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Strong-interaction dynamics as probed by lepton pair production in hadronic collisions is naturally

separated from kinematics by using suitably defined structure functions. In the first part of this paper,
general properties of invariant structure functions and a variety of "helicity" structure functions for this
process are studied, and their use discussed. An exact parallelism to the case of deep-inelastic lepton-hadron

scattering is set up. In the second part, a series of parton-model relations between the structure functions,
reflecting the basic Drell-Yan on-shell quark-antiquark annihilation picture (but independent of details of
parton distributions), is derived. These relations serve the dual purposes of (i) supplementing the model-

independent structure-function formalism and rendering it useful for analyzing data of limited scope initially,

and (ii) providing unambiguous tests of various aspects of the underlying quark-parton model when more
detailed data become available.

I. INTRODUCTION

Much attention has been focused lately on lepton
pair production in hadronic collisions. ' Two main
reasons for this surge of interest are the follow-
ing: (i) Experimentally, this process has proved
to furnish a powerful method of producing and de-
tecting new heavy particles, and (ii) within the
quark-parton picture, the continuum part of this
process can be related to and, in fact, comple-
ments the much studied deep-inelastic lepton-had-
ron scattering. Studies of lepton pair production
so far, both experimental and theoretical, rely
heavily on the Drell- Yan quark-antiquark annihila-
tion picture. ' However, as more detailed experi-
mental results are becoming available' and as cer-
tain initial experimental trends already indicate
the inadequacy of the simplest version of the Drell-
Yan model, an increasing amount of theoretical
work is being directed toward the study of possible
alternative or competing mechanisms for this pro-
cess."' Most of these studies are based on per-
turbative QCD (quantum chromodynamics) —a theo-
retical approach still in its formative stage. '

The increasing sophistication of both experimen-
tal and theoretical work in this field demands an
effective, model-independent language to describe
the physics underlying this process. [Conventional
discussions are based either on raw cross sections
which represent a mixture of (essential but unin-
teresting) kinematics and dynamics, or on the par-
ton model, the validity of which is one of the most
interesting issues yet to be cleared up. ] The nat-
ural language to describe lepton pair production is
based on suitably defined structure functions —in
complete analogy to inclusive lepton-hadron scat-
tering. Two different but equivalent versions of
this language complement each other: The invari-
ant structure functions' represent pure dynamics

of the hadron system without any kinematic con-
straints, whereas the "helicity" structure func-
tions' allow the manifest factorization of hadronic
and leptonic degrees of freedom. Both versions of
this language are developed in some detail in Sec.
II of this paper.

A purely model-independent approach to the phe-
nomenology of lepton pair production, though al-
ways desirable, is hardly practical at the present
stage. Simplifications must be sought initially
through reasonable model considerations such as
the Drell-Yan mechanism. ' ' Here the convention-
al parton-model calculations suffer from several
shortcomings: (i) The results do not clea, rly sep-
arate effects due to kinematics, the elementary
quark-antiquark annihilation amplitude, and the
choice of parton distribution functions; (ii) while
the first two ingredients mentioned above are quite
unambiguous, there is considerable uncertainty
concerning the detailed form of the parton dis-
tribution functions; and (iii) this approach is rath-
er inflexible in that the results usually appear in
numerical form and are very hard to be stated
succinctly or be adjusted when necessary. The
cure to these shortcomings is again quite obvious
once one remembers the lepton-hadron scattering
analogy. After formulating t,he problem in terms
of structure functions (which automatically sepa-
rate out the kinematics), one must seek relations
among the structure functions which are conse-
quences of the elementary quark-antiquark annihi-
lation assumption but independent of the details of
the parton distribution functions. These relations
reflect clearly defined physical features of the ba-
sic picture and help to reduce the complexity of the

