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Spectrum-generating SU(4) in particle physics: SU(n) and particle assignments*
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The conventions and representations of SU(n) as used in the spectrum-generating-group approach to
particle physics are described. The particle assignments are given in terms of Gelfand-Zetlin basis vectors,
and the most useful Clebsch-Gordan coefficients are listed. The electric charge operator and the
electromagnetic current operator are defined and the matrix elements of the electromagnetic current operator
are discussed.

INTRODUCTION

In this series of papers, we will develop the
spectrum- generating- group approach to particle
physics. This paper contains a description of the
conventions and representations of SU(4) which
are useful for particle physics, and includes tables
of Clebsch-Gordan coefficients in a readily usable
form. The definition of the electromagnetic cur-
rent operator in SU(4) is also discussed. In a
later paper, we will apply these ideas to the radi-

. ative decays of vector mesons, beginning with a
derivation of the decay-rate formula from the
spectrum- generating- group assumption. Subse-
quent papers will describe the application of these
methods to other area, s of particle physics.

In view of the profusion of different conventions
and notations used for SU(4) in the literature, it
is worthwhile to review the subject and establish
a consistent notation. This is especially impor-
tant for calculations in which the relative phases
are crucial (such as the electromagnetic-decay
calculations to be discussed in the next paper of
this series). In this paper we will present the re-

presentations of SU(n) in the Gelfand-Zetlin pat-
tern notation, ' without giving any proofs. ' The re-
presentation of basis vectors in SU(3) by Gelfand-
Zetlin patterns is already a substantial simplifica-
tion over other conventions, and for SU(4) this
simplification is even more appreciable. More-
over, for a systematic study of the application of
the cha, in of unitary groups,

SU(2) c SU(3) c SU(4) c c SU(n) c. . . ,

of which the apparent discovery of charm' may
have just revealed one further step, the use of
Gelfand- Zetlin patterns becomes essential.

In Sec. I, we discuss those aspects of the Gel-
fand-Zetlin pattern which are necessary for parti-
cle physics. Most of this material has been taken
from papers by Louck, Biedenharn, and collabora-
tors." In Sec. II we discuss the assignment of
particle multiplets to SU(4) irreducible representa-
tions, 4 and define the "charges" in terms of the
group generators. We define the electric charge
operator in Sec. III, and extend this to the electro-
magnetic current operator. Finally, in Sec. IV we
discuss the assignment of particles to SU(4) states.

I. REVIEW OF THE PATTERN NOTATION

A Gelfand-Zetlin pattern for U(n) is a triangular scheme

m m3 ~

2pn 1 n-l, n-1

m 1 m2, 2

m )m ) )m &0l, n 2, n re N (2)

of non-negative integers m, „which satisfy the fol-
lowing inequalities:

j+1 l j cl j+1' (3)

The first row in the pattern (I) characterizes an
irreducible representation (irrep) of U(n) and is
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f )
"- Ivl)„boxs

f~ = m» boxes

TABLE I. Reduction of the 15-dimensional irrep
(2, 1, 1,0) of U(4) or SU(4) into irreps of U(3). The ei-
genvalues of h&" are also given.

mf 3y mp 3y m3 D(~, , ~,) I SU(4)
3

f„~ m„„boxes

FIG. 1. Young diagram corresponding to the irrep
(m, „,m, „,",mn n)-

2, 1, 1
2, 1, 0
1, 1, 1
1, 1, 0

D(1, 0)
D(1, 1)
D(0, 0}
D(0, 1)

3
8
1

(-')'" —:(+1)
0
0

connected with the characterization of the irrep
by a Young diagram through the lengths of its rows

(f) 1f21 )f))) = (m)., n& m2, n& ' ' ' 1mn n) 1

as illustrated in Fig. 1. The second row in pat-
tern (1) characterizes the irrep of the U(n —1)
subgroup. The inequalities (3) for j+ I=n then
constitute the Acyl branching law: A given irrep
(m, „,m, „,. . . , m„„) of U(n) restricted to the sub-
group U(n —1) reduces into the direct sum of all
posible irreps (m, „m, „„.. . ,m, ,) for which
the m, „„fulfill (3), i.e. , such that the integer
m, , lies between the pair of integers directly
above it in the pattern.

