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Right-handed currents and strong interactions at short distances
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The effects of the introduction of right-handed currents are considered for weak interactions of ordinary
hadrons. In particular, we derive the expressions for effective Hamiltonians of weak nonleptonic interactions
with hS = 1, 6 S= 2 and of weak radiative decays. The coefficients occurring in the operator expansion of
the effective Hamiltonians are found, taking into account strong interactions at short distances in the frame of
quantum chromodynamics. Strong interactions diminish the effect of right-handed currents. Our conclusion is
that right-handed currents are not important for weak interactions of ordinary hadrons.

I. INTRODUCTION

The spectrum of elementary particles seems
to be richer than one might think. Almost certain-
ly, there is a new heavy lepton. ' It is difficult
to imagine that this lepton is not accompanied by
at least one new quark and, moreover, there is
a recent experimental result indicating the pro-
duction of new resonances decaying into a p, 'p,

pair, possibly a new g-like system. '
There is no doubt that heavy particles enter the

Hamiltonian of weak interactions and, therefore,
our knowledge of weak interactions is incomplete.
Moreover, new particles can bring new kinds of
interactions, and many authors have introduced
right-handed currents. '

While it is difficult to judge now the validity of
the various models for heavy particles it seems
possible to estimate the effect of new currents and
of heavy virtual states on the weak interactions
of ordinary hadrons. In the present paper we will
study from this point of view the role of (hypothe-
tical) right-handed currents in coupling light and
heavy quarks. Our interest in the subject was mo-
tivated mostly by the suggestions' ' that the in-
troduction of right-handed currents resolves such
long-standing problems of weak interactions as the
origin of the Al = —,

' rule in the nonleptonic decays
of strange particles and possible violation of SU(3)
flavor symmetry in the 5'-py decay.

In fact, it is not a trivial matter to introduce new

interactions in a consistent way. There are at
least two reasons for this. First of all, the ex-
perimental data on the properties of strange par-
ticles are rich enough and, in some cases, put
severe constraints on the structure of weak in-
teractions. In particular, the K~ —K~ mass dif-
ference is quite sensitive to the models of weak
interactions. Secondly, an exchange of a heavy
quark is a short-distance process, and we now
have a reliable theory of strong interactions at
short distances, i.e. , quantum chromodynamics.

'Therefore, the effect of the introduction of new
interactions with heavy quarks is not obscured by
a lack of understanding of strong interactions.

We will exploit quantum chromodynamics (QCD)
to calculate the effect of strong interactions at
small distances on the Hamiltonian of weak non-
leptonic interactions with right-handed currents.
According to QCD the effective coupling constant
of strong interactions is small at short distances, '
and this makes the effect calculable. At large
distances, i.e. , at the distances of the order of
radius of confinement, the interaction becomes
indeed strong. For such distances one relies on
some conventional phenomenological model of
strong interactions, such as the quark model, to
get an idea of the role of strong interactions.

'The gluon exchanges at short distances can mod-
ify the weak Hamiltonian in a nontrivial way. In
particular, for left-handed currents it was shown
that strong interactions exhance the 41 = ~ piece
of the Hamiltonian and suppress the 4I = 2 transi-
tions. ' Moreover, if one accounts for a new mass
scale introduced by charmed quarks, then there
arise new operators in the Hamiltonian. ' Both ob-
servations can provide a key to the understanding
of the Al =-,' rule.

he effects of strong interactions at short dis-
tances, in the case of right-handed currents, have
been considered in a number of papers. In par-
ticular, in Refs. 3(c), 9, and 10 anomalous dimen-
sions of transition operators relevant to AI = —,

'
have been found. The problem has not been in-
vestigated in full, however, mostly because of the
technical difficulties. In particular, to account for
the operator mixing, one has to evaluate the two-
loop graphs in some cases.

The main purpose of the present paper is to
derive the effective Hamiltonian of weak interac-
tions for the AS=1, AS=2 transitions and for weak
radiative decays within the models with right-
handed currents. The results for 4S = 1 transi-
tions were given by us in a letter" earlier and
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here we present some further details of derivations
and discuss the correspondence with the results
of other authors.

The method of evaluation of the effects of strong
interactions at short distances is quite traditional
in essence and makes use of the renormalization-
group equations for summation of the logarithmic
terms arising due to the gluon exchanges at short
distances. We sum up explicitly the leading pow-
ers of lnm~, lnm„and lnm„where m~, m„and
m, are the masses of the W boson, Higgs boson,
and heavy (charmed) quark, respectively. All
these masses are considered to be large in the
mass scale of ordinary hadrons. We will present,
however„a new formulation of the renormaliza-
tion-group method which is useful for the purpose
and can be helpful in other occasions as well.

Our main result is that strong interactions at
short distances suppress the contribution of right-
handed currents into the decays of ordinary had-
rons. The result is by no means trivial since
operators with rather high positive anomalous
dimension are present in the expansion of the ef-
fective Hamiltonian. It turns out, however, that
these operators enter with small numerical coef-
ficients (such as —,', for the transitions).

Numerically, the suppression factor varies from
one kind of process to another. For weak radiative
decays it ranges between —,

' and
yQ for reasonable

choices of the parameters. For transitions with
4S =1, the suppression fa,ctor is about 0.75. 'These
results seem to indicate that right-handed currents
do not play an essential role in weak interactions
of ordinary hadrons.

For the 4S = 2 the situation is more complicated
as far as comparison with experimental data is
concerned. The point is that the result for the
K~-K~ mass difference depends rather heavily
on the details of the models of weak interactions
which are difficult to clarify at present. In par-
ticular, we will argue that the contribution of the
box graph [see Fig. 1(a)] with W bosons and auxi-
lary g' scalars in the intermediate state is not
gauge invariant by itself. The gauge-dependent
terms are canceled by gauge-dependent terms in
correction to a single-Higgs-boson exchange [see
Figs. 1(b) and 1(c)].

Thus, any estimate of the K~ -K~ mass dif fer ence
cannot be performed consistently without making
explicit assumptions on the structure of the Higgs
sector of the model (this quite unusual situation
was overlooked by the authors who made the es-
timates earlier'"'"). Let us notice that the com-
plexity arising in the Higgs sector of the models
with right-handed currents was recognized earlier
by Llewellyn Smith" for the currents coupling light
quarks among themselves and in recent papers"
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FIG. 1. Graphs describing the bare Hamiltonian of
&$=2 transitions: (a) box graph with two-Wexchange,
(b) single Higgs-boson exchange, (c) radiative correction
to graph (b). Cross denotes &-quark mass insertion, the
wavy lines stand for & boson and unphysical Higgs
scalars P~, the curvy lines correspond to the physical
Higgs boson.

concerning the currents coupling light and heavy
quar ks.

Our final expression for the K~-K~ mass dif-
ference is a sum of several terms of opposite
signs each of which is two orders of magnitude
larger than the experimental number. Within the
accuracy of the method used it is not possible to
rule out that the cancellation between the various
terms is practically complete so that the th oreti-
cal prediction for &M~~ is in no contradiction with
experimental data. The reader who is reluctant
to accept such a possibility would conclude that a
coupling constant of right-handed currents must be
small (of the order of —,', of the Fermi coupling
constant of weak interactions). This result
strengthens the conclusion made above that right-
ha, nded currents do not play a major role in weak
interactions of strange particl. es.

The procedure is as follows. In Sec. VIII the
sent general remarks on the form of right-handed
currents and discuss difficulties arising in the
Higgs sector of the models. In Sec. III the notions
of effective Hamiltonians and renormalization-
group equations are introduced to sum up a power
series of the logarithm of a large internal mass.
The method is used in Secs. IV and V for construc-
tion of effective Hamiltonians of 4S = 1 transitions.
Bare and effective Hamiltonians of &S = 2 transi-
tions are found in Secs. VI and VII. In Sec. VIII the
effective Hamiltonian of weak radiative decays
is presented. Section IX contains numerical esti-
mates.