phenomenology to a manageable level. %e have in
mind here, of course, the example of the parton-
model relations between F„F„andF, in eN, pÃ,
and vN deep-inelastic scattering and the important
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role they played in the development of that field.
A key feature of this approach, in addition to the
advantages already mentioned, is that it is totally
flexible: The various parton-model relations can
be selectively withdrawn as the quality of experi-
mental data improves. Under that circumstance,
one can turn around and use the same relations as
quantitative tests of the validity of the original as-
surnptions. In Sec. III of this paper we derive a
series of relations of this type based on simple but
nontrivial parton-model considerations. ' These
relations are discussed both in the invariant- and
"helicity"-structure- function formalisms. Section
IV consists of a summary of this approach.

Because the paper is concerned with both theory
and experiment, an effort is made to include
enough details to render the presentation under-
standable to a wider audience than that for a spe-
cialized paper. Since the kinematics of this proc-
ess goes beyond that of the familiar two-body-to-
two-body case, some not-so-familiar shorthand
notations were found useful (and even necessary}
in keeping the calculations tractable. Although
these notations are introduced along the way in the
text, we assemble them, together with some kine-
matic details omitted in the text, in Appendix A
for easy reference.

FIG. l. Inclusive lepton pair production in hadronic
collisions in the one-photon approximation.

and

k=k, —k

It is then trivial to show that

P2 P'=—s,
q2 —k2 =M2

and

(3)

sM ""$2z)4 k,k,

where the lepton tensor L,"" is well known

q"q" k "k"
q' k' '

(4)

P P=k ~ q=0.
In the hadron c.m. frame, P has only a time com-
ponent and P only a z component (by definition).

The fully differential cross section is given by

II. MODEL-INDEPENDENT CONSIDERATIONS

A. Basic formulas

and the hadron tensor W„„is given by

$V„„=-s d'ze"' p,p, J„z,O p,p, (6)
If lepton pair creation in hadronic collisions is

effected by one (virtual) photon production, the
amplitude for this process can be written as'

The momentum labels are illustrated in Fig. 1: P,
and P, refer to the colliding hadrons, k, and k, to
the produced leptons (e'e or p'p, ), q to the virtual
photon, and X to the unobserved hadronic final
states. Spine are summed over (or averaged, as
the case may be). Since we are primarily inter-
ested in studying the high-energy properties of this
process, quantities of the order m'/s are practi-
cally zero and will be systematically ignored. "
Here rn stands for all the masses, leptonic and
hadronic, and s =-(P, +P,)' is the usualtotalcen-
ter-of-mass energy squared variable.

It is useful to introduce certain combinations of
rnornentum variables:

(2)

W"" represents the square of the hadron matrix
element in Eq. (1}(or the "blob" in Fig. 1) summed
over the final hadron states X (the unitary sum).
It can be represented graphically as in Fig. 2. All
dynamical information —the "structure" of the had-
ron system as probed by the virtual photon —re-
sides in this tensor.

A useful special case of Eq. (4) is obtained by in-
tegrating over the pure leptonic degrees of free-
dom (say, the lepton angles in the rest frame of

FIG. 2. Diagrammatic representation of the hadronic
amplitude W» or W~ ~. . The dashed line indicates that
it is the absorptive part of this amplitude (or, equiva-
lently, the sum over all intermediate states) that is
being considered.
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the virtual photon):

4(z N 1
d~q sM 12m'

This allows 8'"„to be directly measured.

operator immediately imply that W"" is positive-
semidefinite, i.e.,

V W""V„*»0 for any four-vector V.

C. The invariant structure functions

B. General properties of W""

The TP'" tensor is a function of the momentum
components (q",P",P"). To discuss its general
properties, it is convenient also to consider "he-
licity" amplitudes W, , which are functions of the
invax iants

W. ..(s, M', q P, q P)

e&,&(q-)W„„(P,t&, q)c&+,".&(q) . (8)

Here e~&, &(q), o = -1,0, y1, are a set of polarization
vectors for the virtual, photon defined with respect
to some coordinate axes in the rest frame of the
photon yet to be specified. (ln this connection we
are not using the word "helicity" in the strict
Jacob-Wick sense, hence the quotation marks. )
The physical interpretation of W. .., E&I. (8),
should be obvious as implied by its name (cf. also
the graphical representation Fig. 2). We also note,
by definition, that both W'„„andW. .. are dimen-
sionless —a convenience for scaling and parton-
language descriptions later.

