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From ordinary hadronic reactions one observes the empirical fact that large-momentum-transfer processes
are generally suppressed. %e abstract a prescription that any quarkwhich undergoes a momentum transfer

squared q' is suppressed by a factor Q(q'). %e estimate that Q(q') is given by the cube root of the
proton form factor. Using such a prescription we are able to explain the leptonic decays of all Q's and the
known two-body hadronic decays of the Q family. Furthermore we predict many reduced hadronic decay
widths of the Q family, which can be measured in the not-distant futuro. There exists a great range of values

for the predicted decay widths, some of the order MeV and some of the order 10 ' MeV. The observation of
such a great variatibn among the many decay modes of the Q family wiB be crucial to the present scheme.

I. INTRODUCTION

The discovery of the extremely narrow reso-
nances' 4/g, g', g", etc. , has stimulated many
theore'tlca1 developDlents. The Ilzuka-Qkubo-
Zweig (IOZ) rule is generally used as a means of
explaining the narrowness of the resonance width.
Nevertheless, the origin of the IOZ rule requires
an explanation. Furthermore, among the many
decays of the 4/g, g', there are still anomalies.
For exampley the coupling of g ~ $'g ls 30 tlDles
larger than the coupling of g'-pn. There are, at
present, three general approaches to the problem
of g decay:

(i) mixing method using various mixing
schemes in SU(4), or the mixing of guarks, to ex-
plain the various decays of g;

(II) gl'oup-'tlleoI'etlcal 111etllod

(iii) dual model. '
%'e wish to explore a fourth possibility: that the

suppression of the P decay is due to some dynam-
ical origin, for example, from some field-theoret-
ical calculation in quantum chromodynamics. %'e

adopt a phenomenological approach and ask, in
Sec. 0, first what regularity exists in ordinary
hadron interactions, and then whether such a reg-
ularity can be extended to explain the narrowness
of the P decays. Then we calculate the many other
decay modes, and find great variety among them.

II. SUPPRESSION FACTOR DUE TO MOMENTUM

TRANSFER IN KNOWN REACTIONS

The suppression due to momentum transfer in
known reactions has been studied before. ' %e
discuss the effect in two separate categories:

(A) ordinary hadrons,
(8) those involving 8/g, and its family.

For category (A), it has long been recognized in
two-body reactions ab- cd that the four-momentum
transfer between two incident particles is ex-

tremely difficult, and that this produces a forward
peak in multiparticle production. Chou and Yang'
have proposed a minimal rule for asymptotic had-
ron scattering. It states that for processes g+ b-a'+ 5' the longitudinal momentum transfer Ap~
and energy transfer nE between g and a' (or t1 and
b') approach zero as energy increases:

AP~ 0,
hE 0, as s

This rule has subsequently received solid experi-
mental confirmation, both from pp and pp reac-
tions. The qualitative picture implied by this min-
imal rule is that the hadron resists changing its
momentuD1 in strong interaction. For the quark
model, the picture suggests that the quark inside
the hadron also resists changing its momentum in
reaction processes. In other words, the quark
line in a quark diagram resists the tendency to be
bent or twisted. %e shall call this assumption the
stiff-quark-line hypothesis. This hypothesis has
already been applied to obtain various selection
rules. '

The resistance to momentum transfer can be
understood qualitatively by an appeal to field the-
ory: Four-pointlike-fermion interactions for ab- cd produce a, flat differential cross section

do'—- const xe'.
dt

However, if between the two scattered fermions
there is a particle exchange, the propagator of the
exchanged particle will produce some suppression
for finite momentum transfer. For instance, in
electromagnetic interactions e e - e e scatter-
ing has a differential cross section

proportional to the photon propagator (I/t)
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squared. In a strong interaction, for one-p ex-
change it should have a p-propagator squared, and
for one-gluon exchange it should have a gluon-
propagator squared. However, one-particle ex-
change is not a good approximation in stx'ong in-
teraction; it is not possible to calculate reliably
the suppression factor due to four-momentum
transfer.

