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By starting from quantum chromodynamics(QCD) in a finite volume and then taking the infinite-volume

limit, we suggest that there is a "phase-transition" phenomenon, which implies the existence of a long-range

order in the vacuum for an infinite volume. This long-range order is represented by Lorentz scalars, because

of relativistic invariance; such Lorentz scalars can in turn be identified with the phenomenological scalar
fields used in a soliton (or bag) model of hadrons. In the phenomenological approach, a permanent quark
confinement can be simply viewed as the vacuum of an infinite volume being a perfect "dia-electric"
substance, with its dielectric constant v~0, while the "vacuum" inside a hadron is normal (v = 1), which

may be identified as that of QCD for a finite volume. Inside the hadron, exchanges of gauge quanta between

quarks give the QCD corrections to the soliton (or bag) model. Spectroscopy of light-quark hadrons is

examined by expanding the hadron masses M in powers of the "fine-structure constant" a of QCD:
M = M() + aM, + a'M, + ... . The near-zero mass of the pion is correlated with the existence of a critical
value a, in the mass formula, and the g-q' anomaly is associated with a large enhancement factor in the

O(a') quark-antiquark annihilation diagrams, due to coherence in the various color and flavor degrees of
freedom.

Recently, we have applied the classical nontop-
ological soliton solutions to the light hadrons, ' and
derived in various limiting cases the NIT bag"
and the SLAC bag. 4 In the soliton picture, one as-
sumes a scalar field 0 whose average value inside
a hadron is very different from that outside the
hadron. Thus, the effective mass of the quark
can be very light inside, but extremely heavy
(maybe infinite) outside, which gives rise to
the quark confinement mechanism. In this note,
we shall first try to reconcile this simple pheno-
menological description with quantum chromo-
dynamics' (QCD) in which there is no scalar field,
but only color quark fields and a set of non-Abel-
ian color-gauge fields. Next, we shall incorpor-
ate the QCD corrections into the soliton model.
As we shall see, this may lead to an approximate
understanding of the spectroscopy of light had-
rons, including the near-zero mass of the pion
and the relatively large ma. ss of r)'(958).

I. VACUUM STATE IN QCD

To give QCD a well-defined meaning, we first
contain the whole system within a volume of size
L'. For a finite L, the usual perturbation series
expansion can be obtained. Let@, V'„,and V'„„be,
respectively, the appropriately defined renormal-
ized coupling constant, renormalized color-gauge
field, and its covariant field derivative, where the
superscript a denotes the color index (a
= 1,2, . . . .8). For definiteness, we consider the
vacuum expectation value of the normal product

of any Lorentz-scalar and color-singlet function
P(V'„„),with P(0) set to be zero:

(vac ~:P(V'„„):(vac),

e.g. , Q can be either f"'V'„„V„'„V'„wheref"' is
the usual antisymmetric SU, tensor, or (V'„V'„)',
or other combinations. So long as L remains
finite, then such a vacuum expectation value is
0 when g-0. Thus we have

lim lim (vac ~:P(V'„):jvs.c) = 0.
+~p

(2)

For our discussion, we shall assume that the
limit L —~ of (vac ~:@(V'„„):~vac) exists. In addi-
tion, (most of) these functions P(V'„)satisfy the

property

lim lim (vac ~:P(V'„,):
~
vac)

&~p

o lim lim (vgc ~:P(V'„„):~vac) . (3)
L ~~ g~p

This assumption is a reasonable one, since the
power series expansion of (1) in the limit L-~
is, in general, term-by-term divergent. We note
that the noncommutivity of such double limits is a
familiar criterion for a phase-transition pheno-
menon. ' Equation (3) implies that there is a. long-
range order in the vacuum state when L is infin-
ite. This long-range order can be characterized
by the vacuum expectation value of any one of these
scalar functions P(V'„);the same function can
also be used as the interpolating field for the scal-
ar 0 field in the soliton model.