As an example, consider the 15-dimensional re-
presentation of U(4) [the adjoint representation of
SU(4)] characterized by (2, 1, 1, 0). The four pos-
sible sets of numbers fulfilling (3) which may ap-
pear in the second rom of the pattern

where e is any integer, characterize equivalent
representations of SU(n), so long as (2) holds.
Therefore one may characterize an irrep of SU(n)
by just the n —1 numbers

fg=mi, n mg, n&fg=m2, „-m„, „~ ~) ~ 1

In this convention, the last entry in the first row
of a Gelfand- Zetlin pattern for SU(n) will always
be 'zero:

tI ~ j.q PI ~ 1

~ ~ ~
1.) tt 2

(4)

2 1 1 0
The connection between the characterization of an
irrep by the first row (f„ f„„O)of a pattern
(or a Young tableau) and by the highest weight
[X~1 X2, . . . , X ~] 1s

are shown in. the first column of Table I. The
irrep (2, 1, 1,0) of U(4) therefore reduces with re-
spect to U(3) into the direct sum of the four irreps
characterized by the numbers in the first column,
of Table I.

The irreps of SU(n) can also be characterized by
the first row of a Gelfand- Zetlin pattern, and each
irrep of U(n) is also an irrep of SU(n). However,
(m, „,m, „,. . . , m„„) and

(m, „+e,m, „+e,. . . , m„„+e},

~a =&a -~s
(5)

~n-i -&n-i ~

The highest-weight characterizations of the irreps
of SU(3) contained in the adjoint irrep (2, 1, 1,0)
=[X,=l, X, =O, X, =1] of SU(4) are also shown in
Table I.

The dimension of the irrep D([X„A.„.. . , X„,])
of SU(n) is given by

(
Xq+ A2+ ~ ~ ~ + A,„q

n 1
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In the example above, the dimensions of the irreps
of SU(3) are also shown in Table L

In the same way that the second row of pattern
(4) gives the reduction of U(n) with respect to
U(n —1), the third row gives the reduction of the
irrep (m, „„.. . , m„, „,) of U(n —1) with respect
to U(n —2). For example, the irrep (2, 1, 1) of
SU(3) in the pattern

Vlf py PPl2

2 1

I su(4)

&3—(+ 3)4

I Su&4)
i

TABLE II. Reduction of the irrep (2, 1, 1) of SU(3) into
irreps of SU(2). Isospin I, eigenvalues of h2" and 0&"
are shown.

1 1 0

2 1 1

reduces to a direct sum of the two SU(2) irreps
shown in Table II. The usual labeling of the SU(2)
irreps by the isospin I

is also shown in the table.
Proceeding in this manner from one row to the

next in the pattern, we obtain the complete reduc-
tion of our irrep of SU(n) with respect to the chain
of subgroups

SU(n) ~ U(n —1)a U (n —2) & ~ ~ ~ & U(1)

with

U(i) = U(1) CI SU(i)/Z, ,

where Z, is the cyclic group of i objects. The
irreps of U(l) are one-dimensional and are char-
acterized by the integer m, , For example, in the
irrep (2, 1) of U(2), m, , can have the two possible
values 2 and 1 (corresponding to the two I, values
for I= g).

A fully specified pattern such as

2 1 1 0

2 1 1

2 1

The Gelfand-Zetlin basis vectors (9) are eigen
vectors of (n - 1) invariants P, (i = 1, . . . , n —1) of
SU(n), of (n —2) invariants I&

' of SU(n —1), etc. ,
of the generator II„,of the U(1) in

U(n —1) =U(1) II SU(n —1)/Z„, ,

of the generator II„,of the U(l) in.

U(n 2) =U(l) e SU(n 2)/Z„, ,

(10)

(12)
From this we see that the eigenvalue h, of H, de-
pends only upon the ith and the (i+ 1)th rows in the
Gelfand- Zetlin pattern, except that its normaliza-
tion depends upon n. For example, h, for SU(4) is
given by

h, = (-,')'I'-,'[(m, ~, +m, ,+m, ,)
—g (m, ~+ m2 4+ m~ 4+ m~ ~)]. (13)

The values of h, for the patterns

and so On.

