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A semiclassical approach to systems including both bosons and fermions is formulated, and a useful path-

integration formula is given for fixed fermion and antifermion number. The quark-string model derived from

a continuum limit of the lattice gauge theory is studied based on this method. The massless condition of' the

string with quarks at the ends is resolved within the context of the semiclassical approximation. The analysis

shows a universality of the spring constant of the string and a good prediction for the q, mass in the new-

particle spectroscopy. Quantitative predictions due to quantum corrections (daughter trajectories) are not in

good agreement within our approximation.

I. INTRODUCTION

In this and a forthcoming paper we study the ha-
dron spectra, old and new mesons as well as bary-
ons, from a unified point of view. The theory on
which this work is based is that of the quark-string
model' which has been derived from a continuum
limit of the lattice gauge theory. ' The model is a
well defined model and furnishes the hadron with
three basic properties: (i) quark confinement, (ii)
asymptotic scaling, and (iii) relativistic invariance.

In a previous paper, ' hereafter referred to as I,
starting off with the strong-coupling approach of
Wilson's lattice gauge theory, we have shown that
a Lagrangian governing the motion of the quark
string can be derived in a certain continuum limit
of the lattice distance, and we have also shown
that classical solutions to the quark string exhibit
a good qualitative nature. In the second paper, '
x'eferred to as II, the quark string has been shown
to exhibit a simple scaling behavior such that the
photoproduction amplitude tends to that of the free-
quark theory in the high-momentum-transfer li-
mit. In the third paper, ' referxed to as III, the de-
tailed properties of the classical solutions and the
quantum corrections due to the string oscillation,
disregarding correlations with the quark spin, have
been studied. %hen applied to the hadron spectra,
we have found two interesting features: (i} The
large mass difference between q, and glJ in the
new-particle spectroscopy can be interpreted; an
abnormal classical solution predicts a pseudoscal-
ax particle at m„,-—2.8 GeV if the g-particl. e mass
is taken to be 3.1 GeV, (ii} The quantum correc-
tions show good agreement with experimental spec-
tra.

Encouraged by these results, we would like to
study further the quantum corrections. In this pa-

per we wish to focus discussion on some basic
theoxetical problems which have not been fully
studied or stated in previous papers. Fix st, the
detailed mechanism of the appearance of abnormal
solutions will be studied in Sec. II. Second, a full
discussion of our semiclassical method will be
given. To our knowledge, in the framework of
path integrals the semiclassical approach for a
system involving the fermion field has not been
well formulated in a practical fashion. In Sec. III
and Appendix A we give proof of a useful formula
of path integrals for the boson-fermion system.
Third, in obtaining the quantum corxections the
massless condition of the string will be resolved.
It will be shown that the longitudinal-oscillation
modes of the string can be eliminated even if mas-
sive quarks are attached to the string ends (Appen-
dix B). Both the type-1 oscillation, the vibration
perpendicular to the rotation plane of the classical
solution, and the type-2 oscil. lation, that parallel
to the rotation plane, will be investigated. Fourth,
the correlation between the quantum oscillation of
the string and the quark spin, which has been pre-
viously neglected, will now be taken into account
(Secs. III and IV}. As a result of this term the
numex'ical fit with experimental data will become
slightly worse than before~ in the low-mass region
because the spin-string correlation turns out to be
too large (Sec. IV}.

The semiclassical method is considered to be a
good approximation when the classical energy is
large compared to quantum corrections. A prob-
lem which is not settled in our paper is that the
centex-of-mass coordinate of the classical solu-
tion is not included as a dynamical variable so that
the xecoil effect on the classical solution due to
quantum oscillations is not taken into account.
This may be one of the reasons that the numerical
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results of quantum corrections in tl. e low-mass re-
gion are not in good agreement. It is considered,
however, that the interpolation of Regge trajec-
tories from the high-mass region to the low-mass
region provides us with gross information on the
physics of the quark string, and that the work is a
good first approximation to the hadron spectro-
scopy.

II. THE MODEL AND CLASSICAL SOLUTIONS

d „)((X, 'X,)X,"-X,X,"
dTPi ( {(X,X )2 X &X 2]&/2

(i =1,2), (2.5)

p",. = —~(X,,') '"(g""-e', e",).(g,y„g,, 4,—,y„g,)

ie, y,.,+ [-,'ie', , —m,.(X„')'/']&,. = 0 (i = 1,2), (2.6)

where p",. denotes the canonical momentum conju-
gate to X",. and is given by

In our theory the meson is represented by a piece
of string with a quark and an antiquark attached to
the ends. Let X (v, r) (0 (v(w) be a point on the
world sheet swept out by the string. Let either
the quark or antiquark be attached at cr 0'y =0,
i.e. , X,"(r) —=X"(v„r)and the other at v = v, :—v,
i.e. , X;(r) =X'( „v)rThe. Lagrangian which gov-
erns the motion of the quark string is then defined"
by

-mp (2.7)

and e",. =X",,/(X, ,'}' ' and e,. =y„e", In the above
equations, X'r(v, r) = r is to be implied.

A useful set of solutions to (2.4) is that of rigid
rotators. " Take the center of mass of the rotator
at the origin. Assuming the solution to be

X(v, 7') = R„(v,v') = {p(v) coeur, p(v) sinur, 0),
(2.8)

L=L,t+L, +L,

where

(2.1) one finds tha. t (2.4) is satisfied for an arbitrary
p(v). However, the solution which corresponds to
the leading trajectory is known to be represented
by

L, t
= i:,tdv = —y [(X;X,)' -X,'X,']' 'dv, (2.2)

0 0 -1
p(v) = —sine(v- v, } (2.9)

f, =—[X",,/(X. ')'/'](, y„B,(,. —m,.(X. ')'/'p, g, ,

(2.3)

with X,"= BX"(v, r)lsr and X;= BX~(v, r)/Bv and
i = 1 and 2. The quark field g, (r} (i = 1,2) is assumed
to be an anticommuting field. Since the Lagrang-
ian L has the reparametrization invariance 7 - v'
=f(r), with f being an arbitrary function, no ghost
appears in the system. Taking advantage of this
invariance we adopt the timelike gauge X'(v, r) = r
throughout this work.

In this section we first find a set of classical
solutions to the Euler equations and quantize them
by the Bohr-Sommerfield method to provide the
meson spectra, which are associated with leading
Regge trajectories. The quantum corrections to
the classical trajectories will give us the daughter
trajectories, which will be discussed in the next
section.

(,.(r) = exp[-ir(Q, +-,'~v')]u, . (2.10)

and R, (r) =R„(v„r)into (2.6), one can determine
0,. and u,. as follows:

Q] Q ~ ~(6 g )

+ e;(I —uF p '}'/
2(1 —&u'p,.')'/'

~s,.
2is,.+p,.