Of course, once the concept that the vacuum for
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an infinite volume can be very different from that
of a finite one is accepted, there is no reason why
it should remain invariant under a local color-
gauge transformation. ' Thus, one may also con-
sider in (1) gauge-dependent functions P. How-

ever, because of Lorentz invariance, (It) must be a
Lorentz scalar. Consequently, (vac ~@ (V~„)~ vac)
gP of (vac~V', ~vac) which must vanish. Thus (3)
is a pure quantum phenomenon.

II. QUARK CONFINEMENT

Z =- —' V'„„)„,+ ~mv V'„)„,d x, (4)

where ~ and mv refer to the appropriate vacuum
expectation values. If mv WO, then the vacuum for
an infinite volume is not invariant under a local
color-gauge transformation. Here we assume that
(4) remains invariant under a global color-gauge
transformation.

Now, let us imagine that the space is divided
into two regions: one is a finite volume L', and
the other refers to the infinite domain outside
that volume. The vacuum inside L' is assumed
to be that of the finite volume, while the vacuum
outside, that of the infinite volume. Suppose that
an external c-number current distribution (j'„),„,
is set within a small sphere of radius R inside L',
with

R ((L.
The field (V')„,generated can be obtained by tak-
ing the extremum of the action integral. For the
volume inside L', we assume that the renormalized
coupling constant g is sufficiently small so that we
can neglect all loop diagrams due to the (inside)
Lagrangian density

(6)

For the volume outside L', because of (5) we can
take the long wavelength limit of Z,«(V'„,V'„„).

In terms of these vacuum expectation values, it
may be possible to formulate the confinement
mechanism by a simple heuristic argument, with-
out a detailed understanding of the underlying dy-
namics. Let us first take the infinite-volume lim-
it, and introduce into the vacuum a small external
slowly varying c-number field distribution (V')„,.
We assume that the corresponding change in the
action integral Z can be evaluated by using an "ef-
fective" Lagrangian density' Z,«(V'„,V'„„),at least
for fields at their long-wavelength limits. To
second order in (V'),„„wemay write

eff

v

or

Thus, for a weak g(j')„„(4)should be adequate.
We can combine (4) and the effect of (6) into a
single action integral

d'x K —,
' V'„„'+-,'M' V' ' +g j')...V', 7)

where K=1 and M =0 in the inside region, while
K= ~ and M =mv outside. Consequently, (V')„,
satisfies

c}
(KV' ) KM~V' g(j ') t gf 'a'Vn V' . (8)

Let us define the "electric" and the "magnetic"
fields R' and lf' by the familiar expressions

V&&
——

a&z~H~ and V~&
=—iE&.

Equation (8) implies that across the boundary the
normal component of Kh' and the tangential com-
ponent of KH' are continuous. Thus, at the bound-

ary

(10)

where the subscripts n, t, in, and out refer, re-
spectively, to the normal component, tangential
component, inside region, and outside region.

With our approximation, the limit v -0 cor-
responds to a permanent quark confinement. This
can be seen by assuming the total color of (j'„)„,
to be nonzero. By Gauss's theorem, (E'„)„e0at
the boundary; hence, as ~-0, (E'„),„,-~ which
makes the action integral to be O(v ') —~. On the
other hand, if the tots, l color of (j'),~ is zero,
then in order to have a finite action integral (R')
and (0'),„,should be finite. From (10), we derive
as v - 0, at the boundary

which is the boundary condition postulated for the
MIT bag. ' Thus as I(.'-0, at fixed mv, the infinite-
volume vacuum acts as a Perfect "dia-electnc"
substance, just as the usual superconductor which
is a perfect diamagnet.

[The limit g g0 but mv -~ corresponds to the
one discussed by Creutz and Soh. ' In this case, in
the outside region near the boundary 2' and TP are
O(e &4), where d is the normal distance from the
boundary. Thus, we find

(V'„),= O(m„'e ~v4).