II. GENERAL REMARKS ON THE MODELS
WITH RIGHT-HANDED CURRENTS

Before proceeding with a calcul. :)ti:.. ; o= the short-
dist" nce eff ects, let us outline the models with
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right-handed currents. In particular, we would
like to emphasize some difficulties existing in
these models in the Higgs sector.

It is convenient to introduce left- and right-
handed components of the quark fields

s= 2(1+y,)

and separate their contribution into the weak
charged currents

~ ~ L R
)Q )p )g'

We will accept the following form of the currents
and j
j„=.szy„(uz sin8c+ cz cos8c}

weak-interaction coupling constant is concerned.
Existence of the coupling of the Higgs meson

with a strangeness-changing source is specific for
the models with right-handed currents. To sub-
stantiate the point, let us consider the structure
of doublets with respect to the SU(2) group of weak
interactions

ur

l dg cos&c+ sr, sin8c)

f c,
(-d~ sin8c+ s~ cos8c)

+ d~y„(uz cos8c —cz sin8c),

j„=sings„y„c~,
(2) (s„)

[V' -A', fi(4S = 1)]= 0, (i = 1, 2, 3), (3)

where V'-A' are the generators of the SU(2)s
group. The validity of Eq. (3) is confirmed by the
success of the current-algebra predictions for
4I =-,', —,

' amplitudes in the decays K-2m, 3&. More-
over, the d„y„c„currentwould result in an unac-
ceptiably large KL-K~ mass difference. " There-
fore, the d„y„c&current, if it exists, cannot be
impor tant.

It is worth noting that sing~ 1 only if the number
of quarks is larger than four. In the latter case
there are some further terms in the currents but
these terms do not manifest themselves in the
processes under consideration and we have omitted
them. Even if the number of quarks exceeds four,
sing does not necessarily differ from 1. Thus, in
the six-quark model proposed in Ref. 3b, sin+ = 1.

Currents (2) result in the following bare Hamil-
tonian of the 4S = 1 transitions:

H"'(M = 1}=G vYsin8c cos8c(s~y„u~u~y„d~

SLy CLCLy„d )

—GWsinp sine, r„y„c„cLy„dL.
(4)

As for the M = 2 transitions, they are induced
both by two-W-boson and single-Higgs-boson ex-
changes (Fig. 1). Moreover, the Higgs-boson ex-
change is the leading one as far as counting in the

where s, d, u are the fields of light quarks, c is a
charmed quark, Hc is the Cabibbo angle, and sing
is a new parameter describing the coupling con-
stant of right-handed currents.

Although Eq. (2) is not the most general one, it
incorporates the models which are interesting
from the practical point of view. In particular, we
have not included the term d„y„c„.Such a term
violates the condition"

where we assumed that sing = 1 and omit the doub-
lets constructed from heavy-quark fields alone.

The mass of the charmed quark arises because
of the spontaneous symmetry breaking and the ap-
pearance of the vacuum expectation value of the
Higgs field. The simplest multiplet of the Higgs me-
sons which is necessary for an introduction of mass is
a triplet. Then the term responsible for quark
masses is of the following form:

1 1

~
„RgcI~RL~ H.c.,),|t )0

= —m, cc -gw [0'cs( dz sin8c—+ sz cos8c)
mQ

+ (' sscg+ H. c.]
mc—g~ o[cscz —s„(d~ sin8c+-s~ cos8c)+ H. c.],

(6)

where (g')o = m~/g ~ is the vacuum expectation value
of the neutral. component of the Higgs field, and
the o field is defined as a deviation of g' from its
vacuum expectation value, g' = (g')o+ o'.

It follows immediately from Eq. (6} that there
exists a strangeness-changing neutral transition s
—der with a well-defined coupling constant. Al-
though Eq. (6} is model dependent, the conclusion
on the existence of strangeness-changing coupling is
more general. Moreover one can argue that such
a coupling exists if the right-handed currents are
responsible for the 4I= & rule in weak nonleptonic
interactions (see also Sec. VI).

It is worth emphasizing that the o'sd coupling is of
the first order in g~. 'Then the KL-K~ mass dif-
ference arises, generally speaking, in the second
order in g~ which corresponds to the first order
in the Fermi coupling constant G. Therefore, the
KL-K~ mass difference is too large, in violent
disagreement with experimental data.

There are three ways out of this difficulty: (i)
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'The mass of the Higgs meson is very large so that
the coupling constant induced by the Higgs-meson
exchange, gv'/m, ', is of a magnitude comparable
to the contributions of the fourth order in g~. (ii)
There are several Higgs fields and their coupling
constants and masses satisfy such conditions that
graphs of the type represented in Fig. 1(b) cancel
each other. " (iii) The coupling constants (mixing
angles) and masses of quarks are organized in
such a way that asd coupling does not arise. "

If the possibility (iii) is chosen by nature, then
the right-handed currents cannot be responsible
for the 4l =

& rule or for the observed weak radia-
tive decays (see Sec. VI). Possibilities (i) and

(ii) mentioned above can save the idea on the dom-
inating role of the right-handed currents but they
do not look attractive by themselves. In case (i),
increasing the mass of the Higgs boson results in
the increase of the coupling constant of the self-
interaction of Higgs scalars. Practically, we need
an introduction of such a mass of the Higgs field
that the perturbation theory breaks down. Case
(ii), on the other hand, assumes quite a special
organization of the Higgs-meson self -interaction
for which there is not apparent reason.

While performing explicit calculations we will
a.ccept possibility (i), although all the results can
be reformula. ted in a trivial way to case (ii).

Thus we see that consideration of the bare quark
graphs provide arguments against the leading role
of the right-handed currents. Further indications
in the same direction come from a consideration
of the effects of strong interactions at short dis-
tances which will be given in the subsequent sec-
tions.

III. LIMIT OF A LARGE INTERNAL MASS

AND THE RENOR1UJALIZATION GROUP

We will study the effective Hamiltonian of weak
interactions of light quarks induced by exchanges
of W bosons. The effective Hamiltonian arises
after accounting for the strong-interaction effects
at short distances in the bare Hamiltonian which,
in the case of the 45=1 transitions, is given by a
simple product of currents. 'Throughout this paper
we assume the validity of quantum chromodynam-
ics, i.e. , we assume that the strong interactions
are due to the exchanges of an octet of color
gluons.

Thus there exist different scales associated with
the mass of a 5'boson m~ and a characteristic had-
ron mass ~. Moreover, there are heavy quarks
in virtual states which bring a new mass scale m, .
We will assume that the masses satisfy the condi-
tion

m 2 » m 2 » m2
W C

and will sum up the leading powers of the In(m /
m, ) and In(m, /m). For the mass of the Wboson we
accept the estimates common for the gauge the-
ories of weak interactions, m -70-100 GeV. The
mass of the charmed quark is about 2 GeV. As
for the typical hadronic mass, the estimates vary
between

m'-m, '-0.02 GeV' and m'-m 2-0.5 GeV'

(8)

The former estimate corresponds to the proton
electric radius while the latter one is traditional.
By hadronic mass m it is convenient to understand
the point where the effective coupling constant of
strong interactions is of order unity. The choice
of the low normalization point m -m, is supported
by, say, analysis of the hadronic decays of $ me-
sons which indicate that the effective coupling con-
stant o, is small, a, (m~)-0.2." The coupling
constant n, can be determined, in principle, from
the data on the e e cross section or from an anal-
ysis of the deep-inelastic scattering. At present,
the experimental data, to our mind, are not accu-
rate enough to provide for such a possibility.