Several general requirements on W„„restrictthe
number of independent components of this tensor.

(i) Symmetry. I:t is straightforward to show that

W„„(q,P, P) = W„*„(q,p, P)

W.. .(s, M', q I&, q P)=W:,, (s, M', q P, q.P).
his implies that the symmetric part of 5' is

real while the antisymmetric part is imaginary.
However, since the lepton tensor L"", Eq. (5), is
explicitly symmetric (as a consequence of sum-
ming over polarizations of the leptons), only the
symmetric part of W contributes to the measured
cross sections. From now on, we shall treat W„„
and W.. .as symmetric and real.

(iii) Gauge invariance. Current conservation,
cf. Eq. (6), implies

Since the gauge-invariance condition, Eq. (10),
limits W"" to be a tensor in the three-space or-
thogonal to q", it is useful to introduce the projec-
tion operator" to that space,

g "-g""-q"q"/q',

which satisfies g""q„=q~""= 0. When contracted
with any four-vector, it yields a vector orthogonal
to q". In particular, if we define

P"=g""P /&is (14)

P"=g""P./v s

q~P=q ~P=O.

Some useful results concerning P and P are listed
in Appendix A.

We can now write down a representation of W„„
that explicitly satisfies the general requirements
(i)-{iii) above'.

W„„(q,P, P) =W,g,„+W,P„P„
—W,(Pj„+P„P„)/2+W,P„P„.(16)

lV$ 2 3 4 a re the invariant s true ture functions which
depend on the invariant variables, say,
(s, q', q P, q P). Aside from the positivity re
quirement, {iv) above (which we shall come back
to later), W, are free from all kinematic con-
straints. " Hence structures in W, are of purely
dynamical origin. In this sense, they represent
the "minimal" set'"" which is most suitable for
theoretical and experimental s tudy.

In this representation, the trace tensor which
enters the cross-section formula, Eq. (I), is

2

q"W„„(q,P, P) = W„„(q,P, P)q" = 0. (10)
Here me have used the notation

(iii) P+ri~y. In terms of W"", parity constraints
imply it can only depend on (q, p, P) in "natural"
combinations (i.e., no z"" ' symbol). For the "he-
licity" amplitudes, the same constraints imply

q&, = q 'i&/v s

(18a)

(iu) PositiviIy f"oPticas theorem", "unitarity").
The definition of W"", Eq. (6), together with the
hermitian property of the electromagnetic current

which mill recur frequently later. These are eas-
ily visualized as the z and t comjonents of the sec
tor q in the hadron c.m. frame with the beam di-
rection defined as the z axis. W'e also define the
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FIG. 3. Kinematic configuration in the hadron center-
of-mass frame.

"perpendicular vector" q~ by

q"=q P"/0 s+q~p"/Ws+q&~ .
It has the property that

q"& =q"P =0

q, —q, q,„-q~—q~ -M .
(18c)

Again, intuitively, the four vector q,"-reduces fo
the Geo-vector q, perpendicular to the beam axis
in the hadron c.&n. frame The c. ovariant defini-
tions given above a,re, however, useful in theoret-

ical calculations. The same notation will be ap-
plied to other four-vectors (e.g. lepton and parton
momenta) in subsequent discussions.