As mv-~, (V'„),-0, and therefore the gauge
field is confined within the inside region. Since
V' is continuous across the boundary, we have
in the same limit (V'„)„=0at the boundary, which
implies, in contrast to (11), the boundary condi-
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(13)

Thus, the infinite-volume vacuum behaves like
a perfect "conductor. " In this limit, even if the
total color of (j'„}„,is nonzero, the action integral
remains finite. This follows because the space
integral of I„'(V'},„,'-0 as m„-~,on account
of (12}. Consequently, quarks can exist in free
form, though their mass may be heavy. ]

HI. SOLITON MODEL

The scalar field o in the soliton model is now

regarded as a phenomenological field. ' As men-
tioned in Sec. I, any scalar color singlet function

P of the gauge field that characterizes the long-
range order of the infinite-volume vacuum can be
used as the interpolating field for o. In the sol.iton
description, the value of o inside the hadron is
very different from that outside: inside a is ap-
proximately 0, but outside o must -o„,as one
moves away from the hadron. The change in the
value of o from o„,can be viewed as a phenomen-
ological description of the breakdown of the long-
range order in QCD. Thus, the region occupied
by the hadron plays a role similar to that of the
domain structure in, say, an infinite ferromag-
net. In the ferromagnetic case, the change in the
long-range order can be described by a classical
magnetization function, even though the underly-
ing mechanism for ferromagnetism is quantum
mechanical. Here, one expects that a similar
classical description may serve at least as the
zeroth approximation, except that because of rel-
ativistic invariance, the corresponding function
must be a I orentz scalar, and hence the scalar
9 field.

In order to incorporate the short-distance effects
of QCD in the soliton model, the vacuum in the in-
terior of the hadron is assumed to be that of QCD
for a finite volume Thus, . inside the hadron, one
may apply the usual perturbation series of @CD.
Some typical diagrams for mesons and baryons
are given in Fig. 1. With the inclusion of the
vector flux lines, the hadron radius can be de-
termined by examining either the matter density
of the quarks or the energy density of the vector
field. I et R and I be, respectively, the hadron
radii determined by these two methods. For de-
finiteness, we shall assume the permanent quark
confinement mechanism discussed in Sec. II. The
radius I. can then be defined by using the bound-
ary condition (11):

(14a}

To define R, we require the quark wave function |t)

to satisfy

(5)

a' line

V line

FIG. 1. Examples of @CD correction diagrams to
meson energy.

y&Pq=o, at &=R. (14b)

For simplicity, we assume a spherical shape for
the hadron in both (14a) and (14b). Since quarks
are the source of the color-gauge fields, we ex-
pect

M=M +aM +a M + (16)

where 0. is the "fine-structure constant" of QCD.
As we shall see, in the energy range of interest,
the value of e is not small, -&. Consequently,
one cannot expect a perturbative calculation of
the hadron mass to be too accurate. Further-
more, because of the large number of degrees
of freedom X due to internal symmetry (color
and flavor}, the actual expansion parameters in
(16) consist of both a and Ka. In the following,
we shall try to include QCD corrections up to

The ratio l,/R should in principle be determined
by minimizing the total energy of the system.
The actual calculation of the energy dependence
of these "collective coordinates" is a difficult
one. For a phenomenological description, we
may just as well regard I and R as independent
parameters.

In the following, we shall examine the perturba-
tion series of the hadron in terms of QCD in a fin-
ite volume (r ~L):
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O(n'). Fortunately, as we shall see, to that or-
der except for q and q' mesons there is no es-
pecially large Xe term in the mass calculation of
other hadrons.

IV. ZEROTH ORDER

In the zeroth-order cal.culation, we neglect the
exchange of vector mesons. The Lagrangian in
a soliton model consists of only the scalar cr field
and the quark field g (which beside being a color
triplet also has E flavors):

80 8—U(o) —Pty, y +fo+m P, (17)
2 ex„ " ex„

where m is the mass matrix for quarks inside the
hadron. In this note, we shall concern ourselves
main. ly with light-quark hadrons; hence,

o is the usual Pauli spin matrix, and the variables
p, u, and v are all dimensionless. Although (21)
does not contain any explicit parameters, its sol-
utions form a one-parameter family. Here we
give only a brief summary of the results derived
in Ref. 1. As p-0, one has v-0 and u-u(0). For
every u(0) between 0 and a critical value u,
=1.7419, there is a solution of (21). The solution
can be obtained by direct integration from p = 0 to
p= $0. At p= $0, one has u(t'0) =v(t'0) a.nd there-
fore gtP$=0. The radius of the hadron is given by