The generators H„H„.. . ,H„, of the Abelian
Cartan subalgebra (representing the "charges"
I„ I', charm, etc. ) have the following eigenvalues
on the Gelfand- Zetlin basis vectors:

characterizes a one-dimensional subspace of the
irrep space of SU(n). Therefore, up to a phase
factor, it also characterizes a basis vector of this
irrep space $(m, „,m, „,. . . , m„„). We denote this
basis vector by

m'g 3 m2, 3 m3, 3

mg

mlj

mn,

(9)

of the adjoint irrep of SU(4) are given in the fourth
column of Table I.

Likewise, the eigenvalue h, in SU'(4) is given by

v3
h, = [m, ,+m, ,—3(m, ,+m, ,+m, ,)], (14)

and the values for the patterns
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TABLE III. Reduction of the 20-dimensional irrep
(2, 1, 0, 0) of SU(4) into irreps of U(3). Eigenvalues of
Il3" and charm are shown.

m] m2, 2 mf 3$ mP 3 j Pl)

2, 1, 0

I,sv(4)

3
4&6

are given in the third column of Table II. Finally,
the values of 2, 0, 0

2 [my y 2 (I...+ ~...) ]
for the pattern

1 0

(15)
1, 1, 0

1, 0, 0
5

4&6

mI

m

m2. 2

are also shown in Table II.

II. MULTIPLET ASSIGNMENTS IN SU(4)

The (pseudoscalar) mesons should be assigned
to the adjoint representation; so for SU(4) we need
to consider the representation (2, 1, 1,0), which
has been -used above as an example. The old
pseudoscalar mesons are assigned to the octet,
and to retain the usual values of isospin I, for these
states we connect I, to h, ""'by

&6II, . (18)

The —,' baryons are assigned in SU(4) to the 20-
dimensional representation (2, 1,0, 0), which we
also denote 20'.4 The possible values of
m, „m, „m3 3 in. the patter~

one finds from (17) and (14) that Y= ——,
' for I= —,

'

and Y=+3 for I=0.
It has already become conventional to assign the

charm +1 to the mesons in the 3* representation
(called D', D', I"). In order to retain this conven-
tion, the connection between the charm (for mesons)
or supercharge y and the value 8~8""' given by {13)
must be

I3= 2H (16)

Likewise, the usual values of hypercharge Y will
be retained if we set m $ 3 m2, 3 m3, 3

4Y= ~II, .
3

(17)

If we now keep the convention (17) for states with
h, c0 (charmed particles), then the values of hy-
percharge for the 3 representation characterized
by the patterns

2 1 1

are —, for I= —, and —3 for I= 0 (see Table II).
Similarly, for the 3* representation described

by the patterns

2 1 1 0

1 1 0

are listed in Table III together with the corre-
spondjng dimensional notation for the irrep of
SU(3) and the value of h38"'4' calculated from (13).
I, and Y are still given by {16)and (17).

If the assignment of charm is to be the same as
in the usual convention' (see Table III) then the
connection between the charm C and supercharge
y (= charm for mesons) is given by

C = 4B —v 6k3= 4B+ y,
where B represents the baryon number.

At the present time, there is no experimental
evidence for assigning the &' baryons to 20'. For
example, no disagreement with experimental facts
results from choosing another 20-dimensional
irrep, (2, 2, 0, 0), instead of (2, 1, 0, 0), even
though (2,.2, 0, 0) is not contained in the reduction
of the product 4 && 4 x 4. This irrep is self-conju-
gate, has an octet with h, = 0 and a 6 and 6* with

h, =-l/v 6 and+1/&6, respectively.



A. BOHM, M. HOSSAIN, AND R. B. TEESE

The —,
' baryons are assigned to the 20-dimen-

sional representation (3, 0, 0, 0), denoted 20. The
possible values of m, „m, „and m3 3 in the pat-
tern

0 0
mf 3y m) 3y m3 IsU(4)

3 .

TABLE IV. Reduction of the 20-dimensional irrep
{3,0, 0, 0) of SU{4) into irreps of U(3). Eigenvalues of
h3S and charm are shown,

3, 0, 0 10

2, 0, 0

1,0, 0
5

4&6

III. CHARGE OPERATOR AND ELECTROMAGNETIC
CURRENT

The connection between the electric charge Q
and the eigenvalues of the operators. H»H„H3 in
SU(4) is specified by the requirement that

(1) the Gell-Mann-Nishijima formula, ~Q=h,
+h, jv 3, is to be generalized for values of H, c0,

(2) there exists a new particle doublet with
charge 0 (D') and charge +1 (D'), and

(3) the isodoublet with y= —1 is the charge con-
jugate of the isodoublet with y=+I [or that the con-
jugation operator for SU(4) is the charge-conjuga-
tion operator for mesons].