In order to write down the full differential cross
section let us first, define the kinematic variables.
In the hadron c.m. frame, we can choose the fol-
lowing independent variables: k„k,as the magni-
tudes of the two lepton momenta 8, a,nd 8, their
polar angles, and P the azmuthal angle between the
two production planes. The kinematic picture is
depicted in Fig. 3. We shall also need the opening
angle 0 between the two lepton momenta,

eos cos8
y cos82 + sing

y sln82 cosp

and a related angle 0' defined by

cosO' = eosg, cosg, —sing, sing eosp .
Substituting (16) into (4} and evaluating all the rel-
evant scalar products, we obtain the basic formula

a' 1 cos'(8/2) , 8 eos8, +eos8, ~+cos8'
a =,—, , aadadcosedeoHHP& W, ,2t~n* —W ~, ' * W ~, W).32@ s' sin4(0/2) 2 ' 1+cosO ' 1+cosg (20)

One immediately notices the resemblance of this
equation to that of lepton-hadron scattering. The
similarity is, of course, just the manifestation of
the underlying one-photon mechanism. The differ-
ing dynamical contents of the two types of process-
es lie in the number and behavior of the structure
functions. Equation (20) suggests that even if the
structure functions cannot be fully separa, ted at the
present stage, a minimal first step is to divide out
the rapidly varying kinematic factors in front of
the large parentheses in the presentation of exper-
imental results.

One drawback (if it can be ca.lied that) of the de-
scription Eq. (20) is that the leptonic and hadronic
degrees of freedom are not manifestly separated.
For instance, for fixed arguments of the structure
functions (i.e., hadron variables), only two of the
lepton angle variables 8„8„andQ are indepen-
dent. There is an implicit relation between them,
making the simple angular factors in Eq. (20)
slightly deceiving in appearance. An alternative
description which explicitly displays the factoriza-
tion of the leptonic and hadronic degrees of free-
dom can be formulated in terms of the "helicity
structure functions" to which we turn our attention
next.

D. The "helicity" structure functions

These are simply the linearly independent "he-
licity" amplitudes defined by Eq. (8}. We denote
them by the following":

IVY

W~ —=W~o,

w, = (w, ,+ w, ,)/v 2,

Thus, W~, W~ are structure functions for tra. ns-
versely and longitudinally polarized virtual pho-
tons, respectively, W~ is the single-spin-flip
structure function, while W~~ is the double-spin-
flip one.

In order todefine these structure functions
uniquely, one has to specify the choice of the po-
larization vectors c&, 1 in Eq. (8). These are re-
lated to the unit vectors (X, F, Z) of a Cartesian
system in the lepton-pair c.m. frame in the usual
wa.y: e "&»

—-Z", c~&,» ——(vX —i Y)~/0 2 We 'still h. ave
to define (X, F, Z) in terms of the physical momen-
ta (qq p, P). Tills ls dolle ill three steps: (1) Pick
Z" to be a linear combination of P" and p~ (there is
a one-parameter freedom in this choice; (ii) de-
fine X to be also in the (P, p) plane and orthogonal
to Z (only the choice of sign is arbitrary); and (iii)
define Y to complete a right-handed system. The
vectors P, P, X, F, g are simply visua, lized as or-
dinary three-vectors in the lepton-pair c.m.
frame; although, again, the covariant four-vector
notation is convenient for calculational purposes.
Among the (infinite number of} possible choices of
g axis each of which defines a corresponding set
of "helicity" structure functions, we mention a few
simpler ones:
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(a} Z"~P": "s-channel helicity" or simply "be-
licity" (in the sense of Jacob-Wick);

(b} Z"~P", : "f-channel helicity" or "Gottfried-
Jackson";

(c) Z"~p": (no official name) referred to as p-
helicity in the following;

(d) Z"~q, P+q P =2[-(q P,}P,+(q P,}P,]: C»-
lins-Soper. 4

We shall comment on features of these specific
choices later, but first let us discuss the common
features.

A useful definition of the helicity structure func-
tions directly in terms of the (X, I', Z) vectors is

W""=g""(Wr+ W~~) —2X"X"W~g

+Z "Z"(W~ —Wr —W~~) —(X"Z"+ Z~X")W~ .

