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Contribution of second-c1ass currents to E ~ 2n
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The effect of second-class currents on kaon nonleptonic, two-pion decays is discussed. Amplitude relations
are derived. The ~elative magnitude of first- and second-class effects in E, ~ n'm' is calculated in a phenomeno-
logical but rather general model. The results are compared to bag-model calculations of the first-class decays.

I, INTRODUCTION

Some recent experiments have indicated the pos-
sible existence of currents mith abnormal G pari-
ty. These second-class' vector and axial-vector
currents have G~ =(-I)' and G„=(-I)'" in con-
trast to the conventional first-cfa, ss currents. Al-
though these curxents have only been observed in
nuclear P decay, it is possible that they mould also
act within a particle-physics context. In this paper
me mill e2N, mine the processes

Kl Z m', m'm0 + — 0 0

K' n'g .
There is a problem of long standing associated
with each of these reactions. First, both reactions
are forbidden in exact SU(3) with the conventional
choice of HRG iltonian

J; =F;+iKS;,
whex e I" and 5 are respectively the first and
second-class currents. K is a strength parameter.
Using this current the new Hamiltonian becomes

EI = II» + H~ y

0~ jV~+ +p p' +p F +p' p
+K (S,S4+S4S, +S,S~+S,S,),

H2 K(F5 S, —F, S5 + F2 S~
—F4 S,

+ Si F5 —S5Fi+ S~F2 —S2F.) ~ (5)

The second-class part of the Hamiltonian, H„has
the SU(3) decomposition

e, — [T"*(-,', , -I) —T"(,' , --.', I) + 7 "--(-,', , -I)v3

& +l F~+I'~I" i+I"2F5+I'bI'. ~

Second, the K' decay violates the AI=,'- rule by an
amount that is large to attribute to a symme-
try -breaking effect.

Sevex'Rl authors ' have pointed out tIlRt the intx'o-
duction of second-class currents could solve the
first problem. Homever, the strength of the K'
violation of the 6E=,'- rule still remains a puzzle.
In this paper me shall look at the explicit effects
of second-class currents on, Kvp decays.

In Sec. II of the paper we find the SU(3) form of
the second-class contribution to K-- p* p' and

K,' n p, p'TI'. Sum rules are derived identical
in form to those found for first-class currents.
In Sec. II C of the paper me relate first- and sec-
ond-class effects ln K~ g g us1ng cux'x'ent Rlge-
bra. %e compare the result with estimates made
fxom the bag model.

II. CALCULATIONS

A. Second-class Hamiltonian

To see the effects of second-class currents, de-
fine a nem total cuxrent, '

where the argument labels (I,I„,I'). The parity-
violating form of the last term acts like the sev-
enth component of a C=+ I octet (the sixth com-
ponent of an 8' octet). This is the behavior needed
to remove the SU(3) suppression of the Knw decays.
The K' problem still remains. The decay pro-
ceeds thx'ough a decuplet term with T = —,

'- and the
4l = —,

' rule is still violated. Second-class effects
mill, homever, provide another contribution of the
K' amplitude, reducing the total amount of sym-
metry breaking needed to reproduce experiment.

B. Seeondwlass amplitudes

We wish to calculate the amplitude

H, is given by Eg. (6). Since the two pions are in
a relative s state me may symmetrize and write

even &3 && P~

where v = {I,I„Y').
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Substituting (6) and (8) into (7) and using the
Wigner-Eckart theorem we obtain

Equations (10) and (11) combined are identical to
the first-class sum rule, '

T(K' -w'w') = (27lls"*II8),

7(K--w-w') = ~&27lls" 118&,
3

2y3

7'(Kl- w'w') =~ [-4&2711(s"+ s"*)118&
0 0 0

+ ,' &8II(s-"- s"*)II8)

—~ &8lls'118&.l,

T(K.- w'w ) =~ [-~&2711(s"+ s"*&118&

A(K,'-w'w ) —M2A(K,'-w'w ) =2A(K'-w+w ). (13)

Although this rule may be stated for any decay con-
taining only M= —,

' and —,', the representation struc-
ture of the amplitudes A and T is of course very
different. However, the right-hand side in each
case measures the deviation from the M= —,

' rule.

C. Relation between first- and second-class effects

The first- and second-class amplitudes can be
written

—-'
&8 II (s"—s"*)

II 8&

+~ &8lls'll8&, ]. 2

T2 = -"
—,&w'I[@5, H, ]1K,&,

(14)

(15)

These rates may be combined to give the relation

T(K,'-w'w ) —v 2 T(K,'-w'w'}

= T(K' w'w'-) + T(K w w-')--(1.0)

One may also calculate the K,'- m'm, rr'n' ampli-
tudes. These are zero by CP invariance and pro-
vide two more amplitude relations,

(27lls"*II8) =&2vls"I8),

„&2vlls'll8&, ——,'&8ll(s" + s"*)118&

+ 5 &8lls'll8&i —~+&Ills'II 8& = 0. (12)