In the following, we adopt a phenomenological
approach, and present a semiquantitative prescrip-
tion that ean summarize the present experimental
situation in an approximate w'a. y. The prescription
is as follows: %henever a hadron changes its four-
momentum, it will be suppressed by a factor of

where m is the number of .quarks in the hadron.
%e can check this suppression factor first in

elastic hadron scattering. For pp elastic scatter-
ing, there are three quarks scattering off three
quarks if the multiple-scattering terms are neg-
lected. Then, according to our prescription, the
differential cross section is

(2 5)

where m=6. For gp pp it is

(2.6)

where m=5. The quark diagrams for these cross
sections are shown in Fig. 1. The slope param-
eters t), defined by do/« =As" then approximately
satisfy the following equality:

(2.7)

It is satisfied to within 2% accuracy. Similarly,
in ep ep scattering, three quark lines in the pro-
ton suffer a momentum transfer. According to
our prescription, the pxoton. fox'm factor is given
by

(2.8)

where m= 3. Similarly, the pion form factor is

(2.9)

where m=2. The corresponding quark diagrams
are shown in Fig. 2. From Eq. (2.8), the exact
suppression factor is obtained:

(b)

PIG. l. Elastic pp scattering at small q involves
the bending of six quarks as shown in (a) with m = 6,
while mp scattering involves the bending of' five quarks
as shown in (b) with m = 5.

%e draw, in Fig. 3, the quark diagram for

g P~p tg& pal —2

PP ~7j' 7T y
PM=3

E"p pK, backward scattering, m= 5.
(2.12)

Then the cross section will be suppressed by a
factor as follows:

with the present experimental data.
So far the momentum transfer q' is spaeelike

for elastic seatterings and form factors. To test
whether it makes sense to use Eq. (2.10) for a
timelike region, it is necessary to investigate the
inelastic two-body scatterings

(2.10) o(s) ~ [q~(s)P-y' '"~'-s ' ~'. (2.18)

The relation between the pion form factor and the
proton form factor contained in (2.8) and (2.9) is

F,(q') =F,'i'(q') . (2.11)

This equality has been shown' to be consistent

fThe proton form factor has not been measured
in the timelike region. %e just take the symmetric
case for Q(s) =(1+s/O. V1) '~'. ] The power-law
behavior in the enex'gy squax'ed 8 of the inelastic-
scattering cross section has the same origin as
the power-law behavior of the form factor in the
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FIG. 2. Quark diagrams for the form factor of the
proton (m = 3) (a) and the form factor of the pion (m
—2)

FIG. 3. Inelastic hadron scatterings (a) m=2 pro-
cesses, e.g. , m p ~ q, (b) m = 3 processes, e.g. ,
Pp m 7t, (c) m=5 processes, e.g. , K p~K back-
ward scattering.

is

q'(+m, ') = p, '~'(+m, '), (3.1)

which should be inserted into the decay formula'

spacelike region (-t). All the inelastic two-body
scatterings are investigated in Ref. 5, and it is
found that the power n in the energy dependence
of cross sections

a(s)~s"
is indeed approximately given by

n = 4m/3 a 1.

(2.14)

(2.15)

The approximate nature of the equality is due to
the neglect of the spin-parity of the hadron in-
volved. Nevertheless, it gives us some guidance
to use Eq. (2.4) as a. preliminary prescription to
investigate whether suppression due to momentum
transfer plays any role in the decays of the g
family.

(3 2)

in addition to all the ordinary quark-model calcu-
lations. The wave function

~ g(0) ),
' is an unknown

quantity, which can be eliminated if the ratio of
decay rates of the tt) family is calculated, assuming
as usual that they are radially excited states of
the g(3.1). We list in Table I the various experi-
mental values, and their comparison with theoret-
ical values. The agreement is good. If the sup-
pression factor of Eq. (3.1) js not included, there
would be disagreement between the quark-model
calculation and the experimental values. [One is
naturally led to the question: should the suppres-
sion factor Eq. (3.1) be inserted for the ordinary
vector-meson decays p-ll, ~ ll, and P-ll? In

III. LEPTONIC DECAYS OF THE Q FAMILY

The leptonic decay mode of the g family is the
simplest of all. As shown in Fig. 4 it contains
only one quark line which undergoes four-momen-
tum change (m = 1). The momentum-transfer
squared q' is just given by its mass squared -m&'.
Hence the suppression factor for the decay rate

FIG. 4. The quark diagram for the decay of the P
family into lI, . It is an m =1 process.
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TABLE L Leptonic decays of P family.