The potential function U(o) is assumed to have a.

local minimum at 0 =0, and an absolute minimum
at 0=@,„with

(18)

Since 0 is only a phenomenological field, describ-
ing the long-range collective effects of QCl3, its
short-wavelength components do not exist in real-
ity. We should, therefore, ignore the 0-loop dia-
grams. The remaining 0 diagrams are all tree dia-
grams, which correspond to the quasiclassical ap-
proximation used in Ref. 1. Thus, P and 0 can be
reduced to c-number functions which satisjy (for
m =0)

( ia ~ 0-+fpa) g = e g

and

-V'o+ U'(a) = fNPPg, -
where U'(o) =dU/da, a and P are the usual Dirac
matrices, t) satisfies fgtPd'r=1, and N is tbe
total number of quarks and antiquarks,

X=2, for mesons,

B= $,je.
A convenient parameter to label these solutions
can be either u(0) or the integral

over the region p ~ F„Asthe i.nitial value u(0)
-0, one has n-0, but as u(0) -u, = 1.7419, n —~.

The physical description of the soliton solution
then resembles that of a gas bubble (i.e., the had-
ron) inside a medium (i.e. , the vacuum). The had-
ron mass is determined by three parameters:

p)s, and pl (25)

where p is defined by (18) which presents the pres-
sure of the medium on the bubble, s is the suxface
tension which arises because 0 changes from 0
to 0, across the soliton surface, and n determines
the gas pressure inside the bubble which is due to
both the kinetic energy of quarks and the excita-
tion energy of a. In either of the limits n-0 or
n ~ the hadron mass has the form, in the nota-
tion of (16),

N = 3, for baryons.

As shown in Ref. 1, under very general assump-
tions, (19) can be further reduced, through scal-
ing, to a simple system of two coupled first-order
diffex'ential equations:

If'—=(-1+u —v )v2 2

dp

M = + —'4mR p+4mP s,

$, =2.0428, when n-0

(,=1, when n-~.

The double limitn-0 and s-0 gives the MIT
bag,"and the double limit n -~ and p-0 gives
the SLAC bag.
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V. FIRST ORDER

D(k) ——,, (28)

which is the free propagator.
For low-lying hadron states, the quarks are all

in the sz/2 state. In the approximation of zero
quark mass (m =0), their first-order mass cor-
rection M, can always be written in the form

M, = Na(I„-—pI „)/R, (29)

where I„andI,are functions of the ratio R/L,
but otherwise independent of the spin-parity of
the hadron, and p, varies with hadrons, e.g. ,

To evaluate the first-order correction in n, we
include only the diagram (1) in Fig. 1 for mesons,
and the corresponding one in Fig. 2 for baryons. "
The propagator D of V'„depends on the boundary
condition (14a). For example, for L»R, where
I. and R are, respectively, the hadron radii de-
termined by (14a) and (14b), one has

a color-singlet state we have

(31)

The spin dependence can be derived by a similar
simple calculation of the average of Q, »&7,
which gives (30). That M, should be proportional
to R ' follows from pure dimensional considera-
tions, provided m =0, which is a good approxima-
tion only for hadrons made of nonstrange quarks.

In this section, we shal. l concentrate on w, p, N,
and h. (Except for rl and q', because of the success
of the Gell-Mann-Okubo mass formula, " the mass
splitting between other SU, partners of m, p, N, and
4 can be fitted with a nonvanishing strange quark
mass m, . The details will be given in a separate
publication. The g-g' anomaly will be discussed in
Sec. VIII.)