Condition ('I) corresponds to a choice of a low

normalization point. Even if this is not true, we
feel that it is useful to derive dependence on m in
a self-consistent way.

We will adopt the method of summation of ln
terms which is based on the introduction of an ef-
fective Hamiltonian. In the case of left-handed
currents dependence on m~ was found first in Ref.
7, while summation of in', terms was performed
first in Refs. 17 and 8. The heavy-quark expan-
sion was discussed in recent papers from a formal
point of view. "

Consider first the case of a renormalized theory
with one of the fields having mass M much larger
than the others so that there exist two mass scales.
Moreover, we are interested in the processes in-
volving only light particles of low momenta, P «M.
The presence of heavy particles can be described
then by means of the effective Hamiltonian.

The effective Hamiltonian, unlike the fundamen-
tal one, does not contain the fields of heavy par-
ticles at all. Heavy particles enter only through
loop graphs which induce new (quasi-) local ver-
tices among the light particles. A well-known ex-
ample of an effective Hamiltonian is a four-fer-
mion weak interaction. It is commonly believed
that this interaction is due to the ~-boson exchange
and is not a fundamental one. Nevertheless, it is
adequate to describe weak interactions at low en-
ergies. The mass of a ~ boson determines the
strength of the four-fermion interaction.

The coupling constants induced by virtual heavy
particles tend to zero as mass M tends to infinity.
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In the tree approximation, i.e., for graphs without

loops, the corresponding vertices can be readily
found and are proportional to M ". In the next
orders in strong interactions there arise terms of
order M "(inM) and so on.

Introduction of effective Hamiltonians provides
an easy way for summation of the ln terms. The
procedure is as follows: I.et us denote by g& the
constants giving the weight of various operators
0, in the operator expansion of the effective Hamil-
tonian. The operators are normalized in such a
way that at some Euclidean point p, their matrix
elements coincide with matrix elements of nonin-
teracting fields. In other words, the generalized
charges g, (p) are determined by the one-particle
irreducible Green's functions at external momenta
p' =-g'. Determination of g, (p) requires account-
ing for all the interactions at distances less than

1/p. Therefore, the effective Hamiltonian can be
treated as an ordinary one provided that all the in-
tegrations over the virtual momenta are cut off
from above atP = p.. The effects of strong interac-
tions at distances larger than 1/p a.re accounted
for in the matrix elements of operators 0, (p).

The generalized charges g; can be found as func-
tions of p. by solving the renormalization-group
equations which follow from the fact that physical
amplitudes are independent of the choice of the
normalization point p. In other words, the change
in the normalization point p. is equivalent to some
change in the charges g;. In this way we come to
a set of differential equations of the form

where functions P& depend on charges g~ but not on

the point p. Equation (9) assumes that all the
charges are chosen to be dimensionless. This can
always be achieved by introducing a proper power
of p. into the definition of g, (p).

Using the perturbation theory in the effective
Hamiltonian one can find the coefficients of expan-
sion of functions P, in powers of charges g~. In-
deed, the perturbation theory makes it possible to
find the relations between the charges normalized
at p' =-p' and at p' =-(p+&p)'. Expanding these
relations in 4p, , one can find explicit expressions
for the functions P,.

The charges induced by heavy-particle exchanges
are of order M " and small. Usually all the con-
sideration is confined to a certain order in 1/M
and there is no difficulty to find the number of
terms in the power expansion series in any charge
g~ which must be kept explicit in the approxima-
tion considered.

There are some charges which are present in
the fundamental Hamiltonian and do not depend on

the large mass j/I. An example of this kind is the
quark-gluon coupling constant. Use of perturba-
tion theory in these charges is justified if small-
ness of the charges can be inferred in some way.
In particular, in quantum chromodynamics the
smallness of n~(p) is a consequence of the asymp-
totic freedom of the theory provided that p. is large
enough.

Thus far we have not used the renormalizability
of the theory, and Eqs. (9) are valid in a nonre-
normalizable theory as well, provided all possible
independent operators are listed and included into
the effective Hamiltonian. The renormalizability
is invoked to define the initial conditions for the
differential equations (9}, i.e„the renormalizabil-
ity guarantees that at g-M the charges g, (p) can
be expressed in terms of the coupling constant and
masses entering the fundamental Hamiltonian. All
the infinities encountered in the course of evalua-
tion of g~(p, -M) can be absorbed into renormaliza-
tion of a finite number of terms in the I.agrangian
and, moreover, there is no large ln term left.

Thus explicit expressions for functions P, (g) fol-
low from the consideration of effective Hamilto-
nians, while initial conditions at p,-M depend on
the initial theory.

In the literature the renormalization-group equa-
tions are mostly used in the Callan-Symanzyk
form, i.e., in a form of linear partial differential
equations. The generalized Gell-Mann-Low type
equations (9}are more convenient and applicable
in a nonlinear case such as many current ampli-
tudes. Examples close to our approach can be
found in Refs. 18 and 19.

If there is a sequence of masses such that I,
»M2»M, » ..., it is convenient to introduce a
sequence of effective Hamiltonians in such a way
that the first one refers to the range of virtual
momenta M, » p,»M„the second one can be
viewed as a Hamiltonian for I,» p.»M„and so
on. In the first region all the fields except for
that of mass M, are considered as light, in the
second region the field of mass M, is eliminated
as well, and so on. Again, the procedure is espe-
cially helpful for the purpose of summation of the
leading In terms in each of the regions. In the
following sections, we will give explicit examples
of Eqs. (9).

Let us add some remarks on the choice of the
set of independent operators 0, and corresponding
charges g, . First, there is no need to include
operators which can be represented as a total de-
rivative. The matrix elements of such operators
vanish identically as far as all the particles are
on mass shell and energy momentum conservation
is respected. Since in the end only such matrix
elements are of interest, we can disregard oper-
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ators which are total derivatives. It is important
that such operators are mixed by strong interac-
tions only among themselves. Secondly, the set
of independent operators can be somewhat reduced
by using the equations of motion. There is no need
to keep operators which are related to each other
by equations of motion.

Moreover, operators 0, must be gauge invariant,
and one can omit operators containing ghost fields.
I.et us present the arguments, disregarding for a
moment the infrared problem which is inherent
for QCD. Only gluons with transverse polariza-
tions have physical meaning and all the operators
can contain only the gluon field strength tensor
b'„,but not the potentials 6'„.The only delicate
point here is that in practical calculations it is
more convenient to use the covariant gauge condi-
tions which imply introduction of the ghost fields.
This seems to be a technical rather than a princi-
ple problem. Indeed, all the results of calculations
can be reproduced in a ghost-free gauge and since
the final answer is gauge invariant, any gauge can
be used for intermediate calculations. Introduc-
tion of ghost fields for computational purposes
does not imply the necessity of consideration of
operators containing the ghost fields. If one still
decides to do this, one must also take into account
gauge-noninvariant operators. The combined ef-
fect on gauge-invariant operators would vanish.

The infrared cutoff introduced in QCD does not

spoil gauge invariance, since we keep it only in

ln terms ln"~ and consistently neglect powers of
m.

Of course, if the set of operators includes some
extra terms which can be eliminated following the
line of reasoning outlined above, it does not mean
that the final answer will be wrong. It is correct
as far as all the calculations are made in a correct
way. The only point is that one can economize the
effort by eliminating unnecessary operators.

IV. EFFECTIVE HAMILTONIAN OF THE AS =I
TRANSITIONS

As an application of the general method we
will consider here a derivation of the effective
Hamiltonian of the ~S =1 transitions in the models
with right-handed currents of the form (2).