Z (~P+P p)

k,

X
(W P+y

FIG. 4. Kinematic configuration in the lepton pair
center-of-mass frame. The X-Z plane is defined by
the hadronic momenta P and p but the choice of Z axis
is left open. The coefficients (Q. ,P, n', P') corres-
ponding to some specific "helicity" frame are listed in
Table I. A typical configuration for the various Z axes
is depicted in Fig. 5.

From this, it is easy to obtain

which enter into the partially integrated cross-
section formula Eq. (7). In order to write the full
differentia, l cross section in terms of the "helicity"
structure functions, we use the hadronic variables

(s, q~, q» q, ) and lepton "decay" angles 8~, Q* in
the photon rest frame specified by the (X, F, Z)
axes, Fig. 4. (Notice that the choice of X and Z
axes is left open in Fig. 4.) Substituting Eq. (22)
into Eq. (4) and evaluating the scalar products,
one obtains'

(24)

sM 2dv
(I) 2Wr+Wq —-12v'—e d'q

(II) W —W , sM 'do I do'

Q dq 2 dq

2

[Wr(1+ cos'8~) + W~(1 —cos'8*) + W~ sin28 ~ cosP ~+ W» sin'8» cos2$+] .

In contrast to Eq. (20), here the dependences on the leptonic variables (8*,P*) are completely manifest
and those on the hadronic variables (s, q~, q~, q, ) are completely hidden inside the structure functions.
Hence, if very accurate data are available, Eq. (24) furnishes the most efficient means to separate the
various structure functions. For example, a conceptually simple procedure to separate all the structure
functions is (for a given se't of badronlc variables) to use

and

(III) W~ = 6v (s in28* co sf * & 0) — (s in28 *cosP + & 0)4 sM 'do do
n d'q d'q

sM 2 da do'
(IV) W» =6v', (cos2$+&0) d, (cos2$*&0}

These expressions give all the structure functions
a,s integrated cross sections and asymmetries.
[One trivial remark concerning Eqs. (24), and (I)
to (IV) above is that there is one redundant varia-
ble in d q —the azimuthal angle of q. Integrating
over this variable results in replacing (d'q) by
(vdq~dq~dq, ') in all these formulas. ]

The elegant factorization of leptonic and hadron-

ic degrees of freedom in Eq. (24) is obtained at the

expense of partially sacrificing the factorization of
kinematics and dynamics: the "helieity" structure
functions, unlike their invariant cousins, haec c
number of kinematic singularities and seros
(henceforth co11echvely referred to as "con-
straints "}which may lie close to tbe region of in-
terest. In other words, the behavior of these
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M

qp +q~

(qp +q, ) pg lplp pg
qz(qp +qg )

(26)

Notice that X" is singular as q, -0 and both X~ and
Z" are singular as (q, '+qp')-0. These points are
close to the region of interest. (Remember that

qp is q, in the hadron c.m. frame. ) Using Eq. (25)
in Eq. (22) and comparing with Eq. (16}, one can
derive the relations between the s-channel helicity
structure functions (distinguished by the super-
script s) and the invariant ones:

q~2
W, =W, + —

„2q~ +q,

M'(qp' +q, ')
(26)

q, 1 q~qpW~= ——W+ 2 2 W4
qp +qg

q
W~~ ————

2 2 W4
2 qp +q~

Since W; are free from kinematic constraints, "
we make the following conclusions:

(i} All four WP-structure functions have a kine
matte singnlarity at q '+q, '=0.

(ii) W~ has a kinematic zero factor q,-as ql-0
(this is the familiar zero of spin-flip amplitudes
for forward scattering due to conservation of an-
gular momentum along the beam axis).

