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Radiative M1 transitions of the narrow resonances
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%'e study the radiative transitions among the g', j = y(3.45)„J/Q, and X(2.83) states, within the
frameworkof the charmonium model. Numerical results are given for a superposition of a linear vector

potential, a linear scalar potential, and an r term. %'e show that the systematic inclusion of relativistic

effects leads to discrepancies between experiment and theory which are considerably smaller than those

obtained in calculations in which these effects are ignored. In particular, the factor of 2 X 10 between the

experimental and theoretical value for B(Q'~y+ y)8(j~g+ y) can be reduced to a factor of 20 or so,
without the introduction of new parameters. An analysis in which the spin-spin interaction is treated
nonperturbatively is also developed.

I. INTRODUCTION

An immediate consequence of the potential (1) is
the existence of both orbital excitations, e.g. , 'P~
states, and of 'S, states —hyperfine partners of the

g and g', interpreted as 'S, states. Although can-
didates for 'Pz and 'S, states were subsequently
discovered„"' the level spacings between these
states cannot be explained in the "naive" charmo-
nium model, if spin-dependent interactions are of
relative order v'/c' as in QED. In a nonrelativis-
tic description one may write II =H, +H„„with

p
~2

Ho = —+ 2m, + V(r),

H„„=V»(o, + o,) I + V»f,

+ V, (35, ~ ro, ~ r —o, ~ o,),
(2)

where V„(r), V„(r}, and V, (r) are spin-orbit,
spin-spin, and tensor potentials. If V(r) arises
from exchange of color gluons, then at short dis-
tances, where the exchange of a single gluon is

The dis cove ry of the nar row resonances in the
3-to-4-Geg range in the last few years' has focused
a great deal of theoretical attention on an under-
standing of the interactions among "heavy'* quarks.
The viewpoint which has been most vigorously pur-
sued is that these particles are a charmed-quark-
antiquark (cc) system bound nonrelativistically-
the charmonium model. ' The choice of the inter-
action potential for the cc system has been largely
guided by the ideas of quantum chromodynamics
(QCD}. This leads to a long-range linear confining
potential, as suggested by lattice gauge theory, ' to
which there is added a short-range Coulomb poten-
tial, arising from the exchange of a single color
gluon between the quarks,

4n,
V(r) =sr '+-b-. —

3 r

supposed to yield a good approximation to the po-
tential V, one finds'

1 3 de 1 dX~
4m, ' r dr r dr

1V„=,V~Xv y6' c

1 1 de d Xy
12m, ~ ch

(3a)

(3b)

where'(r} and X„(r)denote scalar and vector
parts of V(r) It ha.s become popular to assume
that (3) holds for large r also. If this is done, then.

with V(r) given by (1), the ratio H, of the 'Pz state
splittings has a lower bound' of 0.8 while the fa-
vored assignment of states' gives R, =0.42. Fur-
thermore, the splitting of the 19 state M(l 'S,)—
M(l 'S,) is then found to be less than 100 Me&, "a
factor of 3 or so smaller than the experimental
value of 270 MeV, if the X(2.83) (Ref. 6) is to be
identified as the 1 'S, state.

A variety of suggestions have been made to deal
with these discrepancies, for which we refer the
reader to recent reviews. ' Here we shall only note
that a satisfactory S-state and P-state level struc-
ture can be obta. ined"" by (i) writing the linear
part of V in the form ar = (1 —X)sr year and appor-
tioning the (1 —X)m part to a sca, lar interaction and
the Xar part to a vector interaction and (ii) ascrib-
ing a large "color-magnetic" moment 1+x to the
qua rks.

The level structure clearly gives important in-
formation concerning the nature of the binding po-
tential. However, further restrictions can be ob-
tained from a study of the radiative decays.

As stressed in earlier work" the radiative M1
transitions can provide severe constraints on the
binding potential for a cc system, especially when
the bound states admit a nonrelativistic descrip-
tion. For then there can be "hindered" or "rela-
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tivistic" transitions, i.e., M1 transitions between
S states with approximately orthogonal radial wave
functions, such as y(3.45)- P+y in the naive char-
monium model with }t(3.45) assigned to 2'S,. As
shown in Ref. 13 the amplitude for such a decay is
very sensitive to the nature of the Dirac covariants
entering a relativistic two-body cc interaction.
This is in contrast to the E1 transition amplitudes
which, although much larger than the M1 ampli-
tudes, are relatively insensitive to the nature of
the potential. ""The purpose of this paper is to
study the question of the Ml decays in greater
depth, in the light of the new and more precise ex-
perimental information which has accumulated in
the past several years. "'

In Sec. II we compute, using the formalism of
Ref. 13, the M decay amplitude for a superposi-
tion of scalar and vector linear potentials, with
the Coulomb-type interaction included. Motivated
by the large 'SQ Sl mass difference we study, j.n

Sec. III, the effect of treating the spin-spin inter-
action 0, ~ 5, V„nonperturbatively. The results are
discussed in Sec. IV.