1+a,.(1 — 'p,.')' '

(2.11)

and

i i A(&; 8~)

with arbitrary constants c and vo. Equation (2.6)
is homogeneous with respect to P,. and can be
solved for P,. as a function of yet unknown coordin-
ates R,(r) and r. Substit. uting

Classical solutions

The Euler equations for this system are given by

(x, x.)x:—x.'x;
Br (X, X,) -X,X,

' »/, [m,.(1 —ur'p, .') —S,.u], (2.12)2)j/2

where A labels the state of the quark, S,.(=+-,') de-
notes the third component of the spin quantum num-
ber of the ith quark [the definition of spin is given
later by (2.33)], and e, (= + 1) signifies the positive
or negative frequency of the solution. The flavor
index, if needed, is implicitly included in A. Xz,.
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a(m, + —,', &u) =a„(0~ a, ~ w/2). (2.16)

On the other hand, if 8 =-
& there are three possi-

ble solutions' one is

is the Pauli spinor with two components and p,
-=p(c;).

The unknown parameters p,. (i =1,2), or equival-
ently c and o, in (2.9), are determined by (2.5}.
The substitution of (2.8)-(2.12) into (2.5) provides
us mith the boundary condition of the string,

PD. (d p( 8~4Pp( ] /(d

(1 2g)1/2 (1 Q 2)3/2 ( ) P(}( j)

(2.13)

or, by using (2.9),

cos n,.
(d(m, cos'a. +S,(c) = (-1)'y . *' sign(cosa, ),sine

(2.14)

where a —= c(c- o,) and a,.=c(cr, —c,). It is this non-

linear boundary condition that characterizes the
quark- string model.

On determining the boundary value e, one notes
that the right-hand side of (2.14) is periodic with
the period w and odd under a, -- a, . If the solu-
tion a(m, S, (}(}) to

[m cos'a(m, S, (c)+S(}/](c=y . 'S '
)

cos'a(m, S, ~)
sina m, S, ((})

xsign(cosa(m, S, &(}))

(2.15}

is found for given m, 8, and (d in the principal
sector 0 & e & m, then a& are given by e, =
—a(m„S„((})—l,v and a~ = a(m„S„&(})+l,v withI„I, =0, 1,2, . . . . No difference appears in (2.15)
for the quark or antiquark. Although the numeri-
cal values for a, have to be obtained by calculator
the gross behavior is able to be understood by in-
specting Fig. 1, in which the right- and left-hand
sides of (2.15) are separately shown. For a given
classical frequency ~ and the quark mass m there
exists a single solution e, if S =+-,',

FIG. 1. The right-hand side of (2.15) is shown by the
bold line, whose cross points with thin lines [the left-
hand side of (2.15)] give the solutions e + "'. The top
and the second thin lines are, respectively, for S=+ ~

and S=-2. The bottom line shows a case with large &
for S=- 2. The unit of vertical coordinate is arbitrary.

a.-2y/uP and a("-w-2y/uP. (2.19)

Solutions e"' and a"' do not exist for u- ~.
(b} As &u-0 (&u'«y, &u«m), the a's behave as

1 2 1 2
X/2

[(m'+2y)'/'+m)] v~, (2.20)

X/2

a"'--+ —[(m'+ 2y)'/' m] ~ }( ~, (2.21)
2 2y j

III.) Solutions a, and ao' have been called normal
solutions, while rx"' and a"' have been called ab-
normal solutions when m' ~ 2y in III. It mill be con-
venient for later discussion to know some asymp-
totic behaviors of the solutions.

(a) As ~-~ ((d'»y, (d»m}, the a's behave as

a(m, --,', &u) = a "', (w/2 c a("c w), (2.17)

I. /2a"'-—— —[m+ (m' —2y)' '] }/&u, (2.22)
2 2y

which exists for all positive values of m and ~,
and the others are

~(2)a(, --'„}=I1„(O-mt"-n('& /2}, (2.18)

which exist only if m' ~ 2y. (As will be shown
later, all Regge slopes asymptotically tend to a„'
= I/2vy in our theory. This condition, therefore,
is equivalent to m'a„'~ 1jm', which mas given in

Z/2a"}-—— —[m —(m' —2y)'/']
2 2y

The last tmo, e"' and n"', are meaningful only
when m'~ 2y.

At this point me discuss why the a"' state of the
quark is bound at v/2 & o & w. As one can easily
confirm by substituting solutions into (2.7), the
direction of the spatial momentum of the quark p
is antiparallel to the velocity X due to a strong
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correlation between the spin and the acceleration
(This is reminiscent of classical electro-

dynamics where p is different from velocity due to
p=x —eX.) The centrifugal force, in this case,
works inward, and this balances with the outward
centrifugal force of this string. Although this is
an unfamiliar case, we do not find any reason to
exclude the solution a"'.

Now that all necessary solutions to the boundary
condition are obtained, one is able to construct
meson states by combining the solutions, one for
the left end (i =1) and one for the right end (i =2)
of the string. Let us denote the state by

M(a(m„S„&u),a(m„S„&u)),
which means a, = —a(m„S„u&)and a, = a(m„S„&d).
[The integer l, introduced below (2.15) is taken to
be zero because l j WO provides a nonleading tra-
jectory. ]

(i) M(a„a,). The quark spine form a triplet and
correspond to the state whose total angular momen-
tum J equals the orbital angular momentum L plus
one in the nonrelativistic limit. The p meson, the
g meson, etc. are associated with this.

(ii) M(a„a'~&)with k=1, 2, or 3. The quark
spins form a singlet or a triplet, hence the states
are degenerate for each k. In the nonrelativistic
limit, the states correspond to those with J=L.
The pion, the Ay meson, etc. are associated with
this solution.

(iii) M(
'a~', a' ') with j, k=1, 2, or 3. If a'~&

Leading Regge trajectories

In order to get meson spectra, we calculate the
classical energy (mass) E„,and the angular mo-
mentum (spin) J„ofeach solution obtained above.
From E„andJ„,which are functions of e, we
eliminate v to obtain a relationship between E„
and J„andimpose the Bohr-Sommerfeld condition
that J„should be an integer.

General expressions for the energy-momentum
Pf' and the angular momentum M"" are derived
from the Lagrangian (2.1) by the Noether theorem,

(2.24)

2

Mu -M" +~M4st ~ q jy (2.25)

where

Wn'~', the states are degenerate with respect to
the charge conjugation. The quark spins form a
triplet which is antiparallel to L. The c particle,
etc. are associated with this class. We note that
in this case there is a special solution of M(a"',
a&'&) with no fold [c(o,—o,)(v]. It can be shown
that this state always has negative angular momen-
tum J, although the orbital angular momentum of
the string part has positive component. We think
this solution unstably and disregard this in the
following.

' (X, .X,)X,u —X,'Xu

0 [(X.'Xu)'-X.'X '] '" (2.26)

' (X"X", —X"X,u)(X, X,) —(X"X,"—X"X,u)X,
(2.27)

(Xup Xpu)+pu

g uu = —
&j& (el guu)&j&

(2.26)

(2.29)

The quark momentum Pu, (i =1,2) is given by (2. t).
The last quantity (2.29) is the spin angular mo-
mentum' of the ith quark. It will be instructive to
give some of the explicit forms of the above quan-
tities. The energy and the angular momentum for
the quark are simplified by the use of (2.6) and
are given by

T &=(R&x p&)

—
( g, &i, (X&x R„)

(2.32)

E —pO (2.33)

T, , =1VI, ,
= T, , +f, l (2.31)

(1 —Xu )'/2 & ' 1 —g
BT ll' (2 30)

jt Note that the third component of the spin (2.33) has
the eigenvalue S,(1 —2„')' ' with S, = + —,', whose
absolute value is always larger than —,

' due to the
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Lorentz factor (1 —X„')'/'. This isbecausethe
spin (2.33) is not defined in the rest system of the
quark. Also note that the second term in (2.30) is
essentially an L-S coupling energy because X
= —uPR for the classical solution (2.8), and this
makes a negative contribution to E, , if the spin is
antiparallel to the orbital angular momentum.

