(z,),r5, 5„„1R+ r,' —r, I"+ (z,), 5„6„„IR+r2 —ra I" +(~a)~5si5~ml + r3

~(y ) 5 .5 [(y ),5, 5 IR+ r,' r, l"+(g ), &„5„„IR+r,' —r, l"+(X,) 5„5,IR+ r,' —r, l"]

+ (&.),.5.*5.~[(&.).i5~-5- IR+ "—'~ I"+ (~.}~-'~'-IR+"-'~ I"+ (4-'~'~-IR+ r'- rs I"l] (2 2)

B is the separation of the centers of mass of the two baryons and r„r,'. are the (c.m. ) coordinates of the
respective constituent quarks. For simple one-gluon exchange, n= -l. %e have written the general n
here for future reference. For color-singlet baryons, the color wave function is

Bva
= (1~~5)~ va.

Then

(2.3)

(BB'IH' IBB')= — d,d,u*(~)u'*(r')&„,q„„B'e,,g,.„u(r)u'(~')=0,1

where
(2.4)

r =r„r„r,and d7'= d'r, d'x, d'r, 6(Z r;) .
The matrix element is zero because all terms are proportional to [Tr(X,)]'=0. This is the statement that
OGE between two color-singlet baryons vanishes, the analog of no Coulomb force between electrically
neutral composites.

To get an interaction energy between two color-singlet baryons, one has to go to second-order perturba-
tion theory (the nonrelativistic version of two-gluon exchange),

p I
(BB'IH'IBB')I2

(2.5Ess, —Emp,
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Because the gluon is a color octet, the intermediate states which contribute are color-octet states:
B;„=-.' &„,(X.)„,.

Then, in terms of the group-theory constants,

&pjk~p'& ijk- &i&ab- —&ab ~

ilk ej~ ijk 2~ab. ab &

ijr rk~ ijk 3~ah ab '

The matrix element in (2.5) is

(2.8)

{2.7a)

(2.7b)

(2.7c)

(B B"IH IBB )=5-bc 96
d~ dv'u*(r) u'*(r')

x y, il baal &+ rl - ri I"+ b. l
&+ r2 —ril "+b~ I

&+r| —r~ I")

+b,lb, l&+rl-r. l "+b2IR+rl-r2I "+b.l&+ra-r. l")

+b,[b, I8+r,' —r, f
"+b,

I R+r,' —r, I
"+b,

f
8+r,' —r, l")ju(r)u'(r'). (2 8)

Next make the "multipole" expansion

IR+ pl"=R"+«" '
R

R
+ —R p +(u —2) —'p +'''

~2 R
(2.9)

where p is any of the r,' —r, When this expansion
is substituted into (2.8) and the condition b, yb, +b,
=0 is used, we see that the R" and R" ' terms both
add to zero, so our order-of-magnitude estimate
for the matrix element is E(R) -f' —"e- s (2.13)

a4 1
E(R) n

( )2 8
C

1.5 x10 '
[~, (GeV)]'

(R=2E=10 GeV'). (212)

The tail of the one-pion-exchange (OPE) force be-
tween nucleons is well known from NN phase-
shift analyses. Neglecting spin and i-spin factors,
it is

(B'B"IH'IBB'&- 'b, n,a'R—" ' (2.10)

where a-((r'))~f' is a length of the order of mag-
nitude of a hadron size. Then our order-of-mag-
nitude estimate4 for (2.5) is

where

f ' = 0.08, g = 0.14 GeV,

E (R)opE 300 x 10 GeV (R 2E)
(2.13')

W(R) —-n, ' (2.11)

where ~, is the energy difference between the
lightest color-octet hadron state and the ordinary
baryons. Again, for simple two-gluon exchange

1~

For atoms the result const x R ' is valid for
distances &137ao. For distances larger than this,
retardation effects lead to a const' x R ' interac-
tion potential. The distance at which retardation
effects become important is R ~ X- ~E '. Since
~, may be large (infinite. ), we will multiply
(2.11) by (~) 'R ' to account for retardation:

&4R2n-5
W(R) n, (~ )2-

C

(2.11')

Then the order of magnitude of the two-gluon-
exchange force between two nucleons is estimated
to be

Because of the light mass of the pion, the R '
force actually falls faster than the OPE force for
distances out to R ~ 7 p.

' = 10 F where both forces
are negligible (orders of magnitude less than
Coulomb). Thus the two-gluon-exchange force be-
tween nucleons, implied by QCD, is comfortably
smaller than the OPE tail, even without invoking
a large ~,.

III. VAN DER WAALS FORCE ASSOCIATED WITH THE

CONFINING POTENTIAL

The situation may be more interesting if there
is a van der Waals-type multipole force associated
with the long-range quark-confinement potential.
Since no one has yet derived the confining potential
from QCD, one also can not derive the associated
van der Waals forces, if any. But if quarks and
gluons are confined, the perturbative two-gluon
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F(R) tC'(—) ( )
(3.1)

K is known from phenomenological fits. It is K
= 0.2 Gey'. Then

exchange considered in the previous section
cannot be the dominant feature at distances greater
than one fermi. We will consider one possible
model of the origin of the confining potential, for
which we can make a more or less plausible guess
for the associated van der Waals force.

The model' is based on, the speculation that the
running coupling constant o.', (k2) may behave like
k ' as k- 0 so that for small k one-gluon exchange
is effectively c(,(k2)/k2 co-nst xk 4, whose static
Fourier transform leads to the linear potential,
K~. The guess for the associated van der Waals
force arising from effective two-gluon exchange is
just to replace n = -1 by n =+ 1 in the formulas of
the previous section. Then we have [including the
factor (~) 'R ' for retardation]

0.0025
R=2 F [+E (Gey)]2

(3.2)

which requires bE, & 10 GeV in order not to be in
conflict with OPE in NN scattering. But this con-
dition is not met in the model in which the cori-
fining potential arises from the small. -k singularity
of OGE because, in this model, the two-body po-
tential has the same group-theory factors as (2.1),
and a simple calculation with the wave functions
(2.3) and (2.6) shows that the total potential energy
of a color-octet baryon is the same sign and order
of magnitude as that of a color-singlet baryon.
Then (3.1) and (3.2) are in conflict with our know-
ledge of the nucleon-nucleon force and provide
phenomenological evidence that effective (or
"dressed" ) OGE is not the dominant mechanism
for generating the confining potential. (Note that
this problem does not arise for mesons. The OGE
potential is repulsive for color-octet mesons,
i.e., we may take ~,= ~ for mesons. )
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This basis for a linear confinement potential has been
proposed by a number of people. The most detailed
elaboration is probably that of J. M. Cornwall, Nucl.
Phys. B 128, 75 (1977). Professor Cornwall has in-
formed me that he has also noted the difficulties in-
volved with the van der %aals force associated with a
linear confinement potential.