Then the charge (operator) for mesons is given
by

1 2 I/J'2—.q =H, + H, —(-.)"'H, . (20)

If this is taken to be the charge operator for all
B= 0 particles, and if the baryon octet with the
usual charges is assigned to the irrep space char-
acterized by

1 0

2 1 0

then the charge operator must have an additional
term:

aQ=H + H —(
—)i/ H + B, —

3
(21)

ol

are shown in Table IV, along with the va, lues of
A'3

' and charm, and the corr espending dime n-
sional notation for the SU(3) irreps. Relations
(16), (17), (18), and (19) are still valid for. 20. We
note that instead of a 3* with C = 1 (as in 20'),
there is a singlet with C = 3.

0, 0, 0

2ls Qc= p.

As we have seen. , - the experimental discovery of
the isodoublet with D' and D' is sufficient to es-
tablish (21) if one assigns the &' baryons to the 20-
dimensional representation (2, 1,0, 0). If one
would instead assign them to the representation
(2, 2, 0, 0), as discussed above, then the charge
operator would be

2Q=Hi+ — H —(
—)i/ H

3
(22)

in order to give the Gell-Mann-Nishijima formula
for the octet. The distinction between (21) and
(22), which we do not want to elaborate upon here,
is that in the case (22) the group is Us(1) x SU(4)/
Z, . In case (21), however, the group is U(4),
where U(4) is generated by B and the SU(4) gener-
ators.

If the charge is given by (21) one would choose
for the electromagnetic "current" '

Vel V~o+ Vq (2)x/2Vx ~ Vs (23)

[in the case of (22) one would choose V'„= 0, but
below we will see that such a, term is essential
for the radiative decays], where V'„', V", , V", are
the -components of a regular tensor operator of
SU(4) that transform like H„H„H„respectively,
and where V'„ is an SU(4)-scalar operator. The
phases are specified such that the F-type Clebsch-
Gordan coefficients of the matrix elements of
V'„, V", V"„,V'„are proportional to the charges
A'] P A2$ A3P Bo

From the physical interpretation of the charges
it follows that, under charge conjugation Uc,
and each of its terms should transform like

@=I~+g Y+ 3C. (21')

These are the same expressions one gets by quark
charge counting, where the charmed quark charge

In par ticular,
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Taking (25) between meson state vectors lM& gives

&M I
v'I M& = ~-.~~&M I v'IM& (26)

where

known relation

C(E, p', . . . , w') = C(-E, p, . . . , w ),
C(D, p', . . . , w') =+ C (D, p, . . . , w ) .

(33)

U, lM&= n„lM.&, (27)

(M'l v'lM'&= o. (28)

Since all the other quantum numbers in addition
to the SU(4) quantum numbers are the same for the
whole SU(4) multiplet, it follows that

(M l
v'lM& = o (29)

for the whole multiplet.
By the same argument it follows that

&M, l v'„lM, &= o

for any two members of two different SU(4) multi-
plets with o,„=a„,. However, if (the neutral
numbers of) the SU(4) multipl. ets M, and M, have
opposite charge parity, n~ ca„, then (M, l

V'JM, &

0. Thus, if M, are the pseudoscalar mesons I'
and M, are the vector mesons V, then in general

&Pl v'„lv) ~0. (30)

As we mentioned after Eq. (23), Eq. (30) will be-
come important for radiative decays V-P y.

We shall now show that the E reduced. matrix
elements between the vector-meson 15-piet and
the pseudoscalar-meson. 15-piet must be zero as
a consequence of the transformation property of
V'„' under charge conjugation. Let us for the sake
of definiteness consider the matrix elements

with M denoting the antiparticle of M and n~ being
a phase factor (with @~=+1 or -1 as a consequence
of Uc'=1).

Applying (23) for zero-charge mespns, M'=M'
(such as wo, q, p', ete. ), it follows that

From (24) it follows that

&w'l v„"
l
p'&=-&w'l U,-'v'„'U,

l
p'&

n„a-r(w
l
v'„'lp ), (34)

where @~=+1 and e~=-1 are the charge parities
of the pseudoscalar and vector mesons, respec-
tively.