Substituting the explicit form of classical solu-
tions obtained above, one can write the classical
values in terms of the boundary quantities a, ,

p
2 l/2

E =yst 1 —(d p
do'= —(n —a ),

(d0
(2.34)

2 l/2
Z&» y

P ~p2d VSt 2 2
0

248, [(a ——,
' sin2a, ) —(a, —~ sin2a, )J, (2.35)

q y $
(1 ~2

p
2
)

1 / 2
(] ~2p

2
)
3 / 2+

(m .+S,ur tan'a. },)cosa. l

(2.36)

m,.~p,.' S,.~'p, ' S,.
q l

(1 Q p
2
)
I / 2

(I +p 2 )3 / 2
(1 ~2p 2

)
I / 2

m= icosa,.
i

' ' sin'a, .+S,.(tan'a, .+1)

(2.37)

E„=E„(&u)+g E, , (ru) (2.38)

and

Other spatial components of J„andJ„.are vanish-
ing.

The Regge trajectory is now obtained by elimin-
ating v from

The ground-state mass with spin 1 equals the sum
of constituent-quark masses (quark-mass additiv-
ity). This property will be used for determining
the quark mass parameters in Sec. IV.

(2) The trajectory M(a„a"')for m,.'a„'(I/v,
which is associated with w, Al families, etc. , be-
haves as

] 1J(a„n«") — (E —m, —m, }'.
27ry

(2.41)

The ground-state mass with spin 0 equals m, plus

m2 ~

(3) The trajectory M(n"', a"') for m,.'a„'(I/&,
which is associated with the e family, behaves as

J(a"' n"'}-—1+ (E —m —m )'.1
4~y

(2.42)

(4) The other trajectories for m,.'a„')I/w show

complicated behavior in the low-angular-momen-
tum region (Fig. 2). Since the charmed-quark
mass is supposed to be above the critical mass
(I/va„')'/' = 0.56 GeV the new-particle family
meets the case. As will be discussed in Sec. IV
the trajectory M(n„a"')is associated with the

g, family.

III. QUANTUM CORRECTIONS

In this section we investigate quantum correc-
tions to the classical solutions studied in the pre-
ceding section. The method we use is an extended
version of the stability angle method which has
been developed in nonlinear field theories by Das-
hen, Hasslacher, and Neveu, ' and later applied to
a string model by Kikkawa, Sato, and Uehara. '
In the system including the fermion field the con-
cept of the semiclassical approximation is not
well known. Although the principal idea of our ap-
proach is equivalent to the one exploited in another

2

J "=J"'(&u)+ g J"' (&u) (2.39)

J'(a„n,) -1 +~8 y ' '(E —m, —m, )' '. (2.40)

It is important to keep in mind that the low- (high-)
mass behavior is determined by the large (small)
value of ~ as is the case in usual string models.
The asymptotic behaviors (2.19)-(2.23) enable us
to confirm the following behaviors.

(a) As &y-0, i.e. , in the high-angular-momen-
tum region, „E-wy/&u and J„-vy/2 uP, hence
J„-(I/2wy)E„.All trajectories therefore become
parallel with the universal slope a„'=1/2 my.

(b) For the case of the low-angular-momentum
limit (w-~), the trajectories behave as follows.

(1) The trajectory M(a„n,), which is associated
with p, g families, etc. , behaves as

mc = 1.55 GeV

1.0 GeV

M (o(q, at. ,)
4 — ——M(at~ ~ )

-r r
I r'IW I IM I I I& I

9 ~ 11 ~ 13
I I I

15 17

E (GeV')

FIG. 2. Classical trajectories. Some almost degener-
ate trajectories along M(n, , n ) and M(e, ~ ) are not
shown.
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paper by Dashen, Hasslacher, and Neveu (DHN)
in a study of the Gross-Neveu model, the method
must be improved in a point. Since the string
field X"(o, r), which corresponds to the collective
field 0 in DHN, obeys a complicated nonlinear
equation, it is not easy to find classical solutions
other than those discussed in Sec. II. The prob-
lem is, therefore, solved by the following two
steps.

In our approach we perform the fermion path
integration as was done by DHN and obtain an ef-
fective action for the string that contains no fer-
mion variables. In the first step of our approxi-
mation the classical solutions to the effective ac-
tion are looked for by imposing the stationary con-
dition on the action. This step is shown to be equi-
valent to the argument in Sec. II and corresponds
to DHN. In the second step we make an expansion
of the effective action around the classical solu-
tion and keep the terms up to the quadratic ones
with respect to variations. This approximated
effective action will be solved with the help of

some auxiliary variables (see theorem below).
The spectra are obtained by inspecting poles in

the propagator

1
(((Z)-='rr - (f=-drr '* Tr[xxp( p(r)].-

0 (3.1)

or, if those with a definite third component of J
are of interest, in the propagator

"d(48)
E dT exp[i(ET —j, ii8)]

0 2~ 0

(3.2)

where H denotes the operator Hamiltonian of the
system. By use of the path integral the trace part
in (3.2) can be represented by

Q(T, &8) = Tr[exp(-i-HT+iZ, n8)]

&XII x) $,Sit, II &(g,(T)+ exp(- &i (o(8o')$, (0))Q 6(X(o, T) —R(48}X(o,0))
It~1 f~l fy

T 2

xexp ~ dT I t+ I i ~@0~
0 jr.l ~x

(cos(n, 8), —sin(a8), 0)
It(S8) =

~ sin(a8), cos(&8),
0, 0, 1((

is the sero point energy and fr and Lr aI'e deftned by (2.2) a11d (2.3}. X)gii+gS[)( implies 'tile fullc
tional mtegration with a certain measure including a gauge condition for X. In the following we Proceed
with a discussion of 48 = 0.

Before going into the semiclassical approximation we perform the fermion integration and get

(((r, op=o)= I' foI lip(I(r, r) (((ro]]exp rf-r .,o-, oI ',(xx]]p,„,(x,z„, pp-'o, „[I])I.
fy 0 i,A g i~A~0

(3.4)

Here f,
„

is the "stability angle'" defined by the
phase of |t~,

„

such that

[C', „(T)=exp(-if,~)g, „(0), (3.5)

where g, „(r)obeys the equation of motion

(3.6)

with 8, defined below (2.7). e,
„

is the sign func-
tion introduced in (2.12). The integer pI, „(i=1 or

2) is the occupation number (0 and I) of the state
A(e„S„f,) with f, being a flavor index of the ith
quark. The last term in the exponent (E,T
—P, , „»f,„)is the contribution from the Dirac
vacuum. The term would have been eliminated if
one had begun with the normal-ordered Hamilton-
ian with respect to the fermion field, "hence we
disregard this term hereinafter. If a quark with
spin 8, and an antiquark with spin S, are attached
at a = o, and a= o„orvice versa, respectively,
what we should consider is



Qt ~(1 tl}= JDZ f15(R(v, }}—r(vD}}e p[
' der„—'Qc,(„„,[R[)

C 0 i=1
(3.7)

The exponent of (3.7) is the effective action I„,of
our string. Note that I,«does not involve the fer-
mion field and is still exact except for the fermion
and antifermion numbers being fixed.

