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Reggeon field theory with a threshold approach to secondary Reggeons
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A Reggeon-field-theory model is proposed for secondary Reggeons interacting with a Pomeron which has a
rapidity threshold related to the onset of diffractive effects. Under the assumption of a critical Pomeron, a
solution is found with the aid of renormalization-group techniques and the model is successfully tested against

the experimental n +p total-cross-section difference.

I. INTRODUCTION

Reggeon field theory (RFT) tells us how to deal
with t -channel unitarity corrections to the Pom-
eron and to secondary Reggeons. ' However, some
of these corrections turn out to be divergent and
therefore any phenornenological application re-
quires the introduction of an unknown cutoff. An-
other difficulty of RFT appears mhen dealing with
a critical Pomeron since in this ease the inter-
cept renormalization 6~ cannot be calculated per-
turbatively and the use of an integral representa-
tion must again be supplemented by the introduc-
tion of a cutoff. '

In the case of the Pomeron it is possible to reg-
ularize the theory in an alternative way realizing
that this singularity needs a threshold in energy
to manifest itself. This method has proved use-
ful in predicting the pp total cross-section rise in
the Fermilab and CERN ISR range mithout modi-
fying the critical behavior of the Pomeron. ' Here
a fundamental role is played by the nonperturba-
tive 5~ which is simultaneously regularized by
the introduction of the above-mentioned threshold.

In this paper me shall show that when this Pom-
eron with threshold is coupled with a secondary
Reggeon the resulting RFT is also finite. At the
same time this threshold will let us obtain a fi-
nite nonperturbati. ve Reggeon-intercept renormal-
ization and mill provide, as in the Pomeron the-
ory, ' a rule to select those diagrams which con-
tribute at any given energy. This modified RFT
defines therefore an alternative approach, giving
a physical amplitude finite and exact at each en-
ergy, as opposed to the coupling-constant expan-
sion of the usual RFT. This property, together
with the fact that there is no need for an e expan-

sion, makes our proposal a model of obvious phe-
nomenological interest. It must be remarked that
we are not assigning any threshold to the second-
ary Reggeon in aceordanee with the traditional
arguments of duality. As we will argue later on,
this implies that no flavoring effects are present
for this singularity.

The techniques of the renormalizetion group will
enable us to give closed integral expressions for
the relevant quantities of the theory even though
the existence of two coupling constants implies
some technical difficulties.

To show how the model works, we analyze the

p singularity in the total. -cross-section difference
40 =0„-~—o„+~. It is by now well known that a
pure p Regge pole does not give an adequate de-
scription of wX charge-exchange (CEX) data not
only because of polarization phenomena, but also
for two other rea, sons'. (a) There is no simple
compromise pole that simultaneously fits ho and
the rapid decrease of do cE„/dt~, 0 at high energy,
and (h) no needs a greater effective p intercept
at low energy than at higher energies. In the RFT
we are proposing, the renormalized singularity
behaves quite similarly to a simple pole, though
it presents a decreasing effective intercept in
agreement with experimental data. This decreas-
ing behavior is a straightforward consequence of
the positiveness of the Reggeon-intercept counter-
terrn.

In Sec. II the RFT model is defined through its
Feynman rules and the necessary integral repre-
sentations are derived, whereas in Sec. III me
make the approximations which allow us to find
a consistent solution for them. We also give here
the asymptotic behavior of the model amplitude
which is of the same form as for the theory with-
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out thresholds. We compare the prediction of the
model with the p-exchange amplitude in zN scat-
tering data in Sec. IV, and finally the conclusions
are summarized in Sec. V.

II. THE RFT MODEL AND INTEGRAL REPRESENTATIONS

it has a branching point at 5 =0 with the usual
slope.