To this end let us enumerate first all the rele-
vant generalized charges g, . The strong interac-
tions are described by the effective coupling con-
stant a, (p). The Hamiltonian depends also on the
quark masses which we will renormalize at point
p. and consider as some generalized charges. It
is reasonable to neglect the masses of light quarks
since they are not large compared to the inverse
radius of confinement. Moreover, we will assume

that all the heavy quarks have comparable masses
and introduce explicitly only the mass of charmed
quark m, (p). In fact, one must keep dependence of
m, on p only for m~» p.»m, , For the range of
m, » p. the mass operator does not contain ln terms
and m, can be considered as a constant.

The Hamiltonian of nonleptonic weak interactions
can be represented as a sum over independent
operators of dimension six

H(s.S =1}=Qc,O, , (10}

(12)

Here b„'„(a=1.. .8) is the gluon field strength
tensor, t ' are the Gell-Mann SU(3) matrices
acting in the color space and normalized by con-
dition Tr jt't ) =26'~, and g is a quark-gluon
coupling constant, g'/4m= ns.

The general form of the Hamiltonian (11) fol-
lows from the explicit constructing of all the pos-
sible operators. It is worth noting that we have
not included into the list operators arising in the
models with left-handed currents alone. For a
discussion of these operators see Hefs. 7 and 8.

Thus, the differential equations (9) in the region
m ~ » p, » m, take the form

(13)

where b =11—2/3N, N being the number of flavors,
6 = —4 is the anomalous dimension of the mass
operator, and we kept only lowest-order terms
in the expansion of functions P;. The equations
are by no means new. Their solutions look as

where local operators 0, are constructed from
quark and gluon fields and the coefficients c, are
of order of the Fermi coupling constant of weak
interactions G. Operators of higher dimension
enter the expansion of the Hamiltonian with coef-
ficients which are proportional to extra powers of

and are negligible for this reason.
An explicit form of expansion (10) is different

in the regions m~» p, »m, and m, » p.» m. In the
former case one gets

H(S.S =1)= G&2 sing singes B, +cs B, + crT],1

(11)

where
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follows (see, e.g. , review in Ref. 19): 2 1
y~ =--, +-, b . (16)

(14)

„dcr(I,b o&(u), ( }dp r 2 2v

(15)

where y~ refers to the anomalous dimension of
the operator T =s~o„„t'd~b„'„and—,'b arises due to
including of g(p, } in the definition of T

'The only computation needed to find an explicit
form of the renormalization-group equations (15)
is that of the anomalous dimensions y~ of opera-
tor T. The latter is given by the one-loop graphs
of Fig. 2 and can be readily found

where matrix notations are used; y is matrix y, &

and c is the column c, Positiveness of the coeffi-
cient b is a manifestation of the asymptotic free-
dom .

As far as computational work is concerned, the
central problem lies in an explicit evaluation of
the y, &

and we will present the results obtained
below.

In the region m, » p, »m the renormalization-
group equations for the coefficients of the opera-
tor expansion look simpler. The reason is that
in this region one must eliminate from considera-
tion the operators containing the heavy-quark
fields. Thus, we have in this region

Let us emphasize that, in the region of p, con-
sidered, the anomalous dimension of the operator
T does not include anomalous dimension of mass
m, (p). The reason was in fact already mentioned
above: There are no ln terms in the mass
operator at momenta P & m, . For the same reason
the value of b in Eq. (15) is fixed and equal to nine,
independently of the number of flavors.

Before solving the renormalization-group equa-
tions explicitly let us summarize the whole pro-
cedure. In estimating the contribution of the right-
handed currents into the low-energy decays one
can consider only the operator T. All the other
operators contain the charmed-quark fields and
can be neglected. This corresponds to the small-
ness of heavy-quark admixtures in ordinary
hadrons. Moreover, since heavy quarks appear
only at short space and time intervals of the order
1/m„ the effect of heavy virtual quarts can be ex-
plicitly found within QCD since the effective cou-
pling constant of strong interactions is small at
short distances. In other words, heavy virtual
states determine the value of coefficient c~. The
way of finding this, starting from the bare Hamil-
tonian, is rather lengthy: first we must solve re-
normalization-group equations (13) in the region
m~ » p. » m, using the bare Hamiltonian to fix the
initial conditions, and then we must solve the dif-
ferential equations (15) in the region m, » p» m

using the results obtained in the region p, » m,
to fix the initial conditions.

V. SOLVING THE RENORMALIZATION-GROUP EQUATIONS

FOR THE 6S = 1 HAMILTONIAN

The bare Hamiltonian of the 4S =1 transition is
given by the current product and fixes the values of
the coefficients c, in expansion (11) at p,

- m~.
Using the Fierz transformation one can convince
oneself that Eq. (4) corresponds to

I

I

I

I

I

I g
r
I

I

I
I

I
I

'r
I

I

(17)ca (p - m~) =1, ca (p —m~} = 1 .

To zero order in g, operator T does not appear.
The lowest-order graph for operator T is pre-
sented in Fig. 3 and the corresponding value of
cr is equal to [remember that g(p) is included in
the definition of operator Tj

I

L

II
T

l

I

I

I

I

I

FIG. 2. Graphs relevant to computation of anomalous
dimension of operator T (crossed graphs are not shown).
Dashed line corresponds to gluon. Bold-faced point
denotes operator T.

p(& ) —gT (18)

Equations (17}and (18) represent the initial con-
ditions for Eqs. (13). To get the matrix pone must
calculate the coefficients at ln terms arising in
higher orders in o~. In particular, diagonal
matrix elements correspond to anomalous dimen-
sions of operators B„B„andT. The anomalous
dimensions of J3, and B, are determined by the
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R

I
I g
I

I

I

FIG. 3. Lowest-order graph giving rise to operator T.

c

I

I g

I

t

8
I
I

graphs of Fig. 4 and equal to"

r 11 B1 & 22 B2

For the operator T one must sum up the dimen-
sions of T=s„o„„t'd~b„'„,g(//, ), and m, (//, ), since
we included g(//, ) and m, (//, ) in the definition of T

1 2 1 1 lr„=rr=rr- — b+ b =(-—-, + b) — —b —4—= ——, .

(20)

The meaning of nondiagonal matrix elements of
is that they determine the mixing of operators.

For example, y, l corresponds to the arising of T
from 8, in the bare Hamiltonian. It is important
that to find ln terms in the coefficient t'. ~ at opera-
tor T one needs explicit calculations of two-loop
graphs, which are represented in Fig. 5. After
lengthy calculations of terms g'lnA we get for
mixing parameters

c (//, ) =x' c (p, ) =x '
Bl & B2

c (f/, ) =x '4/' [1+ ' (x"/' —1)

+ ' (x"/" —1)]

where x=n~(l/)/n~(m~) To co.mpute the matrix
power we used the basis where matrix y is
diagonal.

In the region p, & m„only operator T survives
(see discussion in the previous section) and we
obtain for cr(m) the following expression:

(m) —x 2/27 x 1 /354[ 1 + 1
( 3x8 3b/1)T 2 1 I ~ 1

zz/sb 1)] (24)

FIG. 5. An example of the graph relevant to computa-
tion of mixing of operators B& 2 and T. Bold-faced point
denotes the vertex induced by operators Bl p.

=2 5
y31 3 & y32 (21) where

Thus, the matrix of anomalous dimensions has
the form

n~ (m, ) n~ (m)
(25)

8 0 0

y= 0-1 0

2 5 1+
3 3 3

(22)

Using the initial conditions [Eqs. (17) and (18)]
and Eq. (14) we get

R ~r, 'R

FIG. 4. Graphs contributing to the anomalous dimen-
sion of operators B&, Bz.

Equation (24) represents our final result for the
effective Hamiltonian of the ~S =1 transitions. To
get an idea of the contributions of the right-handed
current into observed decays, one must comple-
ment the derivation of the effective Hamiltonian by
some model for the matrix element of operator T.
In evaluating the matrix element, only the con-
tribution of distances of order rn ' must be taken
into account.