Writing (w lV'„'lp) in the form (31) and using
(34) we obtain

(w'l V'„'l p) = C(E, p, el, w )(15P'((V„((15V)

+ C(D, p, el, w )(a5P II V„'l(15V&

+ &i5Pl v„l15v). (

Using (33) and comparing it with (31) we obtain

(15P((V „"((15V& = 0 . (36)

IV. . STATES AND PARTICLE ASSIGNMENTS

It is well known that the vector-meson states
are not described by the basis vectors of the 15-
dimensional representation adapted to the chain
of subgroups

SU(4) & U„(1)x SU(3) & U„(l) x U (1) x SU (2)

(37)

[we call this basis the SU(4) basis], where U„(1)
and U„(1) are U(1) groups of charm and hyper-'
charge, but instead that a much better approxi-
mation is given by the basis vectors which are
connected to the subgroup chain

= C(E, p, el, w') &15PII V„l(15V)

+ C(D, p', el, w')(15PIIV D((15V)

+ &15P
l
v'„ l15 v&.

According to (23),

(31)

SU(8) & SU(6) x SU (2)

&SU~(4) x SU~ (2) x SU~ (2)

~SU (2) x SU,(2) x SUB„(2) x SU (2)

(38)

C(D, p', el, w') = C (D, p', w', w')

1
+ C(D, p', q, w')

3

(-', )' 'C(D, p', g, w') (32)

and similarly for the C(E, . . . ), where p', wo, w',

etc. , stand for the SU(4) quantum numbers of the
particles p', w', w', etc. , and C(D, p', wo, w'), etc. ,
[C(D, . . . )] are the symmetric [antisymmetric]
SU(4) Clebsch-Gordan coefficients. Just as for
the SU(3) Clebsch-Gordan coefficients the SU(4)
Clebsch-Gordan coefficients also fulfill the well-

[we call this basis the SU(8) basis].
The basis vectors which one would use in. the

ease (38) are the vectors (9) labeled by the Gel-
fand-Zetlin pattern and, in the rest system, by
the spin S, spin component S3, and the mass,
which in the spectrum-generating-group approach
is not an independent label but a function of the
discrete quantum numbers.

The basis vectors for the case (38) are not the
basis vectors adapted to the subgroup chain (38)
because then the spin wouM not be diagonal, but
rather the basis in which the charmed spin S„, the
hypercharged spin S~, and the charged spin S~ are
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combined according to the rules of addition of
angular momenta. In this basis the operators

2 8'2 4 6
3P 0 J 0 XP X P 0 3P 29C2 (39)

are diagonal. Here C,' is (a set of) the second-
order Casimir operator of the Mrsey-Radicati
SU(6) and C, is (a set of) the Casimir operator of
the Wigner SU~(4), and is physically distinct from
the Casimir operator C', of the SU(4) of the charges
given in (13), (14), and (15). For the few low-

lying irreps of SU(6) and SU~(4) that we need, the
second-order Casimir operator suffices for the
characterization. In general, however, higher-
order Casimir operators are also needed. The
second-order Casimir operator for SU(n) of the
irrep P.„.. . , X„,] is given by'

system of commuting observables (39) by the
particle symbol of the meson which the basis vec-
tor represents (in the above-described approxima-
tion). The correspondence is shown in Table p.
It should be noted that the fact that S„or S~ has a
definite value for a, particle (e.g. , D*) does not in
general mean that this particle state transforms
according to the corresponding irrep of SU(2)z„
or SU(2)~ .

The basis system adapted to the chain of sub-
groups (37) will be denoted by the particle symbol
of the pseudoscalar mesons, and a subscr ipt V
for S =1 and P for S =0 . For example,

~v )= ~I, =O, I=1, Y=O, y=0, 8, 15,S~=1,S)

1 1 0

2 1 0

2 0
;1,S3

1@i& jan -1

(40) ~ qr) = —
~
I~ = 0, I= 0, Y= 0, y = 0, 8, 15,S = 1,S )

