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The decays of vector and tensor mesons into two pseudoscalar mesons and into a vector and a pseudoscalar
meson are considered in a model of relativistic confined quarks. The calculation is based on the quark-loop
graph. The question of internal-symmetry breaking is investigated in detail.

I. INTRODUCTION

The strong decays of hadronic resonances are
constant objects of extensive experimental and the-
oretical investigations. The r ich experimental
material in this field is collected in the Particle
Data Group table' and in the coupling-constant
compilation. Concerning the theoretical inter-
pretation of the data the situation is less unique
although some basic ideas such as the underlying
quark structure, the Okubo-Zweig-Iizuka rule'
etc. are commonly accepted.

One of the families of theoretical approaches is
based on the "quark-loop coupling"' arising natur-
ally in any relativistic quantum field-theoretical,
framework. It was extensively studied in the
papers of Bohm, Joos, and Krammer' starting
from a Wick-rotated Bethe-Salpeter equation for
the meson bound-state wave functions. The ap-
proach of Kim and Noz' does not assume the pos-
sibility of Wick rotation and works in the Minkow-
ski space of relative positions and momenta of the
quarks emphasizing the relativistic quantum mech-
anical aspects of the problem. Recently, the coup-
ling constants of resonances were calculated by
Preparata in his quark-confinement model' assum-
ing the quark-loop coupling.

In the present paper we shall calculate the two-
body strong decays of the vector and tensor me-
sons from the quark-loop coupling graph. Com-
pared to Ref. 7 (which is nearest to our model
a.mong the aforementioned papers) the difference
is that we shall. also calculate the decays of the
mesons containing strange quarks and consider,
therefore, the interesting problem of SU(3) break-
ing. In addition, the actual (oscillator-type) wave
functions me use are al.so different from those in
Ref. 7. Our model. was described in detail pre-
viously in Ref. 8, where the "direct terms" to the
meson form factors were calculated and appl. ied
to some weak decays of the new particles. In

summary, our main assumptions are' (a) confine-
ment in the Minkowski space of relative positions
(and momenta), (b) an effective-quark-mass ap-
proximation for quark propagation inside hadrons,

and (c) the quark-diagram structure of hadron
interactions. In addition, we (i) use oscillator-
type (Gaussian) wave functions, (ii) retain only
the terms corresponding to partial conservation
of axial-vector current (PCAC) and vector-dom-
inance model (VDM) in the spin structure of the
pseudoscalar and vector-meson wave functions
respectively„and (iii) assume that the tensor-me-
son wave function can be obtained from the vector
meson's one via a multiplication by an "orbital
excitation factor" (taken from the spinless rela-
tivistic oscillator model). For the calculation of
quark-loop graph we use the Feynman rules given
in Ref. 8 and, for the reader's convenience, also
in Appendix A.

The plan of the paper is as follows: Section II
contains the calculation of the "old" vector-meson
decay coupling constants. In Sec. III the "old"
tensor-meson decays are considered and the known
experimental data are fitted varying the free pa-
rameters of the model. The analogous decays of
the new mesons [such as Z (g), )(, etc.] are treated
in Sec. IV. The conclusions are summarized in
Sec. V. Appendix 8 contains some details of the
lengthy calculations.

II. VECTOR-MESON DECAYS

The explicit form of the Bethe-Salpeter (BS)
wave functions we shall use in the calculation of
the decay coupling constants is, for pseudoscalar
mesons (/pc =0 '),

X; (f, q)= My f», p( [q' (2/ ')(p -q)']},

for vector mesons (J~c = 1 ),

lt,-(p, q) =idMy, e' exp(o[q' —(2/gpss')(p q)'] },
(2.2)

and, for tensor mesons (J~c = 2"),

)(,i+(p, q) = fdic'4a Mypq, a"exp[a[q' —(2/m')(p ' q)'] }.
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Here p is the total, q the relative four-momentum,
e and d are normalization factors, m is the meson
mass, n is a parameter proportional to the size
of the region (in the relative-position space) where
the wave function is concentrated. (It is important
to note that the extensionof the confinement region
determined by e is not directly the same as the
physical size of the meson as seen, for instance,
from the charge distribution. The reason is that
in the electromagnetic form factor of mesons
the direct" graph built from the wave functions

only ls generRlly Qot domlnRtlng. As wRs discussed
in Ref. 8 the "indirect" terms, e.g. , the vector-
meson pole term, dominate. In other words, the
charge distribution is given predominantly by the
virtual vector mesons flying around, and not di-
rectly by the "bare" wave function of the meson. )
Coming back to the notations in Eqs. (2. 1)-(2.3},
e is the polarization vector (tensor) of vector (ten-
sor) mesons, and M is the usual SU(3) matrix of
mesons. The latter for the pseudoscalar mesons
1S