S, = od, q, (w'F', +F~w ), (16)

where n = (I/2&v&)( 2)'~' and w' is the pseudoscalar
octet. Substituting (16) intoH, andH, and ex-
plicitly calculating the commutators one obtains

where H, and H, are defined in (4} and (5) a.nd c
=g,„„(M„F„(0)In orde. r to relate these ampli-
tudes, a specific definition for the second-class
current must be chosen. Following Adler et al. ,

'
using a 0 model we define the vector current

[Q' H ] — =F'F'+F'F' —F'E' —F'F' — (S'F'+S'F'+-F'S'+F'S')~K

—d„~f„,(F 'X„'+Xg'F') —d„gf„,(F Xg'+X„'F)], (17)
-1 K[q' H ] — = F'F'+ F'F4 —F'F' —F''F '+ —(S'S'+S'S' -S'S' —S'S') +K'(S'F'+S'F4+ F'S'+ F4S')

2 2

+d4,~f„,(s'X„'+X"„'S')+d„~f„,(s X„'+X„'S)], (18)

Where @de +dye &end +Pened Pd&e

The next step is to calculate the matrix elements
of these commutators between m and Ks. We will
evaluate them by saturating the intermediate states
with the vacuum and pseudoscalar mesons. The
amplitudes will be related in SU(3) using the Wig-
ner-Eckart theorem. These assumptions provide
a large simplification in the commutator matrix
elements. If a specific S,. is calculated from (16),
say S„+,one obtains

S,+ = ~ (w'F~ +qF5 +Fsw++F,' q)

—~ (KF5 +K F» +F~ K'+F, K ) (19)
v2

and one sees that &w'IS, +I w & =0. Similarly
&0IS; Iw &

=0. The same is true for other second-
class currents sandwiched between states of ap-
propriate quantum numbers. This means that in
an SU(3}-symmetric theory there is no explicit
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second-class current contribution to the com-
mutator matrix element. The only nonzero con-
tribution of second-class origin is the term of
the form (E'X„'+X„'E')in the H commutator.
This ls Rn implicit second-clR88 contribution
coming from the nonlinear nature of the second-
class-current-charge commutator. To obtain
other second-class contributions should require
second-class intex mediate states which are ex-
pected to be of high mass and presumably unim-
portant. Using this fact one obtains

&s'I [I;,H, ] IA'- V) = -
2~2 Q &8IIE'll 8, & &8,IIE'll8)

(20)

+
8~3 2

Q&8IIE'll8, )

&& (&ill E', ll 8) +&111E,'ll 8],)),
where I8) denotes a soft-pion state. A symmetric
form factor was used in expressing &8IIE'II8~),
the reduced matrix element. In order to evaluate
the last term in the H, commutator without ex-
plicitly evaluating form-factor integrals, cal-
culate the amplitude for g'- m'm',

&(
's'v7+&'v')/v 2 I H Iff'& =-(p"/c~2)[&s'l[0;, H]IA'&+(v'I[ O'„H]Iff')]

The rate for this process is about VOO times smaller than the gs decay rate. Setting it equal to zero gives

Assuming a "universal" value of A =1' and using E&l. (20), one finds

&&&~g
$&&&ii&"']la,&&i&II+,'ll&&& ~ &&IIF]it a, &&= —,*&2& 'I[&&'„H,]I &&'&, (24)

or on substituting into {21),

T =-—T3

TABLE L Ratios of theoretical to experimental amplitudes
for two different calculations.

T'1
theory

expt

theory

T2
theory

Donoghue,
Golowich, and

Holstein,
Refs. 10 and

11

0.17
0.25
0.35
0.54

5.79
3.87
2.68
1.56

III. MSCUSSION

The value calculated in the preceding section is
a relatively large effect. As an example to use
for comparison, consider the bag-model calcula-
tions of nonleptonic kaon rates. In Table I we list
the ratio of theoretical to experimental amplitudes
for two different calculations. '~" Both models
quoted use the bag parameters of DeGx and et al.'
cori'espondmg to R bag radxus of + =3.26 GeV
Column 4 gives the ratio of &' to &' calculated by
assuming these are the only two contributions to

the decay rate. The first value, corresponding to
an unenhanced decay amplitude, is of the same
order as oux' result. It is, however, misleading
to compare specific numbers in this case, The re-
sult {24)assumes unbroken SU(3) relating all am-
plitudes. Table I, as a whole, indicates that first-
class calculations of the kaon decay rates tend to
predict values lower than experiment. Our x esult
indicates that second-class effects could make a
significant contribution to the decay rate. If the
existence of second-class currents is established,
they should not be neglected in trying to understand
nonleptonic decays,

IV. CONCLUSION

%e hRve discussed the Udluence of second-cla88
effects in nonleptonic, two-pion kaon decays. The
second-class Hamiltonian allows decays which are
experimentally observed but first-class forbidden
in SU(3). The amplitudes calculated from this
Hamiltonian pxovide a sum xule identical to that
obeyed by first-class amplitudes.

The relative magnitude of first- and second-class
effects indicates that second-class effects may be
important in nonleptonic decays.

Katz and Tatur,
Ref. 12

I would like to thank Gordon Kane for suggesting
this topic and fox several very helpful discussions
Rnd R. Cahn for some useful comments.
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