To conclude this section, let us compare the re-
sults presented above and first published in our
letter" with the conclusions on the same subject
by other authors. As was already mentioned, the
first calculation of the anomalous dimension of
operators Bl 2 entering the bare Hamiltonian in
the models with right-handed currents was per-
formed in Ref. 3c. It was emphasized by these
authors that the anomalous dimension of opera-
tor B, is large and positive. It was conjectured on
this ground that strong interactions enhance the
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contribution of right-handed curxents. In our
opinion, the matrix elements of operators By
are small since they contain the fields of the heavy
quark. A consistent way to account for the opera-
tors By 2 ls to calculate their mixing with opera-
tor T constructed from the fields of gluons and
light quarks. In this sense the large anomalous
dimension of operator 8, is still relevant to the
problem. Our result, however, is that this mixing
is very small numerically [the corresponding co-
efficient is ~~, see Eq. (24)] so that enhancement
of operator B, does not imply enhancement of the
contribution of right-handed currents into the decay
of ordinary hadrons.

The anomalous dimension of operator T was
independently calculated by Ellis' and, later, by
Wilczek and Zee." We agree with the results of
these authors on the value of y r" [ see Eq. (16)] .
However, it is not consistent, to our mind, to
include the anomalous dimension of the mass of
the charmed quark for momenta P & m, (for a dis-
cussion of this point see above) as the authors in
Refs. 9 and 10 do. In the other words, the dif-
ference between m and m, is disregarded in Refs.
9 and 10. Numerically, the effect is not too large,
however. The second and very important point of
difference is that in Refs. 9 and 10 the mixing of
operator T with operators B, , is not considered.
As was repeatedly explained above, we consider
this mixing as most important. It turns out to be
much more complicated from the technical point
of view than any other calculation. So the results
of Refs. 9 and 10 do not allow checking the cor-
rectness of the most cumbersome part of the cal-
culation made.

I.et us also notice that Wilczek and Zee keep ex-
plicitly an operator (0, in their notation) which
can be reduced to the other operators plus a total
derivative by using the equations of motion. As
was mentioned in Sec. III there is no necessity to
keep such operators. The agreement of the re-
sults obtained in Ref. 10 for the anomalous dimen-
sion of operator T with those presented here con-
firms the correctness of this general argument.

boson is replaced by unphysical Higgs scalars g+

[see Fig. 1(a)], (ii) single-physical-Higgs-scalar
o exchange [see Fig. 1(b)], (iii) radiative cor-
rections to the contribution (ii) [see Fig. 1(c)].

While the two-W-boson exchange is the most
common one and was considered in a number of
papers (see, e.g. , Refs. 3b and c), the necessity
of a calculation of the Higgs-boson exchange is
specific for the models with right-handed cur-
rents. To substantiate the point let us give the
result of a calculation of the amplitude associated
with the graphs of Fig. 1(a) in the R, gauge

Mg~ = ~@~ sin cp sill 8c)[4(sade) —(sg(T~„dl) ]

& ln 2
—2— + s~dL In(

C

(26)
We see that, while the ln m ~ term is gauge in-
dependent, the rest of the answer depends on the
choice of the form of the propagator of the S'
boson. Therefore, Eq. (26) cannot represent a
complete answer for the bare Hamiltonian of the
AS=2 tx'ansitions and we must add to it some-
thing else. In renormalizable theoxies this extra
contribution comes from radiative cox rections to
the single-Higgs-boson exchange (see below). It
is worth noting that, if there are left-handed
curr ents alone, the 8'-boson contribution is gauge
independent by itself.

Thus, any calcul. ation of the AS= 2 transitions
requires some assumptions concerning the Higgs
sector of the model and is not fixed by the struc-
ture of the group multiplets alone. We will con-
sider in detail the case of a single Higgs field 0.
To de6ne the coupling constants of the Higgs
mesons in a way as model independent a,s possible,
we turn to the unitarity condition and consider
first the W'W -boson production in sd coltisions.
The corresponding graph is presented in Fig. 6

VI. BARE HAMILTONIAN OF DS = 2 TRANSITIONS

In this and the following sections, we will derive
the effective Hamiltonian of the ~S=2 transitions
which is responsible for the K~-K~ mass differ-
ence. Here we will consider the bare Hamilton-
ian, by which we mean the Hamiltonian with
strong interactions switched off. The emphasis is
made on the Higgs-boson contribution.

There are three pieces in the Hamiltonian of
AS = 2 transitions associated with (i) a two-W-boson
exchange together with exchanges where the K

d.L
FIG. 6„Thegraph corresponding to the contribution

of right-handed currents into the amplitude of sd —8'+ 8'
transition. Cross denotes the mass insertion.
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the same product of masses and coupling constant
as that of Fig. 6. Therefore the vanishing of
graphs of the type in Fig. 6 implies the vanishing
of the contribution of right-handed currents into
decays of strange particles.

In the second order the os@ coupling gives rise
to the AS= 2 transitions:

FIG. 7. Contribution of the physical Higgs boson 0' to
the amplitude for the sd -+ W transition. 2.' . 2

~ sin'8cssd&sd~.
??? Q

(3o)

and one readily finds for the matrix element

M, (sd-W'W ) =-2 vP sing& sin 8cGm, ssdz

The constant g, entering Eq. (30) can ~ found
from Eq. (28) provided that the coupling constant
h is known. The latter can be indeed found by
imposing the unitarity condition on the amplitude
of scattering of longitudinally polarized R bosons.
The result is as fo1.1ows:

,„-=„constx v s, "=m.(i6~2a m. ')'~' (3&)

where???, , is the c-quark mass and p is the virtual
c-quark momentum. %e see that the high-energy
behavior of the amplitude (27) cannot be reconciled
with the unitarity condition.

%ithin renormalizable theories of weak inter-
actions this growing contribution is canceled out
by the graph with the Higgs-boson exchange (Fig.
7). The cancellation takes place at s»m, ' if the
product of the coupling constants of the Higgs
boson with s, d quarks and the 5'boson satisfies
the condition

g jg = 2 ~2 Q??t,,Af
' sing, (28)

where the definition of the constants corresponds
to the Lagrangian of the form:

2 =ho%'W —2g, sin 8c o [ssdz+ dz ss], (29

where g is the physical. Higgs scalar field.
Thus, we come to the same osd vertex as that

found in Sec. II. This conclusion ean be avoided
if there are several. heavy quarks and their masses
and mixing angles are organized in such a way
that graphs of the type represented in Fig. 6 can-
cel among themselves (the general framework for
constructing such models can be found in Ref. 15.)
The crucial point is that the graph of Fig. 3, which
is presumably responsible for nonleptonie weak
interactions with AS=1, is proportional just to

2 2 2

M„=sin'cp sin'8c, ,—' ln ', (ssd~)',
F Pl+

(33)

and we see that the gauge-dependent terms are
indeed canceled out in the sum of contributions
(26) and (33). Equation (33) is valid in the limit
of large mass of the v boson, and we used the R&
gauge in which auxiliary Higgs fields are present.
The 0$'g coupling is proportional to???,,' and this
factor cancels

gpss~
' arising from the o-boson

propagator. Thus, the graph of Fig. 1(c) with g'
fields in the loop is the only one which gives a
contribution to the 0 exchange in the limit of
la.rge???.~.