(I/vj}(w + t) cos(I()p+ t) stnpp}

(I/W)(-v +'7jcos(I()p+tl sin(I()r)

g' cosp~ —g sing~

(2.6)

and for the vector mesons (V=p, K*, ((), (t)):

d» = 2c(»6»lv, (2.6)

For the vector (tensor) mesons the substitutions
t)- ((), t)' (t), )t p, K K* (t)-f, t)' f', 7t-2»
K-K**)have to be made and the mixing angle is
denoted by y» (yr). From the Gell-Mann-Okubo
mass formula, for mass squared, the mixing
angles are' e)J, =44', p»=5', (pr=-4'. (Note that
these angles are measured from the ideal mixing
and our (t) and f' have an overall opposite sign com-
pared to the usual convention. }

The normalization of the wRve functions wRs dis-
cussed in Ref. 8. Following the parametrization
introduced there, we write. for pseudoscalar mes-
ons (P = )t, K, t), t)'):

where 5 is a dimensionless parameter determining
the relative amount of the direct term to the in-
direct terms at q'=0 in the form fact:or. The ten-
sor-meson wave function was obtained from that of
the vector meson by the substitution

(2.7}

This corresponds to the rule for obtaining the first
excited state from the ground state in a relativis-
tic-spinless-oscillator model (see, for instance,
Ref. 6 or 9). In a model with spin this substitution
may be considered as the definition of the orbital
excitation.

The simplest quark graph contributing to the de-
cay of a vector meson to two pseudoscalar mesons
(V-PP) is the single-quark-loop graph in Fig.
1. According to the Feynman rules in Appendix
A we have

Q Qf + P3
P s g y P 2

+ Ot
Q
~~ ~ P eg

x Tr„,[M(V, )fd, e, y(M, -n, y)c,y p,y,M(P, )

x (M, —k, 'y)c y p yM(P )(M —A; y)j.

The calculation of this expression is straightforward. Nevertheless it requires some effort due especially
to the rather lengthy expressions resulting from the loop integration. An economic way of performing the
necessary algebraic operations is described in Appendix 8. Using the notations of Zqs. (86), (812), and

(818), the coupling constant g defined by

..~(p/2 &.P3I& &iVi)).=-~(2 } 6 (p. -&2-p. )&i (&.-p.)g»,~,~, (2.9)

is given like
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g = (S„,/m, ,)[(T,—T,')[(u, ~, + o,) '(2m, m, )3(z, —z, ) —m, '(1+z, ) —m, '(1 —z, ))

+ ~2 ~3 {z3 z2 z22 z33 + z23 + 3z223 3z233}+ ~2 (~2 + 2~2~3+ {z22+z222}

+ m 3'(m, '+ 22n, m, P)(z„—z„,)]
+ (T„-T'„)[m,'{1+z,—z, )+ m, 'z, ]+(T„—T'„)(m,'z, —m, 'z2)

+ (T„-T'„)[m,'(1+z, —z, ) —m, 'z, ]) . (2.10)

In addition to the notations introduced in Appendix

8, we also used
2 2

Q~ Q2Q~ Q~ {52/~ g» 0

primes (like T,', T'„,etc. ) belong to these graphs
and are, therefore, obtained from the unprimed
ones by the exchange P, P,. M, denotes the quarh
mass matrix:

and for the occurring SU(3) traces

(2.11) M„O D

M= O M„O (2.13)

T2 = Trzu[M(V, )M(P2)M(P3)] I

T„=Tr,„[M(V,)M {P,)M@I(P,)M,J,
T„=Trz„[M(V,}MpI(P, )M (P, )M,],
T„=Tr„[M(V,)MPS{P,)MP(P, )].

Note that in Eq. (2.10) the graph obtained from
Fig. 1 by the interchange of the two final. -state
mesons is also included. The SU(3) factors with

O O M

it can be seen that we allow for SU(3) breaking in
the quark masses. {The nonstrange quark mass
M„is in general unequal to the strange quark mass
M, .) Other SU(3)-breaking effects in Eq. (2.10)
arise in the external masses m, , „

the confine-
ment-region-size parameters Q, , „andthe wave-
function-normalization parameters 5, , ,

The V- VP coupling constant defined by

out(P2 2 21f 3 3 ~&1~1 1)22 2{ } ~ (P1 f 2 P3) 2222 1 2 P2P3gV1V2r3 &

can be calculated in exactly the same way. The result is

gv, v 2, = (2S„,/m3)J(T, + T,')[m3'(z3 —z„+z„,)+ m, '(z„+z„,)+ 2m, m, Pz„,—(1+3z2)/(a, + a, + a3)]

+ T12 + T31 z2 {T23+ T31 12 + T12 T23 T31}]'

(2.14)

(2.iS)

The decay widths for V-PP and V-VP are given
by the coupling constants like

3
2 g8

Fj ~J 2P3 g p'~P2I23 6~ 2

SU

Fi F2Pg g VgFpP3 (2.10)

Here av is the c.m. three-momentum defined in Eq.
(BS). Note that in the present paper we do not
consider off-mass-shell extrapolations at all;
therefore the only V- VP process we use is P-pm. The often advocated coupling v- pt is, how-
ever, connected to IfI-p& by SU(3) symmetry;
hence it can be determined indirectly.