Experimental ratios

Q(3.1) ~ e'+ e

Q(3.7) ~ e'+ e

P(4.1)~e'+ e
Q(4.4) ~ e'+ e

9,58
13.64
16.81
19.36

2 82 X 10 2

1.81 X 10
1.39 X 10
1.15 X 10 2

r...-(y(3.1)/r...-(y's)
2.18
3.55
4.97

1;,-(P(3.1))1...(4 's)

2.23 + 0.85
1.43+ 2.61

10.9 + 4.2

principle, it should be there. However, it is not
possible at the moment to calculate accurately
the P(ss) El decay rate from the P(cc)-ll decay
rate because the ) g(0) (' is not dimensionless and
should be proportional to qua, rk mass cubed. Vfe
shall discuss this further in the future. ]

IV. HADRONIC DECAY MODES OF THE tt PAMII. Y

All hadx'onic decay modes of the g family are
classified into five different classes:

g,. +M,

M~+M2,

y&+I,

X,. +M,

y,. ~Mq+M2,

(4.1a)

(4.1b)

(4.lc)

(4.1d)

t(,. = &(3.096), q(3.694), t)(4.1), y(4.4)

y; = y(3.550), g(3.508), y(3.415), X(2.V5) .
For the discussion below, the g states axe assumed
to be ec states with 2~=1, and the higher-mass
states are radially excited states of the ground-
state g(3.1). The y states have the following quan-
tum-number assignments:

y(2. 'l5) 2~=0

g(3.415) JP = 0',
g(3.506) 4 =1',
y(3.55) J'r = 2' .

(4.2)

It is clear that the quantum-number assignment
is not definitive, and almost certainly will change.
Nevertheless, for definiteness of numerical cal-
culation, it will suffice. %'hen, in the future, bet-
ter measurement is made, adjustment can be
easily made.

Let us now discuss the class

g +M.

The quax'k diagram fox' such a process is shown
in Fig 5(a). The .momentum-transfer squared
s =q' is equal to the mass squared of' the meson

FIG. 5. The quark diagrams for hadronlc decays of
the Q family. (a) Rt = 3 This includes the decays of

|t) +M, g; X&+M, and X; g&+M. The q is mass
squared of the hadron M. (b) m=3. This includes the
decays of tt; ~M~+M2 and y; —M&+M2, where M&, 3f&
are mesons. The q2 is the mass squared of the decaying
g or X state. (c) m=4. This includes the decays of

I3+B, and X; B+B, where B is the baryon. The
q is the mass squared of the decaying g or y state.
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Decays F 2m/3(~) I'( l]4„)Fp ~ (MeV)
Reduced

width (MeV)

4(3.7) ~
P(4 1) -+

)I/(4 4) -+

p(4 4) -+

0(4 1)~
p(4 4) m

4(4.1)~
Q(4 4) -+

@(44) -+

$(3.1) + q
$(3.1) + g
)t/(3. 1) + n
4'(3.7) + n
$(3.1) + q'

P(3.1) + q'

Q(3.1) + 5*
P(3.1) + S*
P(3.1) + S

0.301
0.301
0.301
0.301
0.916
0.916
0.986
0.986

1,21-1.69

0.243
0.243
0.243
0.243
0.363 X 10 I

0.363 X 10 '
0.307 X 10 I

0.307 X 10 '
0.0076-0.0188

0.2443
7 8g

17.4
1.17
0.373
7.24

6.69 X 10'
363 X 102

0-0.97 X 10

594X 102
1,91
4.22
2.84 X 10 ~

1.35 X 10 2

2.62 X 10 ~

2.05
1 1.1

0-1.82

M. It is an m= 3 process because thxee quark lines
Rl'6 involved, The sllppl'essioll fRc'tol' 18 Q (8)
=F~'(8). The decay formula is

r=- — ', q'(8)1 g' IP, I',
34m m,

' (4.3)