(iii) W~~~ has a kinematic zero factor q~' as -q,
0 [sanle interpretation as (il)].
(iv) There is a nontrivial kinematic constraint-

eq'Qa A on

structure functions is controlled by both dynamics
and kinematics. Care must be exercised in inter-
preting these behaviors. In addition, one should
point out that 8* and P* are not directly measured;
they are calculated from quantities measured ef-
fectively (if not actually} in the hadron c.m. frame.
The transformation formulas are explicitly depen
dent on the ha&onion: vmiawes, and usually have
nonsmooth behavior at the same places where the
structure functions have kinematic constraints.
This fact demands additional care in applying Eq.
(24).

In order to illustrate some of these points, let
us consider a concrete example. The 8-ehaxnel
kelieity is defined in terms of a coordinate system
with

2 2 t

Ws —Ws —2 e ~W' — 1+2 ~ ~ W
q M ' q, 'M'

These kinematic constraints close to the physical.
region of interest make the s-channel helicity
structure functions quite delicate to handle. '

The kinematic constraints on other sets of "he-
licity" structure functions can be studied in ex-
actly the same way. The details are presented in
Appendix B. For now, we give in Table I the rel-
evant X" and Z" vectors and depict in Fig. 5 a typ-
ical configuration of the various Z vectors. This
information is helpful in conveying some idea of
the geometric definition of the various "helicity"
frames. Also, Table I explicitly gives the loca-
tions, if not the details, of the associated kine-
matic constraints. %'e see that all "helicity-flip"
structure functions will have a (trivial) kinematic
zero at q, =0 [due to angular momentum conserva-
tion, cf (ii) and (iii) above]. Otherwise, the loca.-
tion of the constraints differs from one set to an-
other. In the large M2 region, the only closeby
singularity (among the sets displayed here) is the
one in the s-channel helicity case as explicitly
given above.

Aside from these kinematic considerations the

relative convenience of choosing one frame vs an-
other depends essentially on the dynamics of the

system. For instance, as we shall expla. in in Sec.
III, if the quark-parton picture is the dominant
mechanism, the Collins-Soper frame' offers a
special advantage. On the other hand, if s-channel
or t-channel exchange mechanisms are important
then the corresponding helicity frames will become
particularly convenient.

E. Positivity constraints

The positivity requirement on W~", Eq. (12), can
be expressed in terms of the structure functions.
Requiring all three eigenvalues of the matrix W""
(in the three-space orthogonal to q~) to be positive,
we obtain

W&o Q~

W, )W„/o0,
Wz(Wr —W~~) ~ W~'

(28a)

(26b)

(28c)

in any "heLieity'* basis. These conditions can, of
course, be translated into statements on the invar-
iant structure functions by using relations such as
Eq. (26). We have not been able to reduce such
statements to a simple and transparent form.

(27)
(qp +qz )

This equation can be derived by examining the in-
verse equations to Eq. (26).
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TABLE I. Definition of the coordinate axes of the various helicity frames in terms of the
physical momenta I' and p; listed are the coefficients rvhich occur in the expansions Z= OP
+ pp and X = e'P+ p'p. A typical configurations of the various Z vectors is depicted in Fig. 5.

8-channel
helic ity

M
(q 2+q 2)1/2

qpqp

q, (qp'+ q, ')'"
(qp'+ q.')'/'

Collins-Soper
fraGle

Mq~ 3fqp
q~(M2+ q~2)'/2 q~(M'+ q~')'/~

2—M q +q~"q~
qg(~ +q~ )

F. Scaling

In complete analogy to deep-inelastic lepton-had-
ron scattering, scaling behavior of the structure
fllllctlons (lll tile I11RIlllel' of Biol'kell) cRll be illtl'0-
duced without reference to any specific model.
The following discussion applies to the invariant
as well as to the "helicity" structure functions-
all of which have been chosen to be dimensionless.
Consider the behavior of W; as functions of, say,
s, q~, q&, and q~, at very high energies. Neglect-
ing possible mild scaling-violating effects for the
moment, the following alternatives suggest them-
selves.