So, the graphs of Fig. } lead to the following
expression:

and, consequentl. y,
2 jt2

g~ =
2 ~2- sgn9? ~

Thus far we have considered the case of single-
o-boson exchange which is of the first order in
the Fermi coupling constant G. Radiative cor-
rections to it are of order Gym 'a, nd can cancel the
gauge-dependent terms in the graph associated
with the double-W-boson exchange [see Eq. (26)].
An explicit answer for the radiative corrections
[see Fig. l(c)] looks as follows:

2 2 2

(b,9=2) = —sill +sin 8c p (spy) —sill (p sill 8c

2 2

4{sRA2 — sag„„,dg n 2 —
2
—+ sRdg ln

?RQ

Equation (34) represents the final result for the
bare Hamiltonian of the AS=2 transitions in the
model considered, and in the next section we wi11.
find its modifications due to the gluon exchanges

at short distances.
Here we would like to notice that Equation (34)

implies that the mass of the o boson must be very
la, rge. An estimate of the matrix element of the
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Hamiltonian (34) indicates that it can be reconciled
with experimental data only if

m, & 3000m, ~ sing .' m, +m„ (35)

The charmed quark is certainly not lighter than
1 GeV. As for the light-quark masses m, and m„
a rough estimate gives

VII. EFFECTIVE HAMILTONIAN

OF THE hS = 2 TRANSITIONS

In this section we will give results for the gluon
corrections to the bare Hamiltonian derived in the
previous section. Solving renormalization-group
equations (9) turns out to be equivalent to the
following recipe (for the sake of definiteness we
consider double-W-boson exchange since the cor-

+my ~wg,

while the most motivated one seems to be that
given by Leutwyller" and Gell-Mann", i.e. ,

~,+m„=150 MeV.

In any case the mass of the physical. Higgs particle
must be not less than several. thousand GeV for
s in' -1.

An introduction of such huge mass leads to
troubles with perturbation theory. Indeed, one
can see that for such a choice of the Higgs-meson
mass the radiative correction due to weak inter-
actions in higher orders exceed the Born term
[see Eq. (34)].

As was already mentioned, the difficulty can be
avoided by introducing several Higgs mesons and

organizing their coupling constants in a proper
way (see Sec. II).

rections to the Higgs-meson exchange are much
easier to find):

(1) The graphs of zero order in strong inter-
actions considered in the previous section are
represented as an integral over the virtual mo-
mentum p.

(2) Blocks with W-boson exchanges entering these
graphs are replaced by the effective Hamiltonian
of the AS=1 transitions

H(&S = I) = P c, (P) 0,

(integration over p here corresponds to integra-
tion over g in general expressions of Sec. III).

(3) Without performing integration over p,
explicitly represent the integrand as a sum

Qf»(P)&»,
where operator structures A~ are diagonal with
respect to the gtuon corrections.

(4) Multiply f»(p) by factors [ns(m)/ns(P))"
accounting for anomalous dimensions y~ of
operators A~.

(5) Integrating the expression obtained over p
gives the final result for the effective Hamil. ton-
ian.

The validity of the recipe is proved in the ap-
pendix using the general approach discussed in
Sec. III. In the diagram language, step 2 cor-
responds to gl.uon exchanges with momenta
larger than that of the virtual W boson in blocks
with W-boson exchange while the fifth step cor-
responds to the integration over gluons with mo-
menta less than p exchanged between the external
lines.

Using this recipe one can get the following re-
sult for the effective Hamiltonian:

Gm 2 Q2m2 mH(AS=2) = —sin'rp sin'8 ' + ' ln ~ x '" x " (s d )'
C ~2 2 4 2 2 2 g R L

2 2 1-(19.16/5)
—sin'rp sin'ec, ' (s„dz)'x,"~~' -2.67x,"~'

ITn~tm'
1+1 16/5)

+ 4.77x, -'"

1-(11.51/5)
+ 1.9(ssd~)' —(s„o„„dl)'x, ' "~'x, '~'

n, (~) n, (m) n, (m, )
(36)

In the appendix we present some details of derivation.

VIII. EFFECTIVE HAMILTONIAN
OF WEAK RADIATIVE' DECAYS

In the language of field theory, weak radiative
decays are due to a combined effect of weak non-
leptonic interactions and of electromagnetic transi-

tion. Therefore one can differentiate between the
contributions of short and long distances, where
by distance we understand here the difference be-
tween coordinates of the photon emission and of
the weak transition.
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Tl ~~R+p vdI. +pv i

Tg = ssI(T~~cfgE~~ .
As for dimension d =6, the two relevant operator s

Tci = SI P~Ag~PF~P

FIG. 8. Graphs describing d sp transition for bare
quarks.

The contribution of long distances can be esti-
mated in some way once the information on weak
and electromagnetic transitions is granted (for
attempts of such estimates see, e.g. , Refs. 22).
The contribution of short distances must be trea-
ted separately since it does not reduce to any kind

of a product of known matrix elements. In this
section we will use @CD to derive the expression
for the effective Hamiltonian of weak radiative
transitions associated with the contribution of
short distances in the models with right-handed
currents.

Let us 1ist all the operators T, which enter the
effective Hamiltonian

do not contribute to the decays with real photon
emission. They are important, however, for a
description of internal photon conversion into a
lepton pair. Since the field dR does not enter
currents (2), the operator T, does not arise, so
t4= 0.

From dimensional considerations it follows that
the operators T, , enter the expansion of the Ham-
iltonian with some mass factor. If the right-handed
currents are present, this mass is m„generally
spe Rk ing.

For bare quarks the radiative transitions are de-
scribed by graphs in Figs. 8 and 9 and the corre-
sponding coefficients can be readily found if the
model (2) for weak currents is accepted. An ex-
plicit calculation gives

e~(~S=1)=g f,T, . I'~o~ = sin@sin 0 ~ &~o~ = t ~o~ = 0
eG&2
24m

(40)
There are some conditions imposed on the opera-
tors. First of all. , they must contain the electro-
magnetic fieI.d A„which, by virtue of gauge in-
variance, appears only through the field strength
tensor I„,. The operators can also contain the
light-quark fields u, d, s and the gluon strength
tensor 0'„„(a=1, .. . , 8).

Moreover, we need count only operators of
dimension d ~ 6. Operators of higher dimension
contain factors m'/m, ', m'/m~' and their con-
tribution is small. The relevant operators of
of dimension five look as follows:

8 8
FIG. 9. Graph relevant to the computation of the

coefficient t fi [see Eq. (40)].

= -8m' sin~g 2 ln 2 ++~

where for the sake of completeness we have in-
cluded the contribution of left-handed currents as
well (coefficient &,). Expression for the coefficient
t, is infrared divergent and we used cutoff at some
mass ~ considering this mass is much larger than
that of a nonstrange quark. The coefficient I', van-
ishes in the lowest order due to the cancellation. of
contributions of c and& quarks in the intermediate
state. As we will show later this cancellation does
not pursue if strong interactions are taken into ac-
count.

The general method for finding the gluon correc-
tions to the bare graphs was outlined in Sec. III.
As an example we will consider here in more de-
tail the evaluation of the coefficient I', . The renor-
malization-group equation for the coefficient ~,

looks as follows:

dt's(tt) o's(it)f I &s(P) em (0) ~e16'
(41)

where P, e, are some numerical coefficients which
can be found in perturbation theory.

In particular, the value of P is determined by
the sum of the anomalous dimension of operator
T, (see Fig. 10) and that of mass m, . The coef-
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II

I

FIG. 10. Graphs contributing to the anomalous di-
mension of operator T&.

ficients c, describe the mixing of operator 1; and
operators 0, entering the effective Hamiltonian of
weak nonleptonic transitions with 4S =1. The mix-
ing is due to the two-loop graphs represented in

Fig. 11. The necessity to consider the two-loop
graphs can be inferred from the fact that to zero
order in 0., there is no ln factor in the expression
for t, , In this respect the situation is similar to
that considered in the case of the 4S =1 decays
(see Sec. V).

An explicit calcu'. ation of the two-loop graphs re-
presented in Fig. 11 leads to the following values
of the coefficients in Eq. (41}:

e(B,) =0, e(B,)=-~, (42)

where we have replaced the index' by the symbol
of the operator which mixes with T, .