The theory of radiative decays of a bound system
of two spin- —,

' particles has been reviewed recent-
ly. " For an M1 transition between 'S, and 'S, cc
bound states, the decay rate is given by

16 1
9 m, ' 2S, +1 2M;

where S, is the spin of the initial state, k is the
momentum of the emitted photon in the c.m. frame,
and M; and M& are the masses of the initial and the
final states, respectively. The quantity I is a ra-
dial matrix element which may be written in the
form

from the effect of the spin-spin interaction on the
radial wave functions and is present only when the
principal quantum numbers are not the same. Fi-
nally, I, arises from virtual-pair effects; the vec-
tor potential turns out not to contribute to these in
the first approximation. The integra. tions in(6}-(9)
are over the radial S-state eigenfunctions of IJ,.

We have used two sets of parameters for the po-
tential (1). Eiehten et af."fixed parameters with
M(2 'S, ) —M(l 'S, ) = 590 Me V and I'(J/g - e'e ) = 5.3
keV {1standard deviation above the measured val-
ue) as input; a, is a semifree parameter, with the
constraint that e'/e' turn out to be small. Their
preferred choice, which we denote by (I) is

(1) a=0.233 Gev', m. =l.65 GeV

n, =0.10, b = -0.869 GeV.
(10)

with

(13)

The constant "b" is regarded as contributing only
to X~ so that it does not enter the calculation of the
decay rates. The total amplitude I(X) is then

We fixed the four parameters with M(2 'S, )
-M(1 'S,}= 590 MeV, &(4/$- &'e ) =4.8 KeV, »d
F(g/t} -hadrons) =57 keV as input, using the usual
QCD formula for g- three gluons. Thus we get a
second set (ll),

(lf} a=0.198 Gev', m, =l.37 Gev

n, =0.202, b= 0.195 Gey.

We have calculated the decay amplitudes for M1
transitions for the following family of potentials.
We write V as a sum of a vector part X~ and a
scalar part Xs,

I=I, +I2+I, +I~,

where the I's are defined as follows:

-j — i = —1+ — i

3m ~

(f I V„ Ii )

(5)

(9)

z(~)= gi, [~),

where the I&(X) are defined by Eqs. {6)-(9)and the
decomposition (13}. With the definitions

(14)I(X) =I +X(I, —I, -I4) .
The values of Iz~ and I&~ are given in Tables I and
ll, respectively. From these, I(X) may be compu-
ted from Eq. (14).

I,'=I, (O), I,'=I, (1)

we then have, on noting that both I, (X) and I,(X) are
independent of X, the result

[fn Eq. (8), the upper (lower) sign refers to the
caseS, = 0 (S, = 1)]. The termI, is the familiar non-
relativistic decay amplitude, with retardation ef-
fects included. I, is a kinetic term obtained in a
relativistic treatment. The amplitude I, arises

III. NONPERTURBATIVE SPIN-SPIN INTERACTION

EFFECTS

We have also pursued the possibility of including
the spin-spin interaction as part of the zero-order
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Ho. This is motivated by the mass difference be-
tween the 1 '9, and j. 'So states, about 270 Me&,
which is almost one-half of the 2'8, -1'8, splitting,
about 600 MeV. Thus we replace H, by Ho.

Ho =Ho+ ~..ai' oz.