As the first step of the semiclassical approxima-
tion we look for the stationary value of I,«. In
Appendix A the stationary condition

g „61.,
' 5g.

„

6X
(3.8)

is shown to be equivalent to find classical solutions
of the Euler equations (2.4)-(2.6) provided that the
4t} 's are auxiliary variables. From a particular
set of solutions (the rigid rotators in Sec. II) the
leading Regge trajectories were already obtained.

In the second step of our approximation we take
account of quantum fluctuations around the classic-

I

I

al solutions R„(o,v'). Substituting

X=X„+V (3.9)

for X in I,«we make the Taylor expansion around
R„andkeep the terms up to the second order in
Y disregarding higher-order terms. Note that this
expansion is not equal to the 5 expansion.

The information that the quark is a, fermion is
included in that n,

„

in (3.4) takes only 0 and l.
Let us assume that the fermion and antifermion
numbers are fixed as in (3.7). In Appendix A, we
introduce a commuting coordinate g (Q a,ssociated
with each fermion (antifermion} and give a proof
of the following theorem.

Theorem. The path integral (3.7) with the effec-
tive action I,« is equivalent, up to the second or-
der in 7, to that with the new local action involv-
ing Y, and extra commuting coordinates q and q:

Q[„@[(T)= exp(fS„)K/K,

where

(3.10a)

yII( i; r};)II a(&( T) —7'( 0})
i=1 ff

2 r
x j [5(}I,.(T) —exp(-fgI'„})[7,.(0) )& q ('„}([[(."r},dr exp(iso [V, r[j}, '

a=
(3.10b}

2 2 F I'll

~g,.~g,. & g,. T) —exp -i&',.0„' g, 0 ~ g',. ~,'.0'qgr exp iS =O, g
i%i i=l-

(3.10c)

Here S„=I„—+,c; „K,.o} and I„is the classical action of the string part, and k(0}=(II,. „+u}S,)T with II de-
fined in (2.10). So is, provided F =0, given by

S = I + &I, (3.11)

ax"ax" ' " ax ax" ~

" "+
ax ax" ~y:y: 'e,a, (3.12)

8 I„,. — 8 I i 92L,
(( ~ ( a$ a(i} 0(qf1

a(t} ap 089$ a({ a$tr i iY

ax,"aII„""+
ax,"ap„""+ axa~I [)I("'

+
ax~aip, "' ' ax, ax,")' '

In (3.13) ( ~ ~ ~) means that X(' and (}}( in the brack-
et are to be replaced by the classical solutions
X;, and (}}(0}.Although (3.12) and (3.13) are for-
ma1.ly equal to the correction paxts of the original
Lagrangian (2.2) and (2.3) when they are expanded
by substitution X4-XI,', + Y" and g-g„+q, the

point of this theorem is that g is a commuting vari-
able rather than an anticommuting one. %e re-
mark that, while the quark Lagrangian I„,(2.3),
vanishes if the classical solution is substituted,
the role of the classical action of the quark is
played by the stability angle for the classical solu-
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tlon g
This theorem is stated for the particular config-

uration of the fermion and antifermion as speci-
fied by (3.7). If the fermion configuration is differ-
ent, other auxiliary coordinates must be intro-
duced. For example, if a quark and an antiquark
are attached both at o = 0, and 0 = a„onemust use
four auxiliary coordinates: q&(e =+1) [rt, (e = —1)]
for the quark (antiquark) at o= o„and!),(e =+1)

[q4(e = —1)] for the quark (antiquark) at o= o, The
action So in this case should consist of Lt, e,Lo,.
+Le„where Lo

&
is given by (3.13) for rt,. (j =1,2, 3,

or 4).
The fact that both P and q are commuting coor-

dinates and the Lagrangian in (3.11) is quadratic
with respect to these variables enable us to eval-
uate the path integral (3.10) by completing the
square. As shown in Appendix B the resulting for-

mula is given by

1/2 82 1 /2

Q{~ N )(T) = 2 ~ —
t

& exp iS„(T)—i+N&~)«)v&~)(tu)T
( Q Q)) l =1 21K) BT

(~T=2g l )

(3.14)

where p signifies the type of transversed oscillations and takes 2 and 3 (Ref. 11) (!io longitudinal (p =1)
oscillation appears), v&~)(u) the eigenfrequency with the node number a (=0, 1, 2, . . . ), and N«')(=0, 1,2, . . . )

the occupation number of the quantum. As is well known the factor ts'S„/BT'I'!' appears due to the zero-
frequency mode and recovers the time-translation invariance which has been violated in the classical solu-
tion. Recovering the 48(!&0) effect is simple and only the difference appears in the relation between T and
(d.

The propagator can now be obtained by substituting (3.14) for t)8(!&0) into (3.1) or (3.2) and performing
T integration,

DO 1/2-i dT exp(iET)Q{~ ~ )(T, 48) = (-i) dt[(i/2v)(l+ 68/2w)]'i't
0 (N(&)) l 0 0

Qt2
a

x exp i I+ ~8/2m) S„t) — X,' '~v', ' ~)]+Et . 3.15)
p„a

In going to the right-hand side we have change the
integration variable from T to the classical period
t =2)t/&u, which is related to the former the&ugh
uT = 2w1+ 48 with 1 being the revolution number
of the classical rotator. ' 'The t integration in

(3.15) is evaluated by the stationary-phase method.
Keeping in mind that v,'t' is the higher-order term,
we must find the period t as a function of E by

ical energy (2.38), the relation between &u =2m/'t„
and E is the same as in the classical case. The
stationary value of the large square bracket in
(3.15), therefore, turns out to be

W{N&&, !)(E)= W, (E) —2m+ N&&') v&&') [«) = 2v, 'to(E) ]
a, p

(3.19)

—S„(t)—2)!+N&~) —v«')((u =2v/t) = —E. (3.16)
aep

S„(to)=E, —
0

(3-17)

2)!N,«') —v,«') ((u = 2n/t, )

Assuming that t(E) can be expanded in accordance
with our expansion [(A9) in Appendix A] as

t =t(E) =to(E)+t, (E)+

we substitute this into (3.16) and equate terms of
the same order to obtain

with

W, (E) =S„(t,(E))-Et,(E) (3.20)

It should be noted that (3.20) is nothing other than

the classical angular momentum 2m'„ for the en-
ergy E. The Regge trajectories are obtained from
(3.1'1) and (3.19) by eliminating the running para-
meter ~ = 2m/t0.

The summation over 1 in (3.15) can be easily
performed and the final expression for the propa-
gator (3.1) is given by

,S„(t&!)
d

0

(3.18) D(E)= E ~ -it, (E) exp[iW{N«))(E)]
{',A) {E(p)) 1 expliW{N&n&)(E)]

a a

Since the left-hand side of (3.1V) equals the class- and for (3.2) by
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D, (E)=Z Z
(; ~) (~&») )V(~&&')(f-') —2»3

1 - exp,"",.
'

W(„&p))(E) —2wij, J

1 e—xyIiW«„»)(E)j

(3.22)

The particle spectra are given by the zeros of
the denominator of (3.22), i.e. ,

$V(~&P)) (F) = 2» 1

This is the Regge condition that particles appear
when the trajectory cr osses integers. As a par-
ticular case where N,'~'=0, I3.23) reduces to the
Bohr-SommerfeM trajertory obtained in the pre-
ceclsng sect&on.