The SU(3) symmetry structure (eventually the
SU(3)-breaking structure) is a very interesting
general, question which, according to our know-

ledge, was not considered previously in the
"quark-l. oop coupling" scheme ' of the meson
coupling constants. %e saw that there are lots
of sources of SU(3) violation in Eqs. (2.10}and

(2.15). Experimentally, on the other hand, the

SU(3) works rather well for the V-PP (and V- VP) coupling constants. The SU(3) symmetry
of the parameters Q and 5 may, perhaps, seem
at the first sight natural. These are, however,
the parameters not directly accessible for mea-
surements. The well-known values of the masses,
however (especially the pseudoscalar- meson mas-
ses ranging from yn, =138 MeV to m„,=958 Mev)
introduce a tremendously large SU(3) breaking.
This seems at first sight disastrous not only for

p gal 9 fT

PIG. 1. The quark-loop graph contributing to the
V PP decay (p denotes four momenta, 0 the spin
index, V and P the SU(3) indices for vector and pseudo-
scalar mesons, respectively).
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our model but also for the whole class of models
based on the quark-loop coupling, showing quark
confinement in the Minkowski space and possessing
wave functions which do Lorentz contract at boosts.
(For general discussions of the Lorentz-contraction
properties of the relativistic wave functions see
Ref. 6 and other references quoted there. ) The
point is that due to the mass differences such de-
cays like, for instance, p- &m and P -KK are
kinematically rat her different, and consequently
the Lorentz contraction of the wave functions of
decay products are very much different in the two
cases. The c.m. rapidity of the pions in p- && is
1.7, whereas that of the kaons in P-KK is only
0.25; therefore the pion wave function is much
more Lorentz contracted than the kaon wave func-
tion. The value of the overlap integral is, of
course, decreased by the Lorentz contraction. As
a consequence, the overlap integral is much smal-
ler for p- std than for @-KK if the (rest) size of
the regions where the pion and kaon wave functions
are concentrated is the same. This issue follows,
in fact quite generally, from the Lorentz con-
traction and does not depend on many details like
the spin structure or the actual Gaussian shape
of the wave functions we use. [The factor S»3 oc-
curring in the Eq. (2.10) is roughly equal to the
coupling constant for spinless mesons and quarks. ]
A similar conclusion holds al.so for the compari-
son of the decays p- &m and P —p&, where again in
the former case the final-state particles are much
more relativistic in the c.m. frame than in the lat-
ter case. The only way of obtaining coupling con-
stants consistent with SU(8) symmetry (and with
experiment) is to take the size of the region where
the pion wave function is confined much larger
than those of the K and p mesons, that is &, » &

and a, » e . In other words, the anomalously
small pion mass involves an anomalously large
+, compared to the &'s of other hadrons.

Before concluding this section, we give a few
relations among the parameters of the model. In
Ref. 8 we have calculated the P„and V„decay
constants, which are

(2.17)

and

Qpo rnDO Qpompo 7r
2 2 2

W5~ (cos(p» + W sin(p»)
(2.18)

3+++pl

25o[-cosy»+ (1/W) sing»]

Note that in the last two expressions the vector-
meson mixing angle y~ was introduced contrary
to Ref. 8 where, for simplicity, y~=0 was taken.
Numerically, from the experimental values of

fP and f» (Ref. 2) (and tp»= 5') we have

a, 5, '=34.6 GeV ', a~5~ '=8.41 GeV ',

a,5, ' =4.02 GeV ', a„5„'=4.17 GeV ', (2.19)

&~5~ '=2.54 GeV '.

III. TENSOR-MESON DECAYS

The Z =2" mesons (T) decay most frequently
to final states involving two pseudoscalar mesons
(T -PP) or a vector and apseudoscalar meson
(T-VP). The calculation of the T-PP and T- VP coupling constants is very similar to the
V-PP and V-VP case, respectively. In the wave
functions the only change is the substitution in Eq.
(2.7). The additional q factor makes the loop in-
tegration f d'q somewhat more involved hut the
rest is the same.