If we take Eqs. (3b) and (15) literally, we get

( )
1 2Xa 16vo!, 5(~)

6m, '
Unfortunately, for the case of an attractive three-
dimensional 6-function potential, the Schrodinger
equation for H,' is in general not well defined. In
particular for the case of a 'g state, where 0', .o,

-3 the spectrum of the Hamiltonian H,' is not
bounded below. Thus (16) is not a useful form for
t/,', if one wishes to go beyond perturbation theory.
To overcome this difficulty, we note that in fact
the formula (3) for V„cannot be taken literally for

TABLE I.Ml decay amplitudes I and transition rates
I' for a vector linear potential. The quantities I; are de-
fined by Eqs. (6)-(9) of the text. The symbols X and X

refer to the states at 2.83 and 3.45 GeV, respectively.
The columns labelled (I) and (H) refer to the parameter
choices (10) and (11) of the text and column (III) shows
values obtained when the spin-spin interaction is treated
nonperturbatively.

x-0 even if, on the whole, a nonrelativistic de-
scription is approximately valid. To see this we
observe that from the viewpoint of a relativsitic
description, the spin-spin contact interaction
arises from a reduction to Pauli form of the sin-
gle- gluon-exchange potential

(17)

The reduced form of the ci, a,/r part of V„„„is
given by

where t;, =5, jI/[m. +E(|I)], 0, =-5, ~ jl/t~, +E(|5)]
If one replaces E(P) =(m, '+p')'~' by m„ the spin-
spin contact term emerges when one commutes

g, g, past x ' in the first term and uses

6,V,V,r '.= -4w5(r) .
However, at short distances (large momenta) the
approximation E(P)-m becomes invalid. If this
fact is taken into account, the 6 function is seen to

TABLE II. M1 decay amplitudes and transition rates
for a scalar linear potential. See caption of Table I for
definitions of the symbols.

r(C-x+ q) Ig

I2

I3

I4

-0.987
0.113
0.000
0.000

-0.984
0.145
0.000
0.000

-0.920
0.137
0.000
0.000

It
I2

I3

I4

-0.987
0.113
0.000
0.281

-0.984
0.145
0.000
0.306

-0.882
0.135
0,000
0.186

-0.874

19 keV

-0.840

25 keV

-0.783

15 keV

I -0.593

I' 8.6 keV 10 keV

-0.560

7.7 keV

I O'-X+V) I,
I2

I3
I4

-0.967
0.184
0.000
0.000

-0.960
0.221
0.000
0.000

-0.865
0.163
0.000
0.000

Ig

I~

I3
I4

-0.967
0.184
0.000
0.496

-0.960
0.221
0.000
0.555

-0.817
0.147
0.000
0.383

-0.783

0.10 keV

-0.739

13 keV

-0.701

8.2 keV

I -0.287 -0.185

0.8 keV 1.4 keV

1"($'- X+ y) I&

I2

IG

I4

-0.092
0.094

-0.052
0.000

-0.106
0.121

-0.088
0.000

-0.269
0.156
0.000
0.000

rg'-x+y) Ig

I2

I3

I4

-0.092
0.094

-0.019
-0.064

-0.106
0.121

-0.050
—0.061

-0.287
0,159
0.000
0.004

-0.050

1.4 keV

-0.074

4.3 keV

-0.113

7.0 keV

I -0.081

I 3.6 keV

-0.097

7.4 keV

-0.124

8.4 keV

Ig

Ip

I3

I4

-0.021
0.095
0.124
0.000

-0.024
0.121
0.212
0.000

0.290
0.063
0.000
0.000

I'(X- &+» Ig

I2

I3
I4

-0.021
0.095
0.046

—0.109

-0.024
0.121
0.121

—0.119

0.365
0.050
0.000

-0.197

0.198

6.5 keV

0.353

21 keV

I 0.011

I 0.02 keV

0.099

2.4 keV

0.217

7.8 keV
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(21)

the quantity

m2 - m2 e )))"

J(2.)-E'((()" - 4. (22)

This suggests that in order to study higher-order
effects of spin-spin interactions we replace 6(r) in

(16) by

be simply an approximation which can and must be
abandoned when the chips are down. The exact co-
efficient of the (y, ~ o', term contained in (18) is a
nonlocal operator. A rough equivalent to it can be
obtained by noting that in momentum space, the
relevant integral to be studied for an 8 state is

p'
E p)+m]' (0- P)'

If we neglect jP relative to P this is proportional to
[E(ff)+m] 'g(0)-E '(P)g(0) for /ange P. Thus we
a,re led to consider instead of

parameters depending upon the precise va1ue of ) .
With a trial wave function which has a polynomial
of degree 36 we find, on denoting the ca,se X=1 by
(Ill)„and )). = 0 by (III)s, the results

(III): a=0.219 GeV', m, =1.64 GeV

0., =0.200, 5= 0.763 Gey, r, =0.036 Gey-'

(III)s. e =0.215 GeV', m, =1.65 GeV

n, =0.200, b = -0.753 GeV, r =0.018 0eV '.
The M1 decay amplitudes and the transition rates
in these cases are shown in the last column of
Tables I and II.