It may be worthwhile to remark that, in obtain-
ing (3.1&)), zero-point-energy contributions have
been disregarded. This contribution due to the
string oscillation modifies I'3.19) to

cerning leading trajectories are unchanged. As
far as the quantum correction is concerned, the
previous result on the type-1 oscillation is r.iodi-
fied because correlations between the quark spin
and the quantum string oscillation Ithe first and
the second term in (3.13)]are now taken into ac-
count. The main effect of the modification is that
there appear to be some number of daughter tra-
jectories with relatively small mass corrections
in the low-mass region, The anal. ysis of the type-
2 oscillations is a new contribution of this paper.

%e note that onl. y the parameters contained in our
theory are quark masses (m„,m„)n„rn„etc.)

and the universal spring constant y of the string,
which determines the scale of energy. The spring
constant y is related to the universal asymptotic
Regge slope by a„'=(2vy) '. We emphasize that
the old and new particles, as well as baryons,
have common spring constants. In this paper we
take o&„'={2wy) ' =1.0 GeV ' unless otherwise
stated.

(3.24) Leading tragcetones

where a„is a constant (actually an infinity). The
value of e, could be detexmined from the Lorentz-
invariance condition as was done in the dual string
model. " This problem is beyond the scope of the
semic lass ical method.

IV. MESON SPECTRA

In this section we study the meson spectra based
on the theoretical analysis of the quark-string
model shown in previous sections. As was pointed
out in papers I-III our method may not be a
good approximation in the low-mass and lorn-angu-
lar-momentum region. If ihe %lattice) gauge theo-
ry is the basic theory and the string model is an
approximation to it„there are some reasons that
the simple Lagrangian. (2.1) may miss some in-
gredients of the gauge theory. Even if we take our
string I.agrangian as a basic theory of the hadron,
the semiclassical method we adopted may not be
expected to work mell in the low-mass region be-
cause (i) the& semiclassical method is unreliable
and (ii) the recoil effect. of the classical solution
due to the quantum oscillation may not be disre-
garded unless the classical mass is large com-
pared to the quantum oscillation.

Nevertheless, encouraged by the very good re-
sul. ts in the preliminary analysis in III, we inter-
polate our solutions from the high-angular-mo-
mentum region into the low-angular-momentum
region. The result is considered to be a good first
approximation to the hadron spectroscopy.

%e point out that all the previous results con-

To the quark masses m„=n~~ = 0.385 QeV, i.e. ,
rn, =m„+m~ = 0.770 QeV, the p- meson trajectory
becomes almost straight with e,'=a„'. Since the
quark masses are below the critical mass (~n„'}'~',
the m meson appears with the same mass - s p.
Our method is not powerful enough to obtain the
p- w mass difference in the low-mass region.

The classical trajectories for the cc states are
shown in Fig. 2. The charmed-quark mass m, is
assumed to be 1.55 QeV, which makes m~& ~

= 3.10
Qeg. A remarkable point in the cc states is that,
because m, ' &(wo.'„') ', the solutions M(a„o&«))and
M(a„n")be)come stabler than M(o&„o&'"). The
trajectories M(e„o&«)) and M(c(„o&"')predict
pseudoscalar particles at 2.80 GeV ()),') and
2.81 GeV ()),), respectively. These values should
be compared with the observed" g',""(2.83). Al-
though the two pseudoscalar particles around 2.8
QeV are expected, no experimental information is
available yet. The 2' particie on the exchange
partner of $/J indicates the mass 3.56 Qeg, which
should be compared with )((3.561). Our string
model predicts a set of four trajectories M(e"},
~&1)) M(~&3) c(&1)) M(~&&) ~&&)) and M(o&& ) (g& ))
all of mhich pass zero around 2.75 Qeg, which we
call. &,. If some of them have nonvanishing residue
in the propagator, J~~=0" shou'd be observed at
this energy.

At this point we wish to comment on the wave
function of these cc particles. In the ordinary
charmonium model the 311 transition in q~- g,y
gives too large a prediction compared to observa-
tion, since the wave function of g, is the same as
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TABLE I. Angular momentum distribution of typical
states.

State

0{1)
X(2')

n, (0 )

0
0.93
0.45

-0.13
1.23

1.0
1.04

-0.80

0
0.03
0.35

0.99
2.08

1.0
2.0
0.0
0.0
0.0

TABLE Il. Particle preditions from classical (lead-
ing) trajectories. The cc states can be read from Fig,
2.

Theoretical predictions Experimental
g PC Mass ln GeV candidates

cc states

1"
2++

0 +

0~+

0++

0++

0++

1
cQ ol cd states

3.10 (input)
3.86
3.56
2.81
2.80
2.75
3.17
3.59
3.58

(/ J(3.095)
(' (3.772)
X(3.561)
g, (2.83)

?

X(3.45)
X(3.»)

1
0

cs states
1
0

bb states
1
0

2.006 (input) D~(2.006)
1.76 D(1.870)

2.06 (input)
1,81

9.50 (input)
6.71

T(9.50)
?

that of )j)/7 except for the spin wave function and
the decay is allowed. '~ In contrast to this, both

q, and q,' in our model have quite different struc-
ture from g/J. In Table I, we show the classical
angular momentum (4,) distribution of some typi-
cal states. Most of the angular momentum of nor-
mal states, )1)(1 ) and )((3'), is carried by the quark
spin (S ) and the quark orbital angular momentum

(E,), while almost none is carried by the string
(l„=0).On the other hand, )), and )),' as well as
&, have a non-negligible contribution from /„and
a large negative value of E, +8, which cancels the
former to give vanishing total angular momentum.
This unfamiliar situation occurs due to the rela-
tivistic effect of the quark motion. Note that the
eigenvalues of our spin operator (3.33) are +-,'

(1 —X„.') '~' so that S, can be smaller than ——,'.
As wilL be inferred from this fact, the wave-func-
tion structure of )j)/4 and those of these particles
are quite different from each other, hence both

the Ml transition )j)-y)), ()),') and the g] transition
g-y&, are supposed to be small. This is in con-
trast to the ordinary charmonium model.

Other trajectories M(n„np)), M(nn), nl3)),
etc. are also shown in Fig. 2.

A similar situation occurs for the charmed par-
ticles (D, E, etc.), and the T family. Some pre-
dictions for these families are listed in Table II.

The excellent agreement of et.--state spectra
provides strong support for the idea that the old
and new mesons are composed of quarks and string
with a common spx'ing constant. The small. slope
for the new-particle trajectories in the low-angu-
lar-momentum region is due to the large quark
mass.

Finally, we wish to comment on the string at"'
solution. If the solution a"' is unstable
against quantum corrections, some of the trajec-
tories discussed above must be discarded. In par-
ticular, one of the g, 's is unstable and the degen-
eracy is removed. However, the pion and the A,
trajectories, both belonging to M(n„nj"),must
be discarded, too. As is seen below, although we
have calculated real quantum frequencies, we have
not fully analyzed complex ones.