(i) If, as suggested by usual hadronic collisions,
q~ remains constant amI can be neglected along
with the masses as the other variables become
very large, W, wiQ be functions of ratios of the
latter, e.g.

+I(stqpt qlttqt) I( 1t 2tqt. ) t

where x» are the usual scaling variables'

x, ,= (qp+q, )/Ws .

example of this type of behavior.
(ll) Oll tile o'ttlel' llRndt lf qt cR11 becollle 1RI'ge

along with the other variables (as occurs in per-
turbative solutions to all nontrivial field theories)
and again the masses are neglected, then

W,.(st q~t q~t q, ) —W;(x„x2tx,) t

x, =q,/vs .
Apart from logarithmic-correction factors, as-
ymptotically free gauge theories furnish examples
of this second kind.

Preliminaxy experimental evidence" on the av-
erage transverse momentum of the virtual photon

((q, )) does not give a clear-cut edge to either of
these possibilities: The fact that (q, ) approaches
a constant as M increases seems to favor (i), but
the asymptotic value (q, ) = I GCV is considerably
higher than that seen in typical hadron collisions;
conversely, this relatively large value of (q, ) may
suggest the onset of possibility (ii), but other fac-
tors have to be introduced to explain the x'elative
constancy of (qi) over the observed range. ' Ob-
viously, this issue is yet to be settled.

FIG. 5. A typical configuration of the Z axes corres-
ponding to various "helicity" frames listed in Sec 0 D

(and Table I) is depicted here. For the region q~2/M2

«1, @which is of practical interest, the transverse di-
mension should be further contracted. (This is not done
in this picture in order to avoid crowding. )

G. Discussions

The model-independent considerations described
up t.o this point help to separate explicitly the
known kinematical characteristics from the un-
known dynamics, the latter being represented by
the structux'e functions. These structure functions
furnish the most natural arena for the confronta-
tion of theox'y and experiment.

Unfortunately, complete separation of the struc-
ture functions based on Eqs. (20) or (24) represents
a rather formidable experimental task. For prac-
tical purposes, it is useful to seek simpMications
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FIG. 6. The Drell- Yan on-shell quark-antiquark an-
nihilation picture for lepton pair production. The dashed
circle corresponds to that of Fig. 1.

by making use of the qualitatively successful
quark-parton model. For that purpose we shall
derive in See. III a series of relations between the
structure functions based on the quark-parton mod-
eL These will reduce the complexity of Eqs. (20)
and (24), and render them tractable for phenome-
nological study. As is well known, similar rela-
tions (between E„F,and F,) in deep-inelastic
eN, pN, a.nd pÃ scattering have played an impor-
tant role ln the evolution of that fleM.

Since the quark-parton picture can be viewed as
the simplest among all possible interaction mech-
anisms underlying the lepton pair production proc-
ess at high energies, the above-mentioned proce-
dure offexs an ordered approach which should be
useful even if some of the simple relationships
eventually turn out to be not fully accurate in cer-
tain kinematic regions. The xeason is that the par-
ton-model relations can be selectively relaxed and
tested aga. inst experimental da, aa, as the latter be-
come available. (This has been precisely the case
in eN, pÃ, and vN deep-inelastic scattering. ) The
relative importance and the setting in of a.lterna-
tive mechanisms can be determined phenomeno-
logically by studying their characteristic features
expressed in the same convenient structure-func-
tion h, nguage and by comparing them with obser-
vations.