Equation (4;) holds for the virtual momenta
P m, . In the region P & ~, it is modified in the
following may: The second term in the right-hand
side of Eq. (41) vanishes since the corresponding
Feynman integrals are cut off from below atp =m,
and there is no logarithmic contribution associated
with P &~,. For the same reason there is no anom-
alous dimension of mass in this region and coef-
ficient P coincides with the anomalous dimension

of operator T„i.e„P=-+. Integrating Eq. (41)
gives

(m) = sin(pstn8
eG&2

1 c 24' e
4 /27~ 16/8b

g [I ~ (x18/sb 1}] (42)

Left-handed currents also contribute to the coef-
ficient &, . The corresponding expression can be
found by substituting m~ in Eq. (44) for t, by m, .
It is comparable to the contribution of the right-
handed currents if sin&-~0.

Let us notice that the operator T, mas first con-
sidered in Ref. 5. However, we disagree with the
results of this paper both in zero order in e, and
with respect to gluon corrections. In Ref, 23 the
coefficient t, was calculated as mell as the anoma-
lous dimension of operator T,. At these points our
results coincide mith those of Ref. 23. The effect
of mixing in coefficients t„t,are calculated here
for the first time. The coefficient t, was derived
in fact in Ref. 24 and is given here for the sake of
completeness.

where x, , are defined in Eq. (25).
The coefficients &, , which describe the effect of

the left-handed currents can be found in a similar
way. The only difference is that for P & m, there
are ln terms present both in the effective mass of
the d quark and in the mixing matrix. Moreover,
one must consider mixing with operators 0; arising
in the models with left-handed currents. The cor-
responding effective Hamiltonian of weak nonlep-
tonic decays was found in Refs. 7 and 8. I or the
purposes of the present investigation the simpli-
fied analysis of Ref. 7 (which amounts to neglect-
ing the difference between m and m, ) is sufficient.
The corrections due to the difference in mass
scales of ordinary and charmed hadrons in this
case does not exceed several percent.

Omitting the results of intermediate calculations,
let us give here the final result for t, ,

eC/2
tn(m) =-sin8&cos8c —--

2
m~x2'6~7

)( [a. (x28/37 I )g4/& + .~. (x10/2v 1)x 2/&]

(44)

t, (m) =-sin8ccos8c eG&2 4x
~ 18m' o,, m

x x,[--,'(1 —x, '/') +~(1-x, "/')x, '].

FIG. 11. Graphs giving rise to the mixing of opera-
tors T& and B& z. Bold-faced point denotes the vertex
induced by operators B& 2.

IX. NUMERICAL ESTIMATES

So far we have concentrated on the derivation of
the effective Hamiltonians. In this section we mill
present some numerical estimates. Generally
speaking, these estimates contain two parts: eval-
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TABLE I. The effect of strong interactions for weak radiative decays. Coefficients of op-
erator expansion t; [see Eqs. (37)-(40)] are normalized to free-quark values in the case of
tf t3 (t2 vanishes in the limit n~ —0) . The parameter m is the infrared cutoff, &~(m) = 1,
is the number of flavors.

m=0. 14 GeV, m, =2 GeV
mw ——100 GeV

4 6 8

m = 0.7 GeV, m, = 2 GeV
mw=70 GeV

4 6 8

eavYm. -'
t& sing sin8&

ecvÃm~ -'
t2 sine& cose&

eG&2 m' -'
ts -sin&c cos0& ~ ln 'z

18m m

-0.07 —0.10 -0.13

-0.40 -0.45 —0.50

-0.86 -0.87 —0.88

-0.35 -0.41 -0.35

-0.56 -0.66 -0.77

-0 58 —0 59 -0 61

uation of the coefficients in this operator expansion
of the effective Hamiltonians discussed and calcu-
lation of the corresponding matrix elements. In
this paper we are interested in the effects of strong
interactions at short distances and address our-
selves mostly to the first part of the problem. As
for the estimates of the matrix elements we will
make only some random remarks here.

Let us start with weak radiative decays where
the effect is the most prominent one. As was al-
ready mentioned, for numerical estimates we ac-
cept mw = 70-100 GeV, m, =2 GeV. As for the
typical hadronic mass we try two choices: m =m&
=0.7 GeV and m = m„=0.14 GeV. The numerical
results for coefficients t, „,are summarized in
Table I where we indicated also the dependence on
the number of flavors.

We see that the result practically does not de-
pend on the number of heavy quarks. As for the
dependence on choice of hadronic mass m, it is
quite strong. In all the cases the strong interac-
tions suppress considerably the contribution of
the right-handed currents into radiative decays.
The corresponding factor varies between 3 and iL.

This makes it implausible that the right-handed
currents can dominate in, say, ~ -Py decay.
Most probably the radiative decays are determined
by the distances of order of the confinement radius
I/m. (For a detailed argument for the decays
Ki-2y and K -m'e+e, see Refs. 25 and 24, re-
spectively. ) If the violation of SU(3) symmetry in
the ~ -Py decay is confirmed experimentally, the
key to the understanding of the phenomenon can be
found most probably in conventional models of weak
interactions. Let us notice in this connection that
an example of strong violations of SU(3) symmetry
in weak radiative decays was found in Ref. 26.

The effect of short distances on the weak non-
leptonic decays with &$=1 is described by the co-
efficient cr introduced in Kq. (11). Table II sum-

TABLE II. The values of coefficient cz which deter-
mines the contribution of right-handed currents into the
effective Hamiltonian of AS =1 transitions [see Eqs. (10)-
(12) and (24)].

m = 0.14 GeV
m =2 QeV

mw ——100 GeV
6

m=0.7 GeV
m =2 GeV

mw= 0 6
6

c& 0.756 0.742 0.727 0.764 0.757 0.764

marizes numerical estimates for this coefficient.
It turns out to be close to unity, or, rather, to
0.75, and is extremely stable against reasonable
variations of the parameters of the theory.

Thus, the effect of strong interactions at short
distances is very modest in this case. As was al-
ready mentioned, this conclusion is by no means
trivial since at short distances operator T is
mixed with operator B, which has a large positive
anomalous dimension and is enhanced by strong
interactions. Therefore, our main result is that
this mixing is not important numerically.

It is quite a difficult problem to get a reliable
estimate of the matrix element of operator T
which describes the contribution of the right-
handed currents into the decays of strange par-
ticles. Let us mention here a rough calculation
which we feel is an overestimation of contribution
of operator T rather than an underestimation of it.

Let us compare the width of the &~ —& & decay
with the width of o'- v v decay of a (hypothetical)
scalar 0 meson. Strong interactions are described
by the quark-gluon interaction &I,qy„I"q&'„,while
weak interactions are due to the Hamiltonian
sinpsin8, (GI2 m, /16v')gsso»t'drab'». Using the ap-
parent similarity of the interactions we get for the
ratio of the decay widths
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or

Gm~&2
sgn9 sin~c

strong m

8slI1 CpZ@gp /CD 2W)q

(45)

(Z ~y„d,gyes =~(Z ~sy'dy&(0~»dg) .
To get an idea of the matrix element from the
pseudoscalar density sy, d we use the equation of
motion

if m=mz, IIt«fig =0.3 GeV. The value of sin(d( is
most probably much smaller than unity and we
would like to conclude that operator 1' does not
contribute significantly into the observed K~ -2I
decay

Finally, let us turn to the discussion of the El.-
E~ mass difference. The situation here is some-
what reversed as compared to the previous case.
The quark model seems to be quite reliable to use
for an estimate of the matrix element. The effect
of strong interactions, on the other hand, is quite
unstable against the change of parameters since
there is some cancellation among various contri-
butions.