Daughter trajectories

The daughter trajectories are derived as quan-
tum corrections to the leading tra]ectories. Ac-
cording to (3.17) and (3.19) the trajectory Z(E) is
obtained by eliminating cd from

J—g (~) Q+ ))) ))(P)(~)

d, S„(f.) =E„-(~—)d

As is shown in Appendix 8, some v's are exactly
k own' vo(R) vo{3) 0 and vl(2) vi{3) 1 Other v's
are numerically calculated as a function of ~.

The zero-frequency modes, v,"' and v,"', need
not be considered. ' Since we are identifying par-
ticles in terms of J, x'ather than total. angular mo-
mentum, al.l quantum-corrected states should not
be counted as independent states. In fact, the
mode v,"' decreases j, by 1, 4j,= -1, but keeps
the energy (mass) unchanged, & I =0. The states
with N',"10 are, thex'efore, considered to be those
which are generated by rotating the state with N,"'
=0 around an axis pexpendicular to the z axis,
hence they should not be countexed as independent
states. All other states are considered to be in-
dependent. It shouM be noted, however, that some
of the classical trajectories, say, M(nt2), n"'),
can be the daughter tx"ajectories of the other, say
M(n„n,).

Some of daughter trajectories are shown in Fig.
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V. CONCLUDING REMARKS

3

FIG. 3. Quantum corrections to the ltj/J trajectory.
The broken line shows a trajectory with opposite parity
to the leading one. Within the shaded area there are six
trajectories, which separate themselves as J grows.

3 for the (."c states. Contrary to expectation six
trajectories with the same quantum number as the
tt)/J trajectory gather around mass = 3.8 GeV at
J= 1, and three trajectories around mass =4.0
GeV. As J grows, their mutual distance grows
(Table III) to get unit intervals as the dual string
model. The trajectories do not all necessarily
imply the existence of J =1 particles. To judge
whether the trajectory has nonvanishing residue
of the propagator pole, some more refined method
than the stationary approximation in the calcula-
tion of (3.15) will be needed.

It is important, however, to point out the rea-
son the trajectories gather in the low-mass region.
This is the effect of the spin resonance with the
orbital rotation. As is seen in (B18), the second
term in the bracket has a pole at the energy E
= ~v = ~/cosa„where (cosa, )

' = (1 —&u'p, ') '~' is
the Lorentz factor. As was done in paper III, if
the correlation between spin and quantum oscilla-
tion of the string [the first and the second terms
in (3.13)] is disregarded, the singularity in v in

(B18) does not appear. The trajectories, then
cross J= 1 with about unit intervals.

We have developed a systematic method of semi-
classical approximation to the system including
both bosons and fermions. The quark-string mod-
el has been studied by the method and the Regge
trajectories for the meson have been obtained.
Although the classical solutions, when quantized
by the Bohr-Sommerfeld condition, provide ex-
cellent spectra for the new particles, the quantum
correction does not give a good quantitative result
due to the strong spin resonance. "

Taking account of the failure in getting the p —m

mass splitting, we feel that a, new (nonsemiclassic-
al) approximation is needed in the low-mass re-
gion. The semiclassical approach can never gen-
erate a large spin-spin interaction term in the
quark-string model because the interaction be-
tween quarks is mediated by the classical string
which produces the L-S force, while it seems
that the spin-spin force plays an important role
at least in the low-mass region.

In a forthcoming paper we will report on an anal-
ysis of the baryon trajectory.

APPENDIX A

In this appendix we present the semiclassical
method for the system involving both boson and
fermion fields. Although the discussion is given
as for the quark-string model, the method can be
easily translated into field theory.

Let us begin with reminding readers of some
basic formulas of the DHN method. '

On performing integrations in (3.3) (we assume
48=0 for simplicity) one is required to evaluate
the eigenvalue of the differential operator

D[x]=y + g, —m(x, ')'~'—-
under the boundary condition g(r) = —P(0). The
index i(=1,2) which discriminates the end points
of the string as well as the flavor index is sup-
pressed unless necessary. Suppose one has found
a complete set of solutions g's, labeled by the

TABLE III. Quantum corrections v,'~' for the M(~„o',) trajectory. Exactly known correc-
tions vf (~) = vf (u) = 1 are not shown in the table. Although quantum corrections for other
trajectories are available, they are not listed here.

v (d 1.0 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10

v(2)
V3

v(2)v4

v(3)
2

v(3V4

2.01 1.97 1.93 1.90 1.87 1.85 1.83 1.81 1.81 1.84

3.84 4.23 4.69 5.27 6.03 7.08 8.63 5.93 4.39 3.25

1.00 1.01 1.01 1.01 1.01 1.02 1.03 1.05 1.10 1.27

1.15 1.14 1.13 1.13 1.10 1,10 1,09 1.10 1.13 1.29

2.00

3.00

2.00

3.00
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index A which satslf y

{ij„(T}= exp(-it „)$„(0}, (A3)

where the periodicity X"(7) =X"(0}is assumed.
Then a set of functions $„„(n=0,+I, +2. . .),

In the zeroth-order approximation (A5) provides

D {01({0j —E {01(g)0{{0jt {0j

kz, j.(&) = —({~j.(0)

with the normalization condition

$„„(r)=exp{i[(2n+I)j{+f„]r/Tjg„(r),
obeys

(A4)
and the completeness condition

{0{{7)Poj(rl)/{0 j 5(r rl)
a, A

If one defines {(j~{ojby

$"' (v) = exp[-iE"'(A)r]lij"'(r)

satlsf le 8

det~a[X]i~ Q 1+
a

= g cos(f„/2)

= Q exp

-ignite„g„+{

Q f„~~ (A7)
{ A) 4 s~&0

where n„=0or 1 (note that det~d
~
=1}. The for-

mula (AV) proves (3.4) in the text. In our string
model a quark and an antiquark are excited at
e = o„ando = O„respectively. Hence, the effec-
'tive action becomes

T 2

I ff L{ tdT Cf gf f + X 0

0 j~1
(AS)

%'e evaluate this effective action I,«up to the
second order with respect to F where X"=X,",
+F", X'=7, and F0=0. The classical solution

X,", will be defined later. Supposing that all quan-
tities are functionals of Ff', we make Taylor ex-
pansions as follows:

D =f) &0 j+8&' j[r]+a&' j[F]+ ~ ~ ~

e =e&Oj+e{jj[r]+e{Oj[I']+~ ~ ~,
fs fs lk (A9)

E„(A)= E (oAj) +Ej{{jA,[1'])+E&'j(g,, [F])+...