By analogy to SU(6) (Ref. 7) the pseudoscalar
and vector mesons are assigned to the adjoint
(63-dimensional) representation of SU(8).' We
then make the assumption that each meson state
is represented by a basis vector that belongs to
the system of commuting observables (39). This
is an approximate description, but from the anal-
ogy with the Gursey-Radicati SU(6) we expect this
to be a much better description than the descrip-
tion of particle states by the Gelfand- Zetlin basis
vectors. In this approximate description the vec-
tor mesons belong to an ideally mixed 16-piet of
SU(4) and the pseudoscalar mesons belong to a
pure 15-piet of SU(4). There is no mixing of the
1- and 63-dimensional irreps of SU(8), and no
g-g' mixing in this approximation. The g', as-
signed to the 1-dimensional irrep of SU(8), and
therewith a 1-dimensional irrep of any of its sub-
groups, e.g. , also SU(4), is not considered here.
The predictions obtained with this assumption
will, therefore, be only approximately correct,
si'nce g-q mixing, deviation from ideal mixing,
and isospin mixing (p'-v mixing or q-v' mixing)
will alter these results. However, we hope that
for those processes which we shall consider, these
"symmetry"-breaking corrections are not very
important. We shall discuss this point later and
describe the possible effects of these corrections.
An inclusion of any of these effects in our general
considerations would introduce too many parame-
ters and would lead to a description which would
not enable us to make a prediction.

We denote the basis vectors belonging to the

2 1 1 0

2 1 0

1
;1,S3

~g )= ~I~=0, I=O, Y=O, y=0, 1, 15,S =1,$)
(41)

2 1 1 0

1 1
3

~D )= ~I = —,I= —,Y=O, y=1, 3, 15,0)

2 1 1

1 1 0

0
;0

The phase factors are conventions but have to
be made in conjunction with the phase conventions
for the generators or regular tensor operators
and Clebsch-Gordan coefficients. For the calcu-
lation of many presently available experimental
data the relative phases are not important; how-
ever, in the calculation of the electromagnetic,
decays these phases are essential. For this rea-
son, we list in Table VI the coefficients of the re-



18 SPECTRUM-GENERATING SU(4) IN PARTICLE PHYSICS: 255

TABLE V. Meson assignments in the 63-dimensional
irrep of SU(8), with the eigenvalues of the complete sys-
tem of commuting observab1, es (39).

duced matrix elements which occur in the matrix
elements of V" between vector- and pseudoscalar-
meson states. These coefficients have been taken

Particle

+0

+0

rl

K"0

K K
Kg+g 0

K* K*

DD
D"D

Dg+Dg0

Dg-Dgp

C35
——12

C35

C35

C35

C35

C35

C35

C35

C35

35
6 6

35c,=—
6

C
, 6

C15 ——8

C15
Ci = 0
C15
Ci

15C4=—
4
15C4=—
4

C4

C"
4

C"
4

C4

C4

C4

C1=0

c-, Ci

Ci

Kigenvalues of
c,' c,'

0 0 0 0 0
1 0 0 0 0 1
o 0 o o o o

0 0 0 0 0
1 0 0 1 0 0

o o o
2 2

o o o
2 2

o o
2 2

1 O O

o ' i o o
2 2

0 — -1 0 0
2 2

1 1 1 0 0
2 2

1 1 1 0 0
2 2

0 1 0
2

0 —1 0
2

1 1 p
2

1 —1 0
2

1
2

1

2

1
2

—1
2

S Sx j Sp Y I

' from the literature and adapted to the phase con-
vention used for the form (23) of the electromag-
netic operator.

If the mesons are assigned to the basis vectors
of the SU(8) basis system [corresponding to (39)j
as given in Table V, then the pseudoscalar mesons
are also represented by the SU(4) basis vectors
(41) corresponding to (37). [It is for this reason
that we can use the same pseudoscalar-meson
symbol to denote the basis system corresponding
to (37).] The vector mesons wit/ I WO are also
represented by the SU(4) basis vectors (41). How-
ever, the I= 0 vector mesons are expressed in
terms of the SU(4) basis vectors by

TABLE VII. Baryon assignments in the 120-dimension-
al irrep of SU(8), with the eigenvalues of the complete
system of commuting observables (39). Names of the —'

2
baryons are the same as in Ref. 4. The corresponding
T3' states are denoted by asterisks. The doubly charged
3' SU(4) singlet is arbitrarily denoted B".
2

4(3 1)
X(2-»)

1
——0

Ci
Ci
Ci

1 1 0 0
0 0 0 0

0 0
0 0 Particle

Eigenvalues of
C6 C6 S Sx X Sy Y I

Initial
state

Final
state (15II 1511 15) (15II15II 15) (15II ill 15)

Dpg (Dpg) D'(D') -1/~3

2

1
2

K''*(K''*) K''(K'') 1/v 3
2

0

gCV

mp

mp

2

3v3

2

3v3

3

1/v is

2

0

TABLE VI. Coefficients of the D, I', and singlet re-
duced matrix elements in the matrix element of the elec-
tromagnetic operator given by Eq. (23) between vector-
and pseudoscalar-meson states.