Note that the value of r, ' needed to get a fit to the
hyperfine splitting exceeds m, by more than an or-
der of magnitude; in view of the simplicity of our
ansatz, not too much physical significance should
be attached to the precise value of the cutoff r, '.
We now turn to a comparison of the results of this
and the preceding section with experimental data, .

1 8-«&o
D,(r) = (23)

IV. DISCUSSION

A. Summary of numerical results

where r, has the dimensions of a length. With this
replacement for 6(r), the Hamiltonia. n becomes

(24)

We have solved the Schrddinger equation numer-
ically for the Hamiltonian Ho using a variational
method. Since our main purpose is to see what the
qualitative effects of treating the spin-spin inter-
action nonperturbatively are, we have confined our
attention to the cases X =1 and X =0. For the radi-
al wave function we take a. polynomial times an ex-
ponential with the correct asymptotic behavior. It
turns out that the spectrum of the triplet states is
extremely insensitive to the value of r, and the
variational procedure converges very quickly. On
the other hand, the s ingle t s tates are sens itive to
r, and the convergence is slow. We needed a trial
function with a polynomial of degree 24 to get a hy-
perfine splitting as large as 270 MeV. But other
physical quantities such as the mass of y —= It(3.45)
and decay amplitudes (5)-(9) are not sensitive to

The parameters a, b, n, and m, were deter-
mined again from the triplet-state data M()t)),
M(P'), I'(g-ll), and I'(g-hadrons) The value. of
ro was fixed by using the mass of the X(2.83) as
input.

The quantity X enters explicitly in the Hamilto-
nian H," and the same input gives slightly different

An inspection of Tables I and II reveals the fol-
lowing features:

(i) Relativistic corrections: These are always
appreciable. For the M1 transitions between the
states with the same radial quantum number ("fa-
vored" transitions) the correction terms are al-
ways of opposite sign to the nonrelativistic terms.
As a result we find smaller M1 decay rates than
those obtained by other authors'"" who considered
only the I, terms. For transitions behveen states
with different radial quantum numbers ("hindered"
transitions) the smallness of the overlap integral
I, makes the correction terms very important and
often the latter dominate over the former.

(ii) Nonpertur bative spin spin intera-ctions:
There is substantial overlap behveen the states
with different radial quantum numbers and less
overhp when the quantum numbers are the same.
This tends to produce smaller decay rates for fa-
vored transitions and larger values for the hin-
dered transitions.

(iii) Parameter dependence: Only the rate for
the hindered transition X»g+y is sensitive to the
choice (I) or (II) of the parameters a, m„and o(,.
In the pure vector case the rates differ by a factor
of 4, whereas in the pure scalar ease they differ
by a factor of 100, as a consequence of a small
value for I, and cancellations among other terms.

(iv) Nature of confining potentia/: A comparison
of Tables I a,nd II shows that the rate for the fa-
vored transition g'- X+y and the hindered transi-
tion X- g+y are both sensitive to the relative
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Comparison of experimental upper bounds for certa1n radiative decay modes of &: and &' with theoretical
values. See caption of Table I for explanation of the choices (I), (II), and OII).

Experimental
data

Vector linear potential
(D) (III)

Scalar linear potential
6) QI) (ID)

~(e-xv)
&((t'- xv)
&(fI —xv)

&1.7 x 10-2

&2.5 x 10 ~

&1 xlo

28 x 10 2

4.4 x 10-2

0.6 x10 2

37 xlo
5.7 x 10"~

1.9 xlo ~

22 x 10 2

3.6 x 10
3.1 xlo 2

13 xlo ~

0.61 x 10 2

1.6 x 10 2

15 x lo 2

0.35 x 10 ~

3.2 xlo 2

12 x 10-~

0.61 x 10 2

3.7 x 10

See Ref. 20.

amounts of linear scalar versus linear vector
parts of the potential V, varying by a factor of IO
in going from X =0 (pure seals. r) to X =1 (pure vec-
tor). The dependence of the rates on X is monoton-
ic in the interval 0 ~ X ~ I, as can be ascertained
from use of Eq. (14). [The difference between
I"()t - g+y) for X =0 and 1= 1 is a factor of 300, for
the parameter choice {I); however, this is an arti-
fact of the cancellation mentioned above. ]