Consider first the contribution of a double 8'-bo-
son exchange in the Feynman gauge. The coeffi-
cients in the operator expansion of the effective
Hamiltonian of the 4S =2 transitions are given in
Table III for various choices of masses. %e see
that strong interactions suppress the contribution
of the right-handed currents into the KI, -I ~ mass
difference. Still this contribution seems to be un-
acceptably large if sin%-1. To substantiate the
point let us give an estimate of the matrix element
which assumes that the K meson consists of a
quark-antiquark pair.

Then the matrix element of operator (sRd')' re-
duces to the product of matrix elements of the
form (JPIs„d'~0). After accounting for ali the pos-
sible ways of contracting the quark fields entering
the operator (s„d'Pand the wave function of the
meson, we find

s„(sy„y'd)= i(m, +m')sy'd,

which is valid for interacting fields. Finally we

get

(48)

where f» is the K- p, v decay constant and we use
for quark masses m, +m~ =150 MeV. 20'2'

Keeping this estimate in mind one readily finds
that the contribution of the double-8'-boson ex-
change into the KI, -E~ mass difference is com-
parable w'ith experimental value only if

sin@+ ~co ~ (49)

The contribution of the Higgs-boson exchange to
the EI.-K~ mass difference depends heavily on the
structure of the Higgs multiplets and their inter-
action. This contribution is of opposite sign as
compared to that considered above. In the exam-
ples which we have analyzed it cancels, say, half
of the contribution of W bosons. Unfortunately, it
turns out difficult to get a reliable calculation of
the effect of cancellation. The point is that the
result is sensitive, e.g. , to the inclusion of the
nonleading ln terms which we cannot calculate
consistently but which can be estimated in part.
In all the rather numerous estimates which w' e
have made we never observed too strong a can-
cellation, but our feeling is that we cannot rule
out such a possibility rigorously enough. There-
fore, while estimate (49) still seems to be the
best one, we cannot prove that sin@is indeed thus
small.

m= 0.14 GeV
m =2 GeV

mgf ——100 GeV

m=0.7 GeV
m~=2 GeV
m~ ——70 GeV

6

a~/af 048 064 083 106 135 175

a2/a2 0.19 0.18 0.18 0.20 0.19 0.18

TABLE IH. The effect of strong interactions for DS
= 2 transitions, induced by two- W-boson exchange. For
a definition of the coefficients at, a2 see Eqs. (Alj and
(A5). The quantities a~ 2 are values of these coefficients
in the limit of free quarks,

Q2 2 2

ag = —sin +sin ~g 2 ln(0) ~ 2 ~ 2 mc 8'

m

G'm' m '
(0~ sin2+ s~n2g m'

C

X. CONCLUSIONS

In this paper we have tried to pursue the idea
that right-handed currents coupling light and heavy
quarks give a dominant contribution to the weak
decays of strange particles, as is proposed, e.g. ,
in Refs. 3-5.

To this end we have considered the Higgs sector
of the model, estimated some matrix elements,
and found the effective Hamiltonian of weak non-
leptonic interactions with &5 =1,2 and of weak
radiative decays. The latter aim required major
theoretical and computational effort and we hope
that the results obtained are interesting by them-
selves, even outside the context of the concrete
physical problem considered here.

In all the cases we have encountered with diffi-
culties which indicate, to our mind, that right-
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handed currents do not play a majox' role in meek

decays of strange particles.
There axe possible mays of introducing x ight-

handed currents mhich do not lead to strong effects
in the observed decays of K-mesons and hyperons,
One of the possibilities is px'ovided by Bjorken,
Lane, and %einberg, "which me mere not amare of
in the course of the preparation of the present
paper. The model amounts to a natural extension
of the Glashom-Qiopoulos-Maiani mechanism to
the case of right-handed currents. It might be
morth emphasizing that our analysis does not re-
sult in any axgument against such models. Right-
handed currents can be present in nature. They
seem to be unimpox'tant for ordinary hadrons,
ho%ever.

APPENMX

In this appendix me mill outline the derivation of
Eq. (36) for H(M=2),

H(nS = 2) = Qa;A, ,

where A, are local Operators of dimension 4= 6
and the coefficients are of order G'm, ' for tmo-
8'-boson exchange, For operators with d = 8 the
coefficients Rre Gf order G", SG thRt theix' contri-
bui. ion is suppressed by a factor -m'/m, '.

The renormalization-group equations for a, (p, )
look like (for p&m, )

- = —2„p,/u(//) 2„o—, c(p) c{rp)m,'(p),«, (/) c(,(/ )

where p)g, g.gl, Rre numerical constants Rnd the
eqUatlons for effective charges c((p) 1B H(AS = 1)
and m, (p) are given in the text [see Eqs. (13)]as
well as their solutions [Eqs. (14)].

It is not diffi. cult to write down the solution of
&,'qs. (A2), it is

(//) s/5 (s02

dpi'

-o( (p)q s/5
s, (s)= ' „s,(s )+., * i ' .'.(s)~.(s)m. '(s)),-+s &0- ss p' c(s p(&

where [ ],/ denotes the corresponding matrix ele-
ment and c,( p, ) and m, ( p) must be replaced by the
explicit expressions {14)and (23).

It ls convenzent to use for computations the op-
erator basis where matrices of anomalous dimen-
sions Rxe diagonal. For M = l transitions just op-
erators B„B,[see Eq. {12)]possess such a prop-
erty once one neglects the contribution of operator
T into 8&. TIlis is legitimRte Since opex"Rtox' T
contains an extra power of g. %'e remand the
reader that the coefficients e+,c» have the form
[see Eq. (23)]

(p) ()/5

&s,(W)= ~ ( )

(p) - /()

o(~(m~)

Let us list now the operators A, with M= 2,
which arise due to right-handed currents (2).
There are two independent operators

The eigenvectors of the matrix p correspond to
the folloming linear combinations of A, and A, :

A, = A, —0.008A„(p,= 4.84],

A, =A, —1.908„fp,= -5.51),
mhere in the curly brackets the corresponding
eigenvalues are displayed. We mill neglect a
small admixture of 42 in the expression for A, .
In Eq. (A3), apart from initial conditions at p, =ml,
which me find from the bare-quark calculations,
me need the knowledge of constants cr, „.These
are determined by ln terms in the graphs of Fig.
12, mhexe bold-faced points denote vertices as-
sociated mith operators J3„8,. One can find

o~,+~, =3.674—sin &sin e~,

n = -4,VV —Sin Psln 8
4n&

0'g a~ = 8in +sin eg .
A~ = (Ksdz ), As = (Ksg~„dl) (A5)

From the cRlculations Gf the one-gluon correc-
tion {of the type in Fig. 5), it follows that the ma-
trix of RnomRlous dixnenslons of A.»Az have the
form~
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For the other combinations of indices, cr, „vanish.
Substituting the integration variable p, in Eq.

(A3) by virtual momentum p, we arrive just at
the recipe of calculation which was given in the
text. After integration we come to the final re-
sult (36).

Note that in the region m& p, &m„only the first
term in the right-hand side of Eqs. (A2) and (A3)
survives so that the effect of this region reduces
to factors x", ~' in the coefficients of operators
A„A.

The discussion above refers mainly to the two-
W-boson exchange, since this case is in fact the

most complicated one. As far as the physical-
Higgs-scalar exchange is concerned, the calcula-
tion of strong-intera~'tion effects is much simpler
and reduces to powers of az(m)/oz(m, ) determined
by anomalous dimensions of operators A„A,and
that of the effective mass m, (p).

A careful reader might notice that Eq. (36) in
the limit a ~- 0 does not coincide exactly with the
result of the bare-quark calculation, Eq. (34). The
reason is that we omitted in Eq. (36) the terms
which are smaller by ln m~/m, times than those
kept. These terms are beyond the accuracy of
our derivation.
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