We start our renormalization-group analysis by
stating the normalization conditions for the ver-
tex parts which define 5~ and the renormalized
quantities Z, n', and x for the Pomeron':

The RFT we propose describes the interaction
of Pomerons and Reggeons with number conser-
va.tion for the latter and autointeractions for the
former in the spirit of AS (Ref. 2) but with a Pom-
eron with a, threshold 6 in rapidity according to
Ref. 4. The theory is defined by the Feynman rules
listed in AS (whose notation and conventions we
adopt) except for the Pomeron propagator that now

reads

I ((,1;0&(E 'P)( O
q2-0

(»)

(5b)

where after any loop integration t, is meant to be
Wick rotated to the physical value 6, whereas
we maintain the usual form for the Reggeon prop-
agator

g(0, 0;&&(g n2)
g-Ag p +R

as obtained after a gauge transformation (AS).
Since in our scheme Reggeons cannot be created
or destroyed the Pomeron turns out to be the same
a,s that of Ref. 5 and we need only study its influ-
ence on the Reggeon. Qne immediate consequence
of this influence will be that each diagra, m has a
rapidity threshold given by the rule of Ref. 4 with
zero threshold for the Reggeon.

As an example of the wa.y the theory is regular-
ized we ean easily calculate the second-order Reg-
geon self-energy (Fig. 1)

F (2&(g ~p&) —4
471 (At+ n&&& )

q.=O

(5d)

As for the Pomeron counterterm, this expres-
sion cannot be evaluated perturbatively as we shall
explicitly see later on. We therefore seek a re-
normalization-group calculation for Z~.

If p, y, and g (p„,ys, and o) are the standard
renormalization-group functions for the Pomeron
(Reggeon) depending only on the dimensionless
quantities g, g~, v, and 6„,it is straightforward
to get the integral representation

where 4„=DE„.For the Beggeon ones, 5„„Z~,
n„', and A, , the conditions quoted in AS are not mod-
ified.

From these last relations and following the steps
of the Pomeron case, one immediately obtains
for the Reggeon intercept counterterm

which is now seen to be convergent (in two dimen-
sions) owing to the presence of n.. For finite n,

Z~(g, gs, v, n„)= exp g
g ((&(=0& p(g t &()

( I)

where the dependence of g in E„is given by

=So & (I+I'0 & 8& ) ~

FIG. 1. Second-order contribution to the Heggon self-
energy.

with g,'=r, '/(n, 'E„)and g„the zero of P, is the
function of A„given in Ref. 5. Qn the other hand,
the g~ dependence on E„is obtained from the inte-
gral representation
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Z, (g,g„,v, n„)=g (E„)/g =Z, (O, g (g=0), P(@=0),h„)exp dg —+
R 0 2 gR rr-

with gR
' = 2K,'/[(a,'+ o.R )E„),where gR and v are

the solutions to the coupled differential equations
tities. To proceed further we calculate the Reg-
geon renormalization-group functions

dgR pR(gr gR) v, nR)

p(g, ~.) (9a)
a lnZR

XR(g&gR& vs +R) =
R E r, k ~ a', a'

and

dv c(g,g, v, 6„)
p(g, & )

(9b)

8
R g& gRr & N~ NgE 0'~0'&0'&R '+NP( vd, )=E (11b)

with the boundary conditions
Bv

v(gr gR~ vi) AR) =E (11c)

R gR for g
P=v

by solving perturbatively Eqs. (5) for ZR, gR, and
v. To second order

In principle one needs an equivalent expression
for v = v(E„).However, we shall in a short while

give arguments for leaving v aside.

2
mg

~R

PR gR(, + C, g + C, ggR+ C,gR ),

(12a)

(12b)
III. A SOLUTION TO THE RENORMALIZATION-GROUP

EQUATIONS

In the preceding section we set up the integral
representations for 5R and the other relevant quan-

-2j N

o = —— g„'ve "-—(1+v), (12c)8p1+v " 4 1+AN

where

1 e' " 1+2v
64m 1+AN 1+v '

(13)

e~& v'

4w 4 1+v'

The critical points correspond to the simulta-
neous zeros of p, pR, and o. It is easily checked
that an infrared-stable zero is obtained for the
positive root, gR, of Eq. (12b), v = v, = 0, and of

1
course the zero of p.