1g Pp,

fox" 1 1 +0' decay. It is convenient to define
a reduced decay width

decays and the baryonic decays are shown in Fig.
5(b) and Fig. 5(c), respectively. They belong to
m = 3 and m = 4. Hence, the suppression factor for
the mesonic decay width is [Q'(s)]' and that for the
baryolllc decRy width 18 [Q (8)] . Slllce 'tilel'6 18
one more quark in the baryon than in the meson,
one expects that the baryonic decay is slightly
more suppressed. Also, the heavier g mesons
are suppressed more because the momentum-
transfer squared s =m' is equal to the mass of the
decaying P. For instance, the reduced decay width
for g(4.4) p+li is only —,

' that of g(3.1) p+q.
Also~ we have

r
g'/4v ' (4.5) I {q(4.4) -pv) -19T'{y(3.1) -pw). (4.7)

which contains all the kinematic factox's and the
suppression factor and leaves the coupling con-
stant g'/4n free. The Clebsch-Gordan coefficient
that arises from any symmetry scheme is includ-
ed in the coupling constant. The suppression fa,c-
tox' ls the sanle, 0.243, fox'

but it increases to 0.03 for the heavier meson

- g(3.1)+S, (4.6)

which has fairly lax ge reduced widths of 4 or 11
MeV. Some of the more usual ones ax'e listed in
Table II.

The second class

is the most studied one. %e list the common ones
in Table III. The quark diagrams fox the mesonie

For the decay which emits g, the suppxession fac-
tor is small. This is in accord with the experi-
mental observation of a large branching ratio for
g(3.'I) - g(3.1)+li. The interesting ones to look
fox' ax'e the

y(4.4) -y(3.1) + li

For other decays &oli, pq, a&1}',yq', p5, KA, pp, AA

similar trends also exist.
For the classes of

we calculate cases for M={d, P, q. The results are
listed in Table IV. The suppression factor now is
Q'(s), with 8 =m' of the meson M. It is interesting
to note that the reduced widths are quite large if
the transition has sufficient phase space, e.g. , the
transition

y(4.4) -g(3,415) + ap (4.3)

has the reduced width -30 MeV, and that of

y(3.415) g(2. 'l5) + 1} (4.9)

has the reduced width 60 MeV. It seems to us that
the lax'ge hadronie widths of the g states are an
important characteristic of the present suppres-
sion scheme due to momentum transfer, provided
that the state 2.75 GeV exists. The large width
(compared relatively with the width of g-pw) oc-
curs not only for M=@, but also for & and @ states.
It has been axgued by Harari' that decays having

q may have a large width because q has a slight
amount of ee mixture. However, there should be
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TABLE III. Strong decays of the type Q; ~M| + M2.

F 2m j3 (MeV)
Reduced

width (MeV)

Q(3.1) ~ p + w

4(3.7) ~ p+&
4(4.1)~ p+ &

Q(4.4) ~ p+ x
P(3.1)~ m + q
p(3.7) ~ M + q
p(4. 1)~ u+ q
p(4.4) ~ m+ q
4'(3.1) ~ 4+ n

0(3.7) ~4+ n
4(41) 4+m
4'(4.4) ~ 4 + n
P(3.1)~ u + q'

f(3.7) ~ m+ q'

f(4.1)~ u+ q'

p(4.4) ~ cv + q'

4(3.1)~4+ n'

4'(3 7) 4 + n'

4(4.1) 4 + n'

4(4.4) ~4+ n'

$(3.1)~ p + $

Q(3.7) ~ p + 5

P(4. 1) ~p+ 5

0(4.4) p+ ~

0(3.1)~ p+ p
P(3.7) ~ p + p

4 (4.1)~ p + p
Q(4.4) ~ p + p
P(3.1) ~ A + A

f(3.7) ~ A + A

$(4.1)~ A+ A

Q(4.4) ~ A+ A

P(3.1)~ K'+ K *

~K +K
Q(3.7) ~ K'+ K *

~K +K
Q(4. 1) ~ K'+ K

~K +K
P(4.4) ~ K'+ K

K +K'*

9.58
13.64
16.81
19.36
9.58

13.64
16.81
19.36
9.58

13.64
16.81
19.36
9.58

13.64
16.81
19.36
9.58

13.64
16.81
19.36
9.58

13.64
16.81
19.36
9.58

13.64
16.81
19.36
9.58

13.64
16.81
19.36
9.58

13.64

16.81

19.36

2.26 X 10 5

6.OO X 1O '
27 X 106
1.6 X1O-'
226 X 10'
600 X 10 6

2.7 X1O-'
1.6 X1O-'
226 X 105
6.OO X 1O-'

2.7 X 106
1.6 X 106
2.26 X 1O-'

6.OO X 1O '
27 X 106
1.6 X lO-'