The coupling constants g~ ~ ~ and g~ „„are
defined as usual by

out(P2P2~P3P3 ~&lolT1)tn 2( ) 5 (pl p2 Ps)ellto(P2 Ps) (P2 Ps) rrtP2P3 ~

out(ps 2»ps 3 Ill 1 t)tn t(2 ) 5 (f 1 f 2 f 3) etn&() 2 ps) esot soisogrt»2P3

This leads to the following expressions for the widths:

p p g r p p (4tt/15 lml ) I r» p gr» p (ztl /10 )

Starting from the expressions I.ike Eq. (2.8) and using the method given in Appendix B to perform the neces-
sary integrations and algebraic transformations, the result for the coupling constants is



CONFINED QUARKS AND THE DECAYS OF "OLD" AND. . .

gr, ~,r, = (~a, S„3/m23333)((T,+ To)[m, 'm, '(z, —z, —2z„—2Z„+6z„—z„,+ Bz„,
—«-.+ Z-. + 3Z.22. —«.2»+ 3Z. -)

+ m2 (m2 + 2~2m3P)(Z22+ 2Z222 Z223+ Z2222 Z2223)

2 2+ ~3 (~3 + ~2+~OP)( 33 233 2Z333 Z2333+ Z3333)

+ (a, + a2+ a, ) '((n, + a2+ n3)-'+ m22(-1 —2Z, + z, —z,,)

+ m, '(-1 —z, + 2Z, —z„)+ 2m, rn, P(z, —z, + z„—z„+z.„))]
+ (T„+T3,)[m, '(1+ 2z, —z, + z„—z„)+ (m3'+ 2m, m, P)( z+ z„—z„)]
+ (T„+T'„)[(a,+a, + a, ) '+m, '(-Z2 — z„+Z2)3+m.'( z, +z»—z„)]
+ (T„+T'„)[I,'(1+z, )+ m, '(-2z, —z„+z„)+(m2'+ 2m, m, P)(—z, —z„+z„)]],

(3.3)

gr1YOP3 —(2~1S1 2/3M )O3T 0 T )[OW2 (Z22 —Z223+ 2Z222+Z2222 Z2223)+ 2822W3P(Z223+ Z2223 —Z2233)

+ +~3 (Z3+ Z23 2Z33+ Z333+ Z2233 Z2333) ( 1 + 2+ 3) (1 + 5Z2 Z3+ 4Z22 4Z23)]

12 31)( 2 3)+ ( 23+ 31 12 31 12 23)( Z2 22+ 23)]

&, =8/(m, ' —m, ') =3.54 GeV ',
o'. = 8/(m„*'—m„')= 3.69 Gev'.

(3.4)

Together with Eq. (2.19) this involves 5, =0.88
and 5„=0.89. For the (t) and K* mesons the 3
excitation is not yet known; therefore one has to
rely on (approximate) exchange degeneracy: nz~
=—a~** and a~ = a&, . Simil. arly, we assume Q.

„

=—a& and a, =—az, . (For the I = 0 states the octet-
singlet mixing is not the same for vector and ten-
sor mesons, showing the approximate nature of
exchange degeneracy and hence allowing for more
departure from these rough equalities. )

Under these constraints one can try to fit the
measured values of coupl. ing constants. In order

Here the same notations were used as in Eqs.
(2.10) and (2.15).

The parameters involved in the coupling con-
stants in Eqs. (2.10), (2.15), and (3.3) are the non-
strange- and strange-quark masses (M„,M, ), and

for each isomultiplet of particles the parameters
& and 5 specifying the size of the region where the
wave function is concentrated and the wave-func-
tion normalization, respectively. From the lep-
tonic decays of m, K, p, v, and P we have the con-
straints in Eq. (2.19). Moreover, the vector and

tensor mesons lie on. very nice straight-line
trajectories consistent with the excitations of
the relativistic harmonic oscillator. ' This means
that it makes sense to determine the confinement-
region-size parameters a~ and a~from the mea-
sured trajectory slopes. (The situation for the
pseudoscalar trajectory is much less clear; there-
fore we leave o'p as a free parameter. ) For the

p and v mesons, the g-meson mass m =1690 MeV
and the &o(1675) ma. ss m *=1667 MeV give, re-
spectively

to get reasonable val. ues for the parameters in our
fit we constrained the ranges of a„a~*,and a&

by: Q., & 120 GeV '-, m~* ~ 5 GeV ', and Q.
&

~ 2

GeV '. The latter two values are dictated by ap-
proximate exchange degeneracy (exact exchange
degeneracy would give az3 = 3.3 and a& -= 3.5). The
upper limit of the parameter n, is rough/y equal to
the value obtained from a&pB& Qp'pRp 2 lp that is
we allow for the same amount of SU(6)-symmetry
breaking in n as is observed in the mass squared
m'.