For simplicity, we shall set the surface tension
s =0. Then, in either the MIT bag limit (n -0) or
the SLAC-type bag limit (n -~), the nadron masses
for w, p, N, and 4 are given by

p. =-3, for m

-1, for N

+1, for p and 4. (30)

M = + 34vR'p+ O(u'),N$

where

(32)

To see the N dependence, we denote the eight Gell-
Mann 3x3 SU, matrices of the ith quark by ~;. For

(33)

and $, is given by (27). The evaluation of l„and
I „depends on the ra, tio R/L and the quark wave
functions. For L»R, and using the solution (22)
that is valid for the MIT bag limit (n-0), we find

Iel 3.409 and Imag (34)

(2)

Our calculation may be compared to one already
made for the MIT bag, in which different assump-
tions are made. In the MIT bag calculation, "for
zero-mass quarks there is no "electric" energy,
and instead, there is a "zero-point" energy. " For
clarity of comparison, our a=a, used in the MIT
bag calculation. "

In either the limit n-0 or n-~, the constant
$, in (33) is known. Also, at-any given ratio R/I. ,I„,and I „canbe calculated. The hadron mass
M, given by (32), then depends on two parameters
p and a. Hence, to first order in n, one can de-
rive two mass formulas among the four masses
M„M,, MN, andM~ofm, p, N, and4,

cr line

V line

(4)

and

3(Mp ' —M, ')
4(M '~' —M„'~')

(35a)

(35b)

FIG. 2. Examples of @CD correction diagrams to
baryon energy.

The experimental values of these two ratios are
0.847 for (35a) and 1.187 for (35b). Considering
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that correction terms of the order of a'=20%
have not yet been included, the agreement can
be considered to be a good one. We note that be-
cause of the specific form (32) for the hadron
mass, these two mass formulas (35a) and (35b)
are valid independently of the specific numerical
values of $„I,» andI~„.

VI. SECOND ORDER

To second order in e, there are many diagrams.
Besides the ones given in Figs. 1 and 2, there are
also other diagrams owing to the renorrnalization
of the V'„propagator and that of the V'„-quark ver-
tex. As in the preceding section, we also concen-
trate first on the masses of w, p, N, and 4. As
we shall see, by inclusion of O(a') corrections,
(32}becomes

M =N —+ ~(N - I ) —+ -', 4spR',8
where, just as in (33)

(37)

(38)

and $, and p are, respectively, given by (27) and
(30).

To show this, let us examine first the N depen-
dence. Because we are interested only in two
specific N values: N = 2 for mesons and N = 3 for
baryons, any N-dependent function can be ex-
pressed in the form (36). Actually, in diagrams
(2) and (3) of either Fig. 1 and Fig. 2, the two
vector mesons in the f. channel can be in either
an SU, octet or an SU, singlet; in the former,
the resulting amplitude is linear in N, and in the
latter it is proportional to ~(N- 1). Diagrams
(4) and (5) of Fig. 1 do not contribute, since as
we shaLL see in Sec. VIII, they are nonzero only
for rj and r}'. Diagram (4) of Fig. 2 exists only
for the baryons; therefore, for N =2 and 3, it is
proportional to N- 2 = —,

'
[N(N —1)—N]

Next, we discuss the spin dependence of (36)-
(38). In diagrams (2) and (3) of either Fig. 1 or
Fig. 2, the interaction is between only a single
quark pair; hence, the spin dependence must be
of the form

1
j jy

where o, is the Pauli spin matrix of the ith quark
(where the "spin" refers to the total angular mo-
mentum of its s»~ wave function). In diagram (4}
of Fig. 2, in principle there is yet another spin-
dependent invariant: e,.~,o, (a~ x a,). However,
because of time-reversal invariance, its diagonal
matrix element must be zero. Thus, the spin-

dependent part of these mass- correction diagrams
must be proportional to (39), and that leads to the