2.26 X 10 5

6.OO X 1O-'

2.7 X1O-'
1.6 X 10-'

26 X 10-s

6.00 X 10
2.70 X lO-'

1.60 X 10 6

O.63 X1O6
0.108 X 10 6

O.O37 X 1O-6

0.0178 X 10 6

0.63 X 10 6

O. 1O8 X 1O 6

O.O37 X 1O-6

0.0178 X 10 6

2.26 X1O-'

6.00 X 10'

270 X 106

1.6O X1O-6

1.20 X 102

X 102

1.54

1.056 X 10
1.338 X 10
1.52 X 10
1.66 X 10'
881 X1O'
1.24 X 102

1.43 X 10
1.58 X 10
7.97 X 10'
1.11 X 10
1.32 X 10
1.46 X 10
7.2S X1O'
1.08 X 10
1.26 X 10
1.41 X 10
5.86 X 10'

X 1O'

1.14 X 10
1.30 X 102

1,17 X 103

2.04 X 103

2.68 X 10'
3.28 X 103

0.518 X 10
0.786 X 10'
0.960 X 10
1.08 X 103

0.344 X 103

0.622 X 10'
0.807 x 103

0.939 X 103

897 X1O'

2.38 X 10 3

8.02 X 10 4

4. 1 X1O-4

2.65 X 10 4

1.99 X 10 3

7.44 X 1O-4

3.86 X 10
2 52 X 10 4

1.80 X 10 3

6.66 x lo-4

3.S6 X 1O-'

2.33 X 10 4

1.63 X 10 3

6.48 X 10 4

3.40 X 10
2.2S X1O4
1.32 X 10 3

S.SS X 1O-4

3.O7 X 1O-4

2.O8 X 1O-'

2.64 X 10 2

1.22 X 10 2

0.72 X 10 2

0,52 X 10
3.26 X 1O-'

8.48 X 10
3.SS X 1O-'

1.93 X 10 5

2.16 X 104
6.72 X 10 '
2.98 X 10 5

1.67 X 10'
2.02 X 10 3

0.721 X 10 3

0.379 X 10 3

0247 X 103

TABLE IV. Strong decays of the types p,. ~ X + M and X; ~ X; + M

P(4.4) ~ X(3.415) + m

4(3.7) ~ x(2.75) + ~
P(4.1}~ X(2.75) + m

4(4-4) ~ x(2.75) + ~
tt(4. 1)~ x(2 75)+4
4(4.4) x(2.75) + V

x(3.55) ~ x(2.75) + q
X(3.415) ~ X(2.75) + q

s (GeV )

0.612
0.612
0.612
0.612
1.04
1.04
0.301
0.301

F 2mi3(, )

8.33 X 10 2

8.33 X 10 ~

833X10~
8.33 X 10 ~

273 X 10
2.73 X 10
0.243
0.243

I ( i(4„)Fp2 t (Me V)

0.266 X 103

2.30
1SO X1O'
278 X lu'
7.75
1.95 X 10'
0.361
0.252 X 103

Reduced
width (MeV)

2.22 X 1O'

1.91 X 10 i

1.24
2.31
2.11 X 10 i

S.32 X 1O-'

8.77 X 10
6.12 X 10'
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TABLE V. Strong decays of the type X; ~ MI +%2.

Reduced

I"&&4„&F„2~~3(MeV) width (MeV)

X(3.SS)~ m''+ m, m' + m'

y(3.55) ~ q+ q
x(3.55) ~ q'+ q'

x(3.415) w'+ m, m'+ x'

12.6
12.6
12.6
11.6

0.81 X 10 5

0.81 X 10-'
0.81 X 10-'
1.11 X 10 5

0.174 X 103

0.137 X 103

0.07S X 103

1.26 X 10

1.40 X 10 3

1.10 X 10 3

6.00 X 10 4

1.39 X 10

no argument that &u, P are pure states of u, d, s
quarks only.