The best fit under these constraints is given in
Tabl. e I, together with the experimental values
of coupling constants and kinematical variables.
The best-fit values of the parameters are given
in Table II. %e consider the fit satisfactory al-
though it is true that the number of parameters
is relatively large. It must be emphasized, how-
ever, that in the light of the large number of ap-
proximations we made (Gaussian wave functions,
PCAC and VMD terms only in the spin structure,
neglection of more complicated graphs and of the
meson widths, etc. ) the essential thing is the qual-
itative agreement with experimental data and not
the exact values of parameters belonging to the
best fit.

The value of the qualitative picture is shown,
for instance, by the value of f„corresponding to
o„and 5„in the fit. As shown in Ref. 8 we have in
general (2.17) which gives f„=150 MeV in nice
agreement with the measured values f, = 132 MeV
and fz ——153 MeV.

IV. NEW-PARTICLE DECAYS

The results of the preceding sections can be
applied without further ado to predict the decays
of the recently discovered charmed-meson states.
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TABLE I. The kinematics of the decays and the best fit to the coupling constants.

Decay

P =- cosh'
(g = relative I' (Me V)
rapidity of (Gev) (partial Iglexp Igltheog

decay products) (c.m. momentum) width) (in GeV units) (in GeV units)

P ~'F 7j

y-K'K
K~o K+

f- z+~

f- nn

f K+K

f' x+z

f' qq

f' -K'K
A2o—K+ K

A 'g&+

A+ ~ &~+

K++o -K+z
Kgg+ K+ q

f —p+z

Ao P+~-

K*~o —K*+x

K**o-p K+

K**+ wK+

40.5

1.69

2.32

2.82

3.71

9.13

12.7

2.72

4.81

1.54

1.50

0.361

0.126

0.288

0.621

0.322

0.401

0.758

0.523

0.575

Q.431

0.530

0,281

0.616

0.483

0„177

0,411

0.413

Q. 314

0.306

0.294

32.9

97.2

&3.6

2.43

&8.0

&2Q

2.4

15.3

&1.0

40.4

36.2

22.3

4.75

4.86

6.04 ~ 0.06

4.30*0.25

4.54 ~ 0.08

4.4 + 0.3

2.1 ~0.4

&0.93

~2.9 ~0.4

1.80 + 0.15

2.7 + 0.2

3.30+0.25

1.4 + 1.0
~1.2 + 0.1

9.8 ~0.5

7.6 + 0.7

7.0 *1.2
7.6 +2 ~ 0

&10

2.67

3.05

1.86

2.70

2.00

9.59

8.51

7.55

5.62

1.50

The only change is in the internal-symmetry fac-
tors T„T»,. . . which now become SU(4) factors
instead of SU(3) factors. The meson matrix M in

Eq. (2.4) has to be extended by a fourth row and

column and the quark mass matrix M, in Eq. (2.13)
has to include also the charmed-quark mass I,.

The decays like D*-D~, I"*-I'r, etc. are exact-
ly the same as K*-Kr and presently there are
almost no experimental results on them (except
for some hint on D*-Dw); therefore we shall
not consider these decays here. We shall concen-

trate on the VP and PP decays of the g(3100)
(J~c = 1 ) and )((3550) (j~c =2' ) states. " These
Zweig-rule-violating strong decays are displayed
schematically on Fig. 2." Experimentally, the
Zweig-rule-violating I»v is small; therefore this
graph is equivalent (to first order in Izav) to an
ordinary quark-loop coupling (like on Fig. 1) if
some admixture of ordinary quarks is introduced
in the g (and )() matrix M." We need only the SU(3)
part of M(g) and M(y). Denoting the two relevant
mixing angles (measured from ideal mixing) by

TABLE II. The best-fit values of the parameters Q.' and &. M„=0.329 GeV and M~=0.350 GeV.

(GeV 2)

18.3 3.5 2.7 3.5 ' 3.9

3.47 1.38 ' 2.37 1
(fixed)

0.88 1.05 0.45 0.89 0.49 1.05 1
(fixed)

1.4

Calculated from Eqs. (2.19) and (3.4).
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8v and ~v we have for g

(I/W) sin8» sing»

MsU(3) ($) = (I/W) sin 8» sing»

sin8vcostv

(4.1)

M(X) is the same with generally different mixing
angles 8, and q, .