p factor in (37) and (38).
The evaluation of these diagrams is complicated,

because in the intermediate states both the quarks
and the cr field are excited. Since the o field itself
represents a collective mode of multiple vector-
meson states, there is always the question whether
some of the second (and also higher) order effects
may have already been included in the o.-field de-
gree of freedom. Short of making the actual cal-
culation, we may ask the following: If we require
an exact fit of the masses of w, p, N, and 4, is it
true that all we need are the relatively small O(n')
corrections? This is certainly a very weak test;
however, in view of the large difference in these
masses, from v(140} to 6(1232), it may not be a
trivial criterion. For definiteness, we assume
],=2.0428 (i.e. , n-0), f »R and therefore (34)
holds. In addition, we neglect the O(a') correc-
tion in g. Thus, there are four parameters in (36):
p, a, r}„,and r}„.An exact fit of v(140), p(770),
N(940), and &(1232) gives

n = 0.498,

g„/I„=0.116-g(y2,

r} „/I„=0.136-—'a',
which shows at least a certain degree of self-con-
sistency of our expansion.

VII. NEAR-ZERO PION MASS

From (32) and (33) [or (36)-(38)], one sees that
there exists a critical value of n, called a, . For
a&a„M(R)is always )0. For a&a„M(R)be-
comes negative at small R, and it --~ as 8 -0.
Among the low-lying hadrons, the pion is the low-
est energy state. [Both the "electric" and "mag-
netic" energies are attractive in the pion state; in
addition, according to (30), p =-3.] Therefore,
by chossing e close to n„there is no difficulty
in obtaining a small pion mass. By using (33),
(34), and $, =2.0428, one sees that the critical
value n, is -&, which is very near the n value
given by (40).

It may be of interest to speculate why the actual
a should be near n, . In our model, we must either
limit ourselves to M(R) ~ 0, or instead of M, con-
sider the hadron energy E at a given momentum p,
since E = (p'+M')'~' which is always positive,
even if M may be negative. For convenience, let
us take the former view. Furthermore, we may
incorporate the "asymptotic-freedom" property'4
of QCD by regarding a = a(R) with a(0) =0. Now
if we vary A, the minimum of the energy E of the
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3 'i'(au+ dd+ss)

and the SU, flavor octet

6 '~'(uu+dd —2ss)

to the bases

2 '~'(uu+dd) and ss.

(41a)

(4lb)

(42)

On the other hand, a similar identification of the
0 mesons would lead to the ridiculous result that
either &)'(958) or &7(549) should be approximately
degenerate with the pion. It has been pointed
out"'" that the difference between the vector
and the pseudoscalar mesons lies in the annihila-
tion diagrams, given by (4) and (5) of Fig. 1. These
diagrams exist only for the 0 mesons, but are ab-
sent for the 1 mesons. However, the problem re-
mains, since these annihilation diagrams are
O(a'), and it is strange that their amplitude should
be so large, resulting especially in the rather
heavy mass of g'.

We would like to resolve this anomaly in ampli-
tude by observing that there is a large factor due
to internal symmetry, which is present in the
annihilation diagrams, but not in other O(c( ) dia-
grams. To see this, let us first decompose the
mass matrix of the g-g' system into the sum of two
terms

(43)%.+K.
where 3)t, is due to the annihilation diagrams fi.e. ,
(4) and (5) in Fig. 1] and SR, is due to the difference
in masses between the s and the u, d quarks. SR,
is diagonal if the base vectors are (41a) and (41b),
while 3R, is diagonal if the base vectors are given
by (42). The physical &) and (7' mesons are the

lowest hadron state, which is the pion, occurs
when M=0 and therefore (x(R) =a,. The actual
nonzero, but small, pion mass would then be at-
tributed to either the quark mass m inside the
hadron being nonzero, or some quantum fluctuation
effects not included in this simple picture.

VIII. w-iII MIXING AND q - q' ANOMALY

It is well known that the usual SU, ~-Q mixing
can be readily understood in any quark model,
while the g-g' system is an anomaly. "'" Among
the1 mesons, p' is 2 &~'(uu-dd), ~' is
2 '~'(uu+Zd), and Q' is ss. Let m„m„,and m~
be, respectively, the masses of s, u, and d quarks
(inside the hadrons). Since m„=m~ if we neglect
electromagnetic corrections, but m, is much lar-
ger, one has the approximate degeneracy be-
tween e(783) and p(770), but P(1020) is of a
much higher mass. The usual Gell-Mann-
Qkubo ~-Q mixing angle -35 is simply the rota-
tion" which transforms the SU, flavor singlet

eigenstates of the sum (43).
To simplify the discussions, we may, in the

evaluation of 3g„neglect the mass difference be-
tween the s and the u, d quarks. Since the gauge
field is flavorless, the qq state in these annihila-
tion diagrams must be a flavor singlet; in addi-
tion, it is also a color singlet and a spin singlet.
Thus, in terms of the SU,-flavor and SU,-color
multiplets, the only qq state that has a nonzero
annihilation amplitude is

(qq&= (&))) ' * g (-,(c),(c) +Z(c)d, (c&+s-,(c&s,(c&

(vac I+i). ~~M .()) Iqq (45)

where M„„is colorless as well as flavorless. The
product XoX consists of a color octet (if' '+d'(")X'
and a color singlet —,'&~; only the latter contri-
butes since ~qq) is a color singlet. Thus, (45) is
equal to

-'6'~(vac ~gtM „g~qq) . (46)

According to (44), the qq state is a coherent mix-
ture of 18 states. Now, the operator |Jt)~M„„tt)is a
color singlet, a flavor singlet, and even under
charge conjugation. Hence, its matrix elements
satisfy

(vac i())tM„„&iud(c)u&(c))

= —(vac CPM „(i))u( )cu (ic))

dt(c)di(c))=, (47)

where c can be any given color. Thus, each of
the 18 component states in qq gives an identical
contribution to the annihilation amplitude (45);
i.e. , (45) can be w ri t ten as

-', (18)'~'6"(vac ~()& M „()~ui(c)u&(c)) . (48)

The same coherence applies to the creation part
of diagrams (4) and (5) of Fig. 1. Summing over
the color indices of the gauge fields gives another
factor g, ,6"6"=8. Putting these factors together,
we see that the diagonal matrix element of the mass
matrix K, for the qq state (44) carries an unusually
large coefficient

(-', )' x 18x 8 =64, (49)

—u &(c)ui(c) —Zi(c)d i(c) —s i(c)s i(c)],
(44)

where c is the color index, u i (c) then denotes au quark
of color c in an s», state with its z -component angu-
lar momentum =+ &, while u

& (c) denotes that with
its z-component angular momentum =- &, etc. The
matrix element of annihilation of this qq state into
two virtual gauge quanta (of color indices a and 5,
and space-time indices p. and v) can be written as
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while all other matrix elements of 9Q,, are zero.
This large coefficient (49) accounts for the abnor-
mally large amplitude of the second-order annihila-
tion diagrams, and thereby removes the puzzling
part of the q-q' anomaly. The details of the dia-
gonaltzation of (43) will be given in a separate
publication.

IX. REMARKS

The above discussion connecting QCD with the
soliton (or bag) model of hadrons is purely a
phenomenological one. The aim of most efforts
in the current literatuxe is to derive quark con-
finement from QCD directly. ' In this connection,
we may recall the relation between @ED and the
phenomenon of superconductivity. A similarly di-
rect attack would impel one to proceed by start-
ing from @ED, using its short-range Coulomb
force to establish the existence of crystals, then
obtaining the electron-phonon interactions, ex-

tracting from them the Bardeen-Cooper-Schrieffer
(BCS) correlation energy, and finally deriving the
BCS theory. " As yet, no one has succeeded
through pure theoretical deduction even in the
first step: proving the existence of crystal from
QED

At present, it is far from clear that @CD is the
correct theory, and there is still the open ques-
tion whether @CD has an infinite-volume limit.
This uncertainty makes a phenomenological ap-
proach perhaps more effective and certainly in
closer contact with observations, In any case,
the soliton (or bag) model at least serves as an
alternative way to understand the spectroscopy
and the dynamics of hadrons.
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