In order to simplify Eqs. (9) we assume that the
solution for v does not depart too much from its
critical value v, =0. Since for this v value g van-
ishes, Eq. (9b) is satisfied. (Note that this equa. —

tion would not even appear if slope renormaliza-
tions were not taken into account. } To make the
remaining Eq. (9a) easily solvable, we note that
a numerical evaluation of Eqs. (13) gives a C,
value much smaller than gC, and (—,'+g'C, ) in the
range of interesting EN values and we can there-

+ ——
gR gR gRl gl -g (14)

which verifies the initial condition, Eq. (10), and

goes through the critical point gR(g, ) gR where
1

now the zero of pR simplifies to

g R, = (-,'+c,g, ')/(c, g, ) .

With these values of v and gR we obtain finally

fore neglect its contribution to pR. Within these
approximations, the solution to Eq. (9a) is readily
found to be
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y y+y rR«'~" lgl')
Zs(g) gR) V) 6){)=

y2 +yl

xexp --y2 yl l
(1+y,)(1+y,) (-,'+C, g, ')

mith

(16)

According to Ref. 4 one is quickly convinced
that the amplitude's asymptotic behavior is of the
form

A (s, 0) - s ~ (0) (Ins)

as in AS, but now with Y)) = -g„'/8))= —0.11.
[This number results from Eq. )15) with g,2=5.86
as in Ref. 5 and the remaining parameters in the
infrared Umit v, = 0, a~ =0.]

~R ~+
8~ ~R

which coincides with a direct perturbative calcu-
lation using Eq. (4). By the way, one sees that
the corresponding perturbative ealeulation for &R

is not allowed. In fact substituting Eq. (17) into
Eq. (6), one gets

5s = lim O'E, (es),
6~0

(18)

with G =Xo2/[4){(no+os )], which diverges. Note
0

that since ~ acts as an ultraviolet cutoff, it cannot
regularize this infrared divergence.

y, = ' —1,

y (1 g2/g 2)-1/2-c)g)

As a check me remark thai a series development
of this expression in lowest order of gR gives

IV. A TEST OF THE MODEL

where Y=in(s/my, ) with m (p) the nucleon (pion)
mass and P, is the pe% coupling. Here

fi."""(z0)=h z(s o)+5 (20)

where the nonperturbative ~R is calculated using
Eq. (6) and we take Z(8, 0) from the second-order
perturbative calculation, Eq. (4). We obtain

To find out how sensible the model is from a
phenomenological viewpoint we shall compare it
with experimental mN data. In order to do this,
we assume that the full partial-mave amplitude
is mell approximated by the tmo-point Reggeon
Green's function' (an asymptotically valid state-
ment), and therefore the total cross-section dif-
ference is given by

c+3 ~
D{)(Y), d( E) (o o' ))I )

e ) (19)

~-6RF 86RA-ar"'{)')=(),e-'"' "'' 'I( —G* [z, (() a) —z, {& 1')])'+ e(Y-a) (21)

and for Y& 4, the ~o behavior is governed by the
bare pole c(s =o„(0)+5~.Note that near 1'= a,
this expression simplifies into

~{)(2)(Y) p 8-r{)-()'s(0)-6&]
P

x 1 —G (Y —D) e(Y —D) (22)

which gives a correction identical, except for the
sign, to the old multicluster models result. '
is mell known, the minus sign here comes from
the dominance of absorptive effects in RFT.9

%e have chosen for the asymptotic Reggeon in-
tercept the conventional values o~(0) =0.5 and
&0'=0.3 GeV ' and nR' =1 GeV~ for the Pomeron

0
and Reggeon slopes, respectively. The value of
6 is determined by the assumption that Pomeron
effects appear at the same energy of the incoming

particles independent of the particular reaction.
Taking into account the value adopted for pp scat-
tering~ ()(~=2.7, we here have' n, =2.7+In(m/p)
= 4.6. This implies that Eq. (21) is exact up to
Y= 2s or p)~ = 650 GeV/c. We also take from
this last reference the same bare triple-Pomeron
coupling xo.