Using Eq. (4.1) the expressions for the coupling
constants are given by Eqs. (2.10), (2.15), and
(3.3). The new parameters appearing in the ex-
pressions are o,'and 5 for g and y. We shall as-
sume o.'&= Ck„=1.33 GeV ' calculated from the mas-
ses (and exchange degeneracy for the trajectory
slopes) and, for simplicity, we take the mixing
angles 8v = 8~ =- 8, gv = $7 =- tie). As the parameters
5 and 8 appear in the formulas only in the com-
bination 5 sin8 which is canceled from ratios, we
can fit g to the known experimental results on g- VP coupling constants"

g„... = (1.7 + 0.4) x 10 ' GeV ',
g, r~.x = (1.3 + 0.3) x 10 ' GeV ',
g„~„=(0.9+0.4) x 10 ' GeV ',
g&~&

——(0.25 + 0.15) x 10 ' GeV '.
The fit to the ratios gives

g = (50 + 15)',

(4.2)

(4 3)

which leads to 5&sin8=—0.023 or, assuming 5„=1,
sin8= (2.3 +0.5) x 10 '. (4.4)

The values in Eqs. (4.3) and (4.4) are reasonable.
The admixture of the ordinary quarks is about 2%

in g (compared to the 10% mixing of nonstrange
quarks in P and f'). This is roughly consistent
also with SU(4) mass formulas. " The SU(3) char-
acter of P is determined by the mixing angle g.
A pure SU(3) singlet would correspond to g
= arctan~—= 55'. This is consistent with the value
in Eq. (4.3) due to the large error.

Taking the values in Eqs. (4.3) and (4.4) the
other VP and PP decays of g and If (with 5X = 1)
can easily be calculated. The results are sum-
marized in Table III. The present situation seems

ZRV

) & I

FIG. 2. The quark diagram for the two-body strong
decays of P. Izav is some Zweig-rule-violating interaction
transforming the charmed-quark pair into an ordinary-
quark pair.

rather satisfactory but due to the large experimen-
tal errors we did not look for the best fit in 8 and

This can however be easily done if more ac-
curate data will become known.

V. CONCLUSIONS

The quark-loop coupling for the calculation of
meson decays is natural in any relativistic quark
model based on Bethe-Salpeter-type amplitudes
or on bilocal fields. ' ' In the present paper we
calculated the coupling constants in a version of
the model' which can be used as a general pheno-
menological basis for the understanding of the
properties of low-lying meson states. (For highly
excited states a more complete theory is needed
as in Ref. 7.} Our main interest was in the inter-
nal-symmetry-breaking structure of the model.

The description of the decays of "old" vector
and tensor mesons leads to a consistent qualitative
picture with small effective quark masses (about
300 MeV) and considerable differences in the size
of the quark-confinement region for different me-
sons.

The smallness of the effective quark masses in-
side hadrons (with the strange quark somewhat
heavier) is a persistent feature of the quark mod-
els. In our case it can be shown that in the loop
integration the integrand is sharply peaked in the
region where on the quark lines the four-momen-
tum squared is between 0 and (400 MeV)', depend-
ing on the external kinematics of the graph. This
shows that our effective quark masses are not
necessarily the same as the effective quark-parton
masses in the deep Euclidean region.

The other general feature, the large differences
in the sizes, seems to us quite general, too, as it
follows from the I orentz contraction of the wave
functions (depending on the mass differences). In

particular, the differences in the parameter o
(characterizing the size of the confinement region
in the wave function) are roughly the same for the
ground-state mesons as the differences in the mass
squared, m'. The relation is such that &m' is in
the same order of magnitude for all the states.
This leads to o'.,»o, and 0', » &~.

One can also go beyond the qualitative picture
and try to fit the measured coupling constants.
The best fit is good, but the values of the param-
eters belonging to it are somewhat questionable
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TABLE III. The values of fII) and )('(3550) decay coupling constants (in GeV units).

fgfe((p I g It(teer I gltheot

(1.7 ~0.4) ~10 '
(1.3 +0.3) &10 3

(0.9 ~0.4) x10 '
(0.25 + 0.15) ~10 ~

~ ~ ~

&0.6&10 3

1.7 && 10
0.5 & 10
1.4 &10
0.26 &10
0.83 &10
0.1.0 &10
0.02 x10

X -Tr'Tf
E+E

X

X —)) '0

X 6'0

0.11~10 '
0e19 X10
0.04&10 '
0.13 &10 3

0e31 X10

mainly in the normalization parameter 5 of the
wave functions. The most problematic value is
that of 5„which comes out rather large. This
seems to be a problem if one tries to cal.culate
the pion form factor. A rather miraculous can-
cei1.ation between the "direct" and "indirect" terms
in the form factor is required in order to be con-
sistent with the mean squared charge radius, for
instance. A possible solution is to allow for dif-
ferent extensions of the wave function in space
and time [change the factor 2 in the exponent of
Eqs. (2.1)-(2.2)]. It is possible that the large ex-
tension of the pion is only in the time direction.
This may be enough for the overlap integrals in
the quark-loop graph, leaving the direct term to
the form factor reasonable. (We hope to return
to this problem in a later publication. ) %e em-
phasize again that for the moment we consider the
emer ging qualitative picture mor e important than
the actual. values of the best-fitting parameters.
(This is natural if one tries to fit an approximate
formula to the measured values. )