HI. THE QUARK-PARTON-MODEL RELATIONS

A. The Drell-Yan formula

The Drell- Yan quark-parton annihilation picture
for lepton pa, ir production is depicted in Fig. 6.
The parton momenta are labeled r, and r„respec-
tively. The basic ingredients of this picture are as
follows: (i) The partons are on-shell with negligi-
ble mass, (ii) they have spin ~, being unpolarized
if the parent particles are not polarized, and (iii)

I ( i / y
I

) i r

&Q~)&
/

t
/

/
/

/ +-~
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/
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0 4 12
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FIG. 7. Reproduction of the experimental data on

(q ) by Kaplan et al. (Ref. 3) with the dashed line
(q~) 2/M-=0. 1 superimposed. The region to the right
of the line corresponds to (q~) /M & O.l.

the coupling to the virtual photon is that of a point-
like Dirae particle. Both experimental evidence" '
and theoretica, l considerations" suggest that trans-
verse momentum for the partons should not be ig-
nored. The nonzero transverse momentum of the
virtual photon serves the important function of de-
fining the hadronic reaction plane (Fig. 4) without
which the full lepton angular distribution in (8*,Q)
cannot ma. nifest itself. We shall not delve into the
deep question of the origin of the pa. rton transverse
momentum. " Suffice it to note that traditionally
the parton-model picture is taken to be valid"
where q, is relatively sma, ll compared to M." As
it turns out, this is precisely the region where
useful relations among the structure functions can
be derived. On the experimental side, the avera, ge
q, is observed to stay rela. tively constant at -1
Geg/c for M&4 Gep. Although the value of (q, ) is
larger than previous naive expectations, the con-
dition (g~ jM ) && 1 ls very weil satisfied through-
out the high-energy range. Figure 7 illustrates
this point. This condition is quite sufficient for
our purpose.

'The Drell-Yan picture, Fig. 6, assumes that the
hadronic tensor amplitude K"" is given as an inco-
herent sum over the corresponding elementary
amplitude for quark-antiqua, rk annihilation 8'"".
We use the notation
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where

r"=r"—r"
j. 29 (36)

fra, me (which is the natural frame to formulate the
parton picture), r~, r» r„,and r„aresimply r',r„r„,and r„,respectively. Since r" must satisfy

$ =(r.'ir')/(p'+p'), (r =1, 2

i is the flavor index of the quark, and u'($, r„')
[u' ($,r, ')] is the probability of finding a quark
(antiquark) of flavor i inside the parent particle
a with "longitudinal fraction" of momentum $ and
transverse momentum squared r J'.

Many calculations based on this ansatz have been
performed in the literature. '4 The following study
differs from the previous ones in that we seek to
single out those features of W"" which characterize
the basic on-shell quark-parton annihilation hy-
pothesis, Eq. (34), independent of details of the
relatively uncertain parton distribution functions
u' and u' in Eq. (35). To be more specific: It is
reasonable to expect that the simple tensor struc-
ture of (() „,Eq. (34) (it is a projection operator
onto the two-plane perpendicular to q" and r"), will
be transcribed through Eq. (33) into a simple ten-
sor structure for W„„,thus yielding definite re-
lationships between the structure functions W,-.
(Note that W, are just independent components of
W,„.) These relationships intrinsic to the basic
parton picture are just what is needed to supple-
ment the general formalism of Sec. II. In contrast,
the dependence of W„„(henceW, ) on q" must be
model dependent as it arises almost solely from
the convolution integral, Eq. (35).

B. Derivation of parton-model relations

We shall now concentrate on the elementary am-
plitude &„„.We decompose &„„into the same ten-
sors that def ine the invariant-s true ture func tions
[(Eq. (16)] and denote the coefficients by (d, ~ ~ ~ (d„(8

~ v=g v~s+P P ~2

,(Pg„+pp „)(d,+p„p—„(d,. (37)

r ~ q=0,
q2-M2

its components are related to each other by

qp' i+qp'p —qprp = 0 )

(41)

(42)

In the following, we shall regard r„andr„asthe
independent components. From Eqs. (34) and (37)
we get

A A r 2

=1——
M2 1'

Similarly, by evaluating P „co""P„,p„u""p„,p„v""P„
and then taking, in turn, an appropriate linear
combination with