8. Comparison mitb experiment

The evidence for X=X(2.83) and )t =X(3.45) comes
mainly from the three-photon decay of the P,'"
and the two-photon cascade process P'- gyes, re-
spectively. '9 Further relevant information comes
from upper bounds on certain branching ratios and
products of branching ratios. "~

In Table III we compare the experimental upper
bounds for the branching ratios B{g-Xy),
B(g'-Xy) and B(P'-Xy) with ca,lculated widths, by
giving the values of the ratios I',„(g-Xy)/
1„,(g-all), etc. As can be seen, the calculated
values for the last two branching ratios are all
roughly compatible with the present upper bounds.
In the case $-Xy, the calcula. ted values are still
an order of magnitude or so larger than the exper-
imental upper bound; however, the inclusion of
relatlvlstlc effects has decreased the discrepancy.

In 'Table IV we list, i.n the second column, exper-
imental upper bounds for B(P Xy)B(X-yy) and-

B($'-Xy)B ()t -yy) together with the reported val-
ues for B(g Xy)B(X--yy) and B(y-)ty)B(j-~).

To compare these with theoretical va. lues we
need not only the va. lues for radiative widths but,

also theoretica, l estimates for the two-photon width
and the hadronic width of both X and y. As usua, l,
we use the @CD formula

Be,'I'('S, -hadrons)=
3

', ~B(0) ~'

for the hadronic widths and the analogous @ED
formula for the two-photon widths. The resulting
values are shown in the remaining columns of 'Ta,-
ble IV. As can be seen, the theoretical va, lues for
the three-photon decays of |II)' are compatible with
the present upper bounds. For the product
B($ Xy)B-(X-yy) the cases (II) and (III) lead to
values moxe or less comparable with the experi-
mental value; the larger value for case (I) is a
consequence of the small associated value of e,-0.1.

Perhaps the most interesting consequence of our
calculations emerges when we consider the last
line in Table IV, for the product B(g'-Xy)B(X-Q).
Previous ana, lyses' of this had led to the conclusion
that the use of a QCD formula for the denominator
in the branching ratio B()t - Q) = I'(X -+)/
I'(y- hadrons) leads to a value for the product
which is smaller than the experimental one by a
factor' of order 2X 10'. From Table IV, we see
that for the case of a vector linear potential and
for either the Cornell choice (I) or our choice (II)
of the parameters a, m„and e,. the discrepancy
factor is "only" a, factor of 20 or so. The reduc-
tion of the discrepancy by almost two orders of
magnitude is prima. rily a consequence of taking in-
to account simultaneously the relativistic correc-
tions for the hindered decay X(3.45)- g+y and the

TABLE IV. Comparison of experimental bounds and values for branching-ratio products involving (, ~t. ', X, and X with
theoretical values. See caption of Table I for explanation of the choices (I), (II), and (III).

Exper 1mental
data

Vector linear potential
(I) II) (DD

Scalar linear potential
(I) (II) (III)

a(g'- xq) a(x- yy)
&(O'-6) &(x-n)
&4'- xv) &(x- vv)
&(9'-xv) &(x- 4')

& 3.4 x 10~
& 3.1 x 10
(1.2+ 0.5) xlo+
(8 +4) x 10 3'

2.9 x lo
2.]. x 10~

14 x 1O-4

2.7 x 10~

2.2 x 10-'
6.6 xlo 5

43 xl04
3,5 xlo 4

3.7 x 1O-'

4.2 x 10+
2.6 x 10+
0.1 x10 4

7.7 x lO-'

2.9 x 10 5

6.3 x].0~
1.1 x 10"7

3.7 x 10 ~

0.4 xlo 5

1.7 x lO-'
22 x 10 7

4.4 xlo ~

0.7 xlo 5

1.4 x 10
3.5 x 10
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r ' term in the potential V„.
Although the picture that emerges from our study

is not as gray (black' ?) as tha. t which has been
painted previously, it is still far from rosy. It
should be emphasized that the potential [(12)and (3)]
used in this exploratory analysis does not repro-
duce the 'S, or 'P~ spectrum; we have simply used
the experimental masses in the computation of the
rates. Further study of M1 rates, using a poten-
tial which fits the spectrum and which is used con-
sistently in the calculation of the effects involving
virtual pairs would seem to be very worthwhile.
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