The eigenvalues of D[X] are, therefore, given by

E„(A)=- —[(2n+ l)w+ l„].1
8{0jy{oj Q y{0j(Zl) exp( ig{oj)q{0j(0)

{}{„"(r)=- exp [iE{0j(A)r]t„"j„,

4g"(~)= exp(-il'g') 4"(o)
(A16)

and {)
&Oj defined by (A13), one translates (A15) into

D(0),&, (j ) +~(1),&, (0) E (z)(+~& (0),&, (0)

g(&) ] T
E&lj(g) — & — Poja{1jy{ojdr

A A

ol
T

g{11 — $ &0 jD {1j ({0j{fr
A A A (A18')

where 1 ~g~&0 je'{0jlfj&0 jdr = T has been used. The rela-
tion (A18) implies that E„&lj(A)is n-independent.
The relation (A17} can be solved for &Ij'„"by the
well known method

y(&) —+q(0) &~(j )q(0)1-P
A A D(0)

where l'{0j =-- [(2n+ I}{{+E&0j(A)TJ, and is n inde-
pendent. [From (A14) and (2.10), 0&„j=(fl„+{{jS„)&]

gn the first-order approximation we obtain

[D{01 {i{0jE{0j(g)]$ {11 + [D{lj S{1jE{0j(A)]${0j

=E„{1j{A){&{oj('„"„.(A15)

Using the new function

Substituting (A9) into (A5) we are going to evaluate
E„'"j(A) by following the same line of the perturba-
tion calculation. 'The value g'„"'is determined
through (A6).

where a is a, constant and P„is the projection op-
erator into the state $~(0). The constant a can be
shown to be zero within oux approximation by the
normalization condition (A5).

At this point, we are able to inspect the station-
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ary condition of the effective action f,«(A8). The
variation of l,«with respect to X~&,

„

for ceo,
(i =1,2} simply provides us with the string equa-
tion (2.4) because f( „contains only the boundary

value X", (r) = X~(o, , r) T. he variation with respect to
X", occurs in both L„and g,. A, andthatof the
latter equals f,"A'. Therefore, the stationary con-
dition for X", is

r 6D,". (r ') („,6L.,(r ')
~(,A( } 61 &L(r) ~(, A( ) 6X0(r)

where ()&&0& obeys (A14). Equation (A20) precisely coincides with (2.5). As a, consequence, it has
been shown that the stationary condition of f,«with the help of (A14) is equivalent to obta, ining
the classical solution to (2.4)-(2.6) in Sec II. In general, any solution obeying (2 4)-(2.6) is called
a set of classical solutions and is denoted by (X0„()&A")).

Let us return to the perturbation calculation. In the second-order approximation we obtain

T T
TE (2)(A) — $(0) Q) &1) [P(1)E(0&(A) +e'(0&E (1) (A)]l ](1) dr + P(0) [D(2) [/{2)E (0)(A) +S'(1)E (1)(A)]] ](0)

0 0

(A20)

(A21)

or, in terms of gA'
' and g'A",

T
TE (A) 1' & ) (Po )D (

&/( dr E (A)A A A
0

T
It((0 )d (0 ) $(1)d rA A

0

T
+ iI&'"[D "—(({"'E"'(A)]P'„"dT

0

(A22)

T
g (2 & —

I) (0 )D (1 ) A D (1 ) ())(0 &drA A D(0) A
0

T
It&(0 )D (2 )

q
(0)drA A

0
(A23)

Summing up all f's we obtain the final formula

If one takes the rigid-rotator solution (2.10)-(2.12)
as the classical solution, one can easily show that
II)A"'S"'()'A"=0. The result is, therefore,

2 1' 2

I = I"— gf~ A) + dTL~ — 6 f ') A24)
i=1 (

0 i=1

where P,', denotes the classical. action of the string
part. The first-order correction terms have been
eliminated because the classical solution satisfies
the stationary condition. We empha, size that, al-
though the quark part action (2.3) is vanishing if
the classical solution (2.10) is substituted for (t((r),
the quark term

2 2

g e,.g(,.'A& = g c,.(Q,. „+0&S,.)T,

where 0,.
„

is given by (2.12), has appeared as the
zeroth contribution from the stability angle. We
call S„=(P( —Q e, f(','„')the. ".classical action" of
the quark string.

We are now in a position of proving the theorem
(3.10) in the text. The classical-action part in

(3.10a) can be immediately obtained from the first
term in (A24). In terms of our simplified notation
the quantum-correction part (3.10b} for b 8 = 0 can
be written as

T
E= Y g)q ~g ) g g~ (0) (O)q

i 0

(A25)

where

L=L~+ E Lst a. i
g-1

with

L Q —)ID ))I + It((0)D( ))I +)I D( )(&(( ) + y'& ) D( &())(o&
a, i i i i, A i i i i i2A i, A i i2A (A26)

The string part Lagrangian L„is given by (3.12). The boundary condition for )) in (A25) is adopted in or-
der for q to satisfy the same boundary condition as the corresponding field ()('0'+ ()("' [see (A14) and (A16)].
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Let us introduce the new coordinate gp defined by

&l(r) = r) (r) —
&!&

D" 'g'~' !

rb(T) =exp(-i&~&o&) &)o(0),

(A27)

where &7o should be orthogonal to &(&~&o&. Then we can rewrite (A26) as

&TD&o&&7 It!&o&D&» ~D&»g&o&+ I&& &oD&&op&o&
1 —P

0 0 A D(0) A A A (A28)

The path integral (A25) now reads

K Kp & !DY ~ o, T) —Y o, 0) exp
P 2

L,o + & tI&&o&D&o&&1&&o& t]&&o& D&» ~"
D&»&(&&o&st i iA i i A itA i D(0) i i A

i=l

(A29)

where

X)g,X)q;) ',. A,' 'g,dT ~ g, T) —exp -i&,'. ' q,. 0) exp i d7 E,.g,.D,' 'g, A30)
i 0 i 0 i=1

The formula (A29) divided by K, provides us with the effective action

I =S d. Id d \' d'D ' 1d' —1&1"D!" ""D(.''d| ')1 —P.
eff st i itA i ioA i A i D(0) i i,A

0 i=1
(A31)

which precisely equals the action (A24) with (A23) obtained by the stability angle method. This proves the
theorem.

For later purposes we rema. rk that (A30) can be easily calculated by the stability-angle method, and

K = Q II exp[-i(f&. a&
—f& ~&)N, a], .

{& g) i, a&ioA
(A32)

where B runs over the complete set of solutions to (A14) except for the initially given classical solution
Na runs over all integers (0, 1, 2, . . . ).

APPENDIX B

This appendix is devoted to the evaluation of the path integral (3.10),

Q&„~&(T) = exp(iS„)K/K„
with

(B1)

T
K= QY Rg,.~g,-) & o, T) —Y o, 0)) ~ q, T) —exp -Q,' A')g; 0)),' A,'. 'gid7 exp iSq Y, g,

(B2)
T

Kp X)Q 'X)Q i) & g,. T) —exp -i f,"A)g, 0)) & ',.z,'."g,.d7 exp iS Y = 0, g ),
i i i 0

83)

F(o, r) =ft(e = ~r)Z(o, r),

(r) = exp[ ir(A& .„+-,'&o&r')])&&(r),—

P,.+„'(r)= exp[-ir(Q& „+oo&o')]u& ~.

(B4)

where So is given by (3.11) [&8 is taken to be zero
for simplicity. ] Since the rigid rotator solution for
X„is chosen, it is most convenient to adopt the
body fixed frame to the rotator by making the tran-
sformation

In this frame of reference, all explicit & depen-
dence in So disappears [see (B10) and (Bll)], and
the integrals (B2) and (B3) can be best evaluated
by completing the square. Since both Y and g can
be treated as commuting coordinates as shown in
Appendix A, we can do this by finding a complete
set of eigenfunctions to the Euler equations that
follow from So. (This method is equivalent to that
of the stability angle presented in Appendix A. )

'To the action S for a given set of classical
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solutions (X„,)})' )„),let the Euler equations in the
body fixed frame be

bg =uAOX+ g OuA,

D"'X =-Dtx)[Z]2/„,

(B5)

(B6}

with

~(o)~ (o) —0 (B8)

where g~ ' is implied to be orthogonal. to uA. The
eigenfrequencies will be obtained by substituting
(BV) into (B5).