For the class of decays

M~ +M2,

the suppression factor now is Q'(s), with s = m

equal to the mass squared of the decaying X state.
Hence the suppression factor is large, -10 '. The
reduced vridths then are in the keV range. %'e list
the results in Table V.

In the calculation of the above decays, in addition
to Eqs. (4.3) and (4.4), we also use the following
formulas:

(a} For the decays of 1 --,' +-,",it is

1 g2 (m,
' —4m, '}' '

3 4g m»

(b) For the decays of 2'-0 +0, it is

g' 8 le, I'I'=—x-
4m 5 m, '

(c) For the decays of 0"-0 +0, it is

The indices 1,2, 3 refer to the particles in the de-
cay 1-2+3 and the momenta are evaluated in the
rest frame of particle 1.

V. CONCLUSION AND DISCUSSIOQ

In ordinary hadronic scattering, we have ob-
served that processes are greatly- inhibited when-
ever there is a large momentum transfer. In the
above, me argue that this should be a general fea-
ture of all hadronic interactions. A quantitative
prescription is obtained for quark-line bending.
It is not unreasonable to expect that such a sup-
pression factor may eventually be derived from
field theory.

Then ere derive many leptonic and hadronic de-
cays of the g family, depending on the momentum
transfer involved; the suppression factor varies
greatly from 10 ' to 10 '. This should shower up

ultimately 1n the pRl t1Rl decRy Widths. The lep-
tonic decay widths have been shown to be consis-
tent with experimental results.

It is difficult to compare the hadronic reduced
%ldths dil ectly Kith experiments becRuse the coll-
pling constant is not known precisely, and the pre-
cise group-theoretical classification of the g fam-
ily does not have a general consensus. However,
if the suppression factor is large, one can invert
the procedure and calculate the coupling constant
from the suppression factor and the experimen-
tally measured decay width as followers:

TABLE VI. Comparison of the hadronic decays of the tt family with experimental data.

Decays
Reduced

width (keV)
Experimental
width (keV) g2/4m

4'(3.1) p+ 7r

4(3 1)~4+@
$(3.1)~ P+ q'

Q(3.1)~ K'+ K *

f(3.1) ~K + K *

tt(3.7) ~ P(3.1) + q
Q(3.7) ~ P' + r'
4(3.1)~ p + p
Q(3.1)~ A + A
4(3.7) ~ p+ e
P(3.7) ~ A + A

2.38
1.80
1.32
2.02
2.02

59.4
0.802
0.326
0.216
0.0848
0.0672

0.287
0.048
0.034
0.12
0.09
9.34

(0.228
0.15
0.1 1

0.0524
&0.09

+ 0.046
+ 0.027
+ 0.027
+ 0.02
+ 0.02
+ 1,59

+ 0.01
+ 0.05
+ 0.0159

0.12
0.026
0.025
0.06
0.05
0.157

&0.28
0.46
0.50
0.617

&1.5

+ 0.02
+ 0.015
+ 0.020
+ 0.01
+ 0.01
+ 0.026

+ 0.03
+ 0.23
+ 0.187
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We list the results for all the two-body final states
of the g family in Table VI, and from the tables
one can see that the coupling constants from the
mesonic decays range from 0.03 to 0.15, only a
factor of 5, and those from the baryonic decays
are about -0.5. It is not uncommon from the
Clebsch-Gordan coefficient to produce a factor
of 2 to 10 different for couplings among members
in the same group representation. Also, in the
ordinary hadronic coupling, the baryonic coupling

(g~ '/4w- 14) is also larger than the mesonic
coupling (f~'(4s = 2.5).

Therefore we conclude that the suppression due
to momentum transfer is consistent with the cur-
rently available data.

We do not try here to compax e the present
scheme with decays involving more than two par-
tic1.es because of the ambiguity in the coupling
constant. We shall return to this problem in a

future study.
We then predict a whole series of partial reduced

widths for decays of the g family. In general, the
decays of the types y,. -y,. +M, g,. -g,. +M, g,. g,. +M
have a smaller suppression factor than those of
the types $-M, +M„X-M,+M,. The decay widths
of the heavier f states to two hadrons are in gen-
eral smaller than the decay widths of the lighter
p states despite more phase space.

These kinds of general qualitative features, if
found in future experiments, will provide a great
support for the suppression scheme advocated
here.
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