After fitting the old-particle decays, a very good
independent test of the model is its application to
the new-particle decays where the physical cir-
cumstances are rather different. For the mo-
ment the situation is very promising in g decays.
It would be very interesting to have accurate data
also for the decays of the 2" charmonium state
and compare it to our predictions.

The detailed comparison of our model with the
related approaches worked out previously is not
an easy task, and is outside of the scope of the
present paper. The main source of difficulties is
that the models in general contain a lot of different
assumptions, approximations, etc.

As far as the main features are concerned, the
essential difference compared, for instance, to
the model of Bohm, Joos, and Krammer' is that
we have quark confinement in real Minkowski
spa.ce, whereas the model in Ref. 5 is based on
wave functions confined in the Euclidean region
(after Wick-rotation). In the Euclidean region the
Lorentz-boosts go over into rotations; therefore

there is no I orentz contraction. This is the reason
why in the Euclidean wave functions there is not so
much symmetry breaking as in our (Minkowski) case.

Another related, physically very appeal. ing, mod-
el is the so-called quark-pair-creation model, ""
Compared to ours the main difference is that the
model in Hefs. 13-15 is noncovariant. For the
detailed discussion of the covariant versus non-
covariant approaches see Ref. 16. The quark pair
with the quantum numbers of the vacuum "created
from the hadronic vacuum" can be looked upon as
the nonrelativistic picture of the relativistic Feyn-
man graph giving rise to the quark-loop coupling
in relativistic approaches.

APPENDIX A: THE FEYNMAN RULES
FOR SINGLE-QUARK-LOOP GRAPHS

The Feynman rules for single-quark-loop graphs
are as follows.

1. Label the internal-quark-line four- momenta
taking into account four- momentum conservation.

2. %rite a factor

where k is the four-momentum of some quark line,
/ is the number of quark lines, rn is the number
of BS vertices (small circles), Z„& t&iIt is the sum
of four-momenta of incoming (outgoing) mesons,
and Tr~ and TrD denote traces over internal sym-
metry and Dirac (quark) indices, respectively.

3. For incoming mesons

~K
P f 4 ll~~.p

where M is the internal-symmetry matrix of the
meson and X is the momentum-dependent part of
its BS wave function.

4. For outgoing mesons

= HXip, K-$)
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where M and y are the conjugate wave functions.
5.

where M, is the quark mass matrix.
6.

K (lA} K ph ) (2}04/It(gp gp}

where ~ (I'A) denotes the (single) local current
operator with Dirac part I' and internal-symmetry
part A.

APPENDIX 8: THE EVALUATION OF INTEGRALS

The Gaussian integrals entering the loop inte-
grations are in principle easy to evaluate. Intro-
ducing suitable integration variables the necessary
algebra with the trace factors becomes transpar-
ent and simple.

The one-dimensional structure of two-body de-
cays leads naturally to decompose the four-mo-
mentum vectors into longitudinal and transverse
components. For the longitudinal variables let
us use the "light-cone" components p, of the four-
vector p = (p„p)introduced by

f'O+~ll ~

where p„is the longitudinal component of the three-
momentum p. If p~ is the transverse part of p,
then the scalar product of two vectors is

j.
pl p2 & ( pie p2 pl pR+) plJ, p2J. I

and we have

= adP+dP d P

The rapidity y is defined by

p, = e"(m'+ p, ')"',
where m is the mass belonging to p and p~ is the

length of the transverse component: p~' = p~'.
I et us denote the four-momenta of the decay

products by p2 and p„their masses by m2 and m3,
respectively (the same variables for the decaying
particle are p, and m, ). We have, of course,
p, = p, +p, and we choose p, and p, to be longitudin-
al, that isp~=p„=O. Inthis casethe relative rap-
idities can be expressed from

2 2 2p3m, —m, —m, h()
2 3 2 3

2 2 2p, .p, mg +m2 m3
h( )2mm1 2 1 2

m 2 2 — 2Pi'P3 mi ™3™2c h( )
m, m, 2m, m,

It is convenient t:o introduce the notations

&3 =73

'g =$2 —g3 = Q2 —'g3, p = cosh'g ~

In these variables the four-momentum conserva-
tion means

mi = m2e ~2+ m3 e'