Before entering into calculations, we point out
that the eigenfunctions can be classified into two

groups. One group is that with a nonzero inhomo-

where 4, Dt3), and D"'[Z] are certain differential
operators with no explicit v dependence, and 0 is
a 4x 4 matrix. The formal solution to (B6) is giv-
en by

X =cX,"'- "D")[Z]u1 —P
g(o) A

geneous term (c 310) in (BV), and the other group
is that with a zero inhomogeneous term (c =0).

The inhomogeneous group (c 3-'0} is not needed
for our purpose. Since X1t3) satisfies (B8) the
eigenfrequency can be easily evaluated. Let it be

(&st '- f t3))/vT=(Q s+ tSx)s) —(0„+tuS„}.

The second term comes from the transformation
factor in (B4). Substituting (BV) into (B5) one
easily finds that Z should also have the same
eigenfrequency if c 40. The contribution of this
class of frequencies to (B2) is altogether

Z II ~ p[- g,"'- ~&„"}f/,]
i+g) 8&A

As has been shown in (A32), this is equal to E„
and can be factored out by the normalization in
(Bl). In the following, therefore, we consider the
homogeneous class solutions only.

Substituting explicit classical solutions (2.8) and
(2.11) with the boundary condition (2.14) into (3.12)
and (3.13}and using (B4) we find that

I.,= dtx 2,1,„{(Z„+&uZ, )' —2(u'pp [(Z„—tuZ, )Z2 -(Z„+u)Z, )Z, ] —td'Z2 '}+—(Z„'—tu'Z3 ')
$1 —(gp p J(d 2 (gp

1

CK2 2

for 0,, & ot & ~„and

* *.. .'(x "'x, -x, "'x- xI, ~
2 ., "Ix)- tx- 't/)"*xx21 —& p) )'

(d (d„2X,—XQ „—ix„t)„+
2 v„3X —'X t)„Xv„BI„)—('d p )

3p(d
+ 2)2 (I 2 2»/2 (Z22+ tx)Z1)(&gx+ X2/~)1 —4) p)

1
~ 2»/2 II~( ~~&X+ X~»&) —~Z3, [(s,y'c'X)+ (X~'o'~„)]2 1 —Q7 p)

t(dp 2)t,x, —x, ,) —(,wvx, —x,wv „)I'1 —('d p )

(d pS
(1 2 2xl/2 ( 1 + 2/

(
2 2 1/2 Z3 + 2 2 3/2 + 2 2 (Z2 +xdZ1)1-co p

(B10)

(B11)

for tx= 12, ( 12, 2). Here

{wtx}p lP
g (O &

1 2 2

W" = (0, Z« —tuZ„Z2,+ tuZ„Z„).
(B12)

g, denotes the longitudinal mode, Z, the transverse

mode parallel to the rotation plane of the classical
solution, and Z, the transverse mode perpendicular
to the rotation plane. Though all quantities (p, Z,
X, and 3/„) in (Bll} should have an extra index
3(= 1,2) which indicates the end points of the string,
that is suppressed to avoid notational. complexity.

The diagonalization of I,o= I,o, +Q, ,E,o, is
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straightforward. A ssuming that the eigenfrequency
is p~, l.e. ,

Z& = exp( fv-~r) G&+ exp(f v&r)G&~ (j= 1, 2, 3),

){=exp( iv-~v)X "+exp(fv(gr)){' &,

(B13)

(B14)

we solve (B7) and (B5) provided c=0.
It is important to point out that the Lagrangian

for the string part (B10}does not provide the equa-
tion of motion for the longitudinal mode Z, due to
the massless property of the string. In fact one
can eliminate Z, out of L, by adding a certain
boundary term as (B10). The boundary term, com-
bined with the quark term (Bll}, then provides us
with equations of motion for Z„(r)= Z,(o, , r). Be-

, G, +2tana G, +(v' —1)G,=O
dn da|

(B15)

with the boundary condition

cause of this reason, Z, (o, r) for o, &a&o, is not
considered as a dynamical variable, and could
have been eliminated if an adequate condition had
been imposed from the outset. One can also con-
firm that even if one begins with the model with
massive string' instead of (2.2}, the same result
will follow in the massless limit.

On solving (B5) we eliminate the boundary quan-
tities X, by the use of equations of motion. The
eigenvalue equations eventually turn out to be the

following.
The type-2 mode. " For n, & n &a„

2(m& cos'a&+ 2~S&) —(m& cos a&+ 3&oS&) cos a&(1 —v }

(B16)

The type-1 mode. For Qg & Q & Q2& sin~
G ~ sinat+ cosg

for p= 0, (B21)

d2
~ G, + v'G, = 0

dQ

with the boundary condition

(B17)
1

G, - 2, (2 )
for v=1. (B22)

2

G, /G, =(-1)'
y l cosa, I

S,.x m, +tan a
1 —p cos a,

(B18)

Both (B17) and (B15) have exact eigenvalues 0 and

1. The zero solution for G„p''= p,"'=0, and thea
unit solution for G„p'~'=p,"'= 1, are immediately
understood by inspecting the right-hand sides of
(B18) and (B16). The zero solution vo+'=0 for G,
can be confirmed by substituting sina. for G, in

(B16) and 0 for v,

cos vat) (B19)

and for (B15),

sina cos(va) —v cosa sin{ va) for pc0, 1,
v cosa cos(va)+ sina sin(va)

(B20)

Here a. , denotes the boundary value of the classical
solution determined in (2.14) and classified by

(2.17) and (2.18), and S,. denotes the spin of the

quark at the zth end.
Exact solutions for (B17) and (B15}are known,

i.e. , for (B17),

cota,.= (-1)' ~ (m& cos a&+ ~S&}. (B23)
y I cosa. , I'

This is equal to the boundary condition (2.14) for
a,. and is satisfied. Similar situation occurs for

(3)
1
In general, eigenfrequencies p,'~', where p= 2

and 3, and g= 0, 1,2, . . . , must be calculated nu-
merically from the boundary condition (B18) and

(B16). We have obtained most of the necessary
frequencies for phenomenological arguments Sec.
IV.

Let us return to the path integral (Bl). Now that
the eigenfrequencies v,'~' are obtained, (B1}can be
written as



2622 KIKKAWA, KOTANI, SATO, AND KENMOKIJ 18

oo
2

1/2 82S 1/2

q,„„)(T)= Q xP(iS„) Z)a,"'
2

&cvT=2s't )

exp j l [( "')*— * ."' ( .'&')*]dT ~ St,
I0

Pta

1/ 2 g2S 1/2
exp (—

' Q,'&~N,' ~)'),
l=& [x~&&) apP

&~ T= 2fl'l ) a

(B24)

where W'&' denotes the occupation number of the mode of v,'&', and 1 the revolution number of the
classical rotator within the period T. The first two factors in (B24) appear from the zero-fre-
quency modes. This is the formula (3.14).
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