C2p =—63
4

C20

Cip= 9

Cip
15C4=—
4

Ci = 0

~++~+s pCf

Cp

~ g+ +y+y 0Cf

s"
$+ps+

T.p

C21

C21

C21

C21

C21

C21

40
3 Cip

Cip

Cip

C4

C4

ci
Tgp

X++

XQ+ +s+

Xg
X*'

S

C21 Ci

c,=- c435
6

Ci ——0 Ci

45C56=—
2

g++t+e pe-
56

C5e

C56

C5e

C56

C56

Cse

0
2

3 0
2

0
2

0
2

0

01
2

3 p

0

1

2 2

1 1

2 2

3 1

2 2

1 1
2 2

1 1

2 2

3

2 2

1 1

2 2

3

2 2

1
2

1
2

1
2

1
23-3
2 2

0 0

0 0

0
.2

0
2

0

0 1

0 1

0

1 0

1 p

1 P

1

1

1
2

1 1

2 0

2 0

2
2
1

2

3 0

1

1
2

0 1

0 0

0

-2 0

1
3

0
3

1
3
1 1

3 2

1 1

T 2

1 1
3 2

0
3

0
3
1 1

3 2

1

3 2

0
3
2 0
3

0 0
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TABLE VIII. The SU(4) .Clebsch-Gordan coefficients, taken from Ref. 9 and adapted to our
phase convention.

0

(I')g

X

Zp

Dp

(D)

D0

Z'0 (1)
( 1 )1/2

12

6

( 1 )1/2
18

( 1 )1/2

( 1 )1/2

1
4

( 1 )1/2

(D ')D (D 0)~

D0

D0

D0

( 1 )1/2

( 1 )1/2

1

6

(
1 )1/2
18

(
1 )1/2

( 1 )1/2

1

(
1 )1/2

Xp

D0 (1 )1/2

1

6

(E')p

(
1 )1/2
8

4

( 3 )1/2
16

0

(
1 )1/2
8

(E 03~

Z'0

Zp

D ( 1 )1/2

( 1 )1/2

( 1 )1/2
12

1

6

(
1 )1/2
8

(
1 )1/2
8
1
4

(
3 )1/2
16

0

Dp

F70

( 1 )1/2

( 1 )1/2

0

1
3

(
1 )1/2
8

(
1 )1/2

1

2

0
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TABLE VQI. (Continued)
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K'

D

Do

K
K'0

( 1 )1/2
12

( 1 )1/2

(
1 )1/2

12

0

3

Q

0

1
3

1
6

1

6
1
6
1
6
1
3
1
3

0

1

3

0

(x)g

(
1 )1/2

18

( 1 )1/2
18

(1 )1/2
18

0&

0

( 2 )1/2
T

1
4
1
4
1
4
1

1
2

(
1 )1/2

48

(
1 )1/2

48

0

(1 )1/2'

( 1 )1/2
6

(
1 )1/2
6

0

0

0

l
e&= (l)'" ln.)+ (») '"lx,&- -'lo,&,

I
~& =-8 "'ln.&+ 8 "'Ix.&- 2 "'l~.& (42)

in the table as follows:

(n'), (n'),

The phases depend upon the phase conventions and
are important for our calculations.

In an analogous way, we can classify the &' and
—,
"baryons a,ccording to the subgroup chain (38)
of SU(8). The results are shown in Table VII.

For convenience, we list in Table VIII the
Clebsch-Gordan coefficients for the meson 15-
piet. The I" and D-type c-oefficients (nllplln'&z, ~
for the physical matrix element (n'

l
V~l n) appear

Coefficients not appearing in the tables may be
formed by using the properties

(n'llnttp&, ,= &n ilplln&, , ,x
+1 for D

These coefficients have been adapted to our own
phase convention and were extracted from the
Tables by Miyata et aE.'
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