The usual function X defining the phase-space
boundary is given by

= (m~ + m2 + m3 —2img mg

2m2m3 sinhp = 2m, m, sinh&2 = -2m, m, sinhp3

and the magnitude of the c.m. three-momentum is

m2m3pl= ' ' sinhq.
m g

The four-momenta in the loop integral are de-
fined in Fig. 1. The basic integral entering the
one-loop calculations is

I

J = 4 @exp o'~ Q m 1

q+~~ p q+ ~2 P3 ~ P2
p

f2 P3
~

In our variables this is

J = 2 dq, dq. d tl exp -(a, + a, + a,)q -=q, — q +=q, + q. -&

where

A, = O, + O.2
e""2+a3 e""3, a, = e3m2 e'"3'" —a2m3 e'""", E = cosh2q" (a,m, '+ a,m, ').

The result of the integration is
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7T2 0 0

The trace factors result in integrals like
(B13)

the four-vector

k =q+ a(p, -p, ),
hence with the integrals

(B15)

d'qq„~ ~ q, exp( ), (B14)
p ~ ~ op n

'kk ~ ~ ~ k exp( ~ ~ ~ ) .
P1 Pg

(B16)

where the exponent is the same as in Eq. (B10).
For us it will be more convenient to work with

This integral can be expressed generally for any
n. Actually, we shall need only n=1, 2, 3, and
4. A suitable form of the result is

J, =s(z,p„+z,p„),
gna

aa ~aapaaPaa+ ea(aP2 Paaa+P aPa3 )a+aaPaaPaa 2(a + a + a )

~Pffft 222 P2P P2y P2t + 223 P2P P2y Pst +P2PP21'Ps@ + P2fJI 2TP3P 233 0 2PPsfJPst P2g P3P Pst + P2t P3P Psy~

1
333t sp~s , ( (r. r r ,.r*., r. r ,)+~ ,.(r..r *r.. *, r „r„)IrI,+& +&l

p1p2p3p4 ~ 4 t 2222r 2Pt(1) r 2Pt(2) r 2pt(3) r 2pt(4) 3 t 2223P2pt(1)P2pt(2)P2pt(3) Pspt(4)
r(t)4

+
2 t 2 t 2233 &2pt(l ) ~ pt(2) pt(3) spt(4) 3 t 2333P2pt(1) p Pt(2) ~ pt(3) ~spt(4)

(B17)

1 1

4! Paar(l) ar(2)P r(a) ar(a) 2(a + a + a )2(2( ar())ar(2)

p p + z (p p +h p )+ I p p ~ar(l)ar(2) g r(3aIpr(4'I'
c 22P2Pt(3) t 2Pt(4) 23 P2pt(3) P3Pt(4) Pspt(3) P2pt(4) 33 3Pt(3) w spt(4)& + i i2 ~

8(n, + &2+ Os) 212 t

In the last expression Z, (,)„means (n =4)
numbers 1, 2, . . . , n.

The coefficients z„z„.. . are given by

1 0 ~ O~

2m2sinhg 2A 2A+

a. summation over the permutations v(1), . . . , )((n) of the

1 Cl Cl
Z3= e "2 +2

2m, sinhg 2A, 2A

2 1 821)3 8» 2+3 2
+ +

4m sinh g Q 4 QI+ Q2+ Qs

2 cosh'
4m, m, sinh'g

2 ] 2
Zss =Zs + +

4m, sinh g A, A &1+ &2+ &3

Z222 —3Z2Z22 2Z2 ~ Z223 —Z22zs + Z23Z2 Z2 Zs )
3

(B18)

2 3
z233 —zssz2+ 2Z23zs —2z, z» zsss = 3z,zss —2z» z»» 3z» —2Z»

3
Z2223 3Z22Z23 NZ2 Z3

2 2 3
Z2233 Z22Z33 + CJZ33 Z2 Z3 p 2333 ar)zssz23 CIZ3 Z2

2 4
Z3333- 3Z33 2Z3 ~

In the case of equal masses m, =m, —= m (and a, = a, —= a) the above expressions simplify
considerably. We have, namely
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P=- COShg = 2 —1»2m'

A, =A = e, +2o.'P,

P y l/2
-a, =a =2am(2P+1)

am' a(P+1)+ a, (2P' —1)
(a, + 2a)(a, + 2aP) 2 Ql + 2QP

2 a +a(P+1)
2(a+2aP) ' " " ' m'(a+2a)(a+2aP) ' " " m, ' (a+2a)(a+2aP)'

3
g222 = —g 333 —aP g22g 2

—~g 2
3

g223 — g233 —2g23g2 g22g2 + 2g2

4
2222 3333 22 2 » 2223 2333 22 23 2 » 2233 22
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