The coupling G was determined in such a may
that together with the 5~ resulting from Eq. (6),
it gives good agreement with acr experimental
data all over the range 3.62 &p)~ & 240 GeV/c.
%'ith" 6 =0.06 one gets ~R=0.05 and the predic-
tion of Fig. 2. As seen in this figure, this inter-
cept renormalization provides a very adequate
effective p-pole intercept to match the lower-en-
ergy data" while allowing the steep decrease
necessary for the Fermilab region. In fact the
effective intercept, given by
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[Eq. (21)]. Data are from Ref. 12.
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FIG. 3. The solid-line represents the p effective
trajectory intercept as a function of rapidity [Eg. (23)l;
the dashed line represents the asymptotic limiting value.

decreases by -0.03 in the experimental data range'3
as seen in Fig. 3. However, the prediction of this
model for 4o almost coincides with the simple
pole at 0.48 of Ref. 14 from 20 up to 240 GeV/c,
whereas our model and the simple pole appreciably
differ below this energy where our model still
provides very good agreement with data. Besides,
the low-intercept behavior at high energy lets us
foresee a satisfactory prediction for da«„/dt ~, o,
a long-standing problem in mN scattering.

It is interesting to note again that we are able
to reproduce ~0 in the whole range 3.62 &p, ~ & 240
GeV/c with just one extra parameter 6 (the thresh-
old value 6 is fixed by PP total-cross-section be-
havior') Had we .introduced pair -production
thresholds or considered nonleading corrections
in Eq. (19), we would have been faced with a
wealth of new parameter s. From our analysis
this is apparently not required.

V. CONCLUSIONS

Within the framework of RFT we have discussed
the coupling of a critical Pomeron with a secon-
dary Reggeon when a threshold in rapidity is as-
signed to the former. Aided, as usual, by re-
normalization-group techniques we were able to
f~nd a consistent solution. Similar to what happens
in the Pomeron sector, this threshold is enough
to regularize the self-energy of the Reggeon, the
only (ultraviolet) divergent quantity of the theory.
Simultaneously it provides a threshold for each
RFT diagram, thus allowing one to easily select
those contributing to a fixed energy. Both facts
are essential for making contact with experimen-
tal data below the transition energy, just where
data are available, a property which is not
evident in the usual RFT.

%e have found that even though the Pomeron
threshold eliminates the ultraviolet divergences of
the theory, the surviving infrared ones did force
us to make a nonperturbative evaluation of the
Reggeon intercept counterterm. This fact played
a very important role in explaining the decrease
of the effective p intercept in mN from its low-
energy value [n~(0)+5J to the asymptotic limit
n~(0). It is worth noting that precisely the same
Pomeron with threshold has been shown able to
give the effective intercept needed to fit the PP
total-cross-section data. ' There are, however,
some points to comment on in this connection. In

pp the Pomeron threshold pxoduces' a rising term
&~(Y —2a~)8(Y' —2a„)and the one-loop correction
does not enter until 36~, i.e., above the experi-
mental data points. For p instead, there is no

rising term and the first correction comes from
the loop and starts at V=6, well inside the ex-
perimental range available. The absence of a
linear term in ~~ is due to the fact that no thresh-
old has been assigned to the Reggeon propagator,
Eq. (2), a hypothesis supported by the duality
argument that p behavior appears, at least on the
average, at the lowest energies. If one sticks to
the argument of Ref. 15 in the sense that a term of
this type should be associated to flavoring effects
due to pair production, one concludes that effects
of this kind are here unnecessary or negligible
because of the above-mentioned duality hypothesis.
In fact an intent of building a flavored" p has
been proved" to be inconsistent with da«„/dt ~, ,
data unless a fairly large absorption is introduced
by hand resulting in a very different effective in-
ter cept behavior.

Summarizing, an RFT model for secondary
Reggeons has been solved which explains the non-
Regge features of currently available data on the
m'P total cross-section difference. This was
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achieved through the introduction of a rapidity
threshold for the onset of Pomeron behavior while
the results have required none for the secondary
Reggeon. The loop correction then turns out at
much lower energy than that required in the Pom-
eron case, and consequently secondary Reggeons
seem to provide a better test ground for loop ef-
fects at present machine energies. In particular,
we have seen that this correction is responsible
for the observed decrease of the p effective inter-

cept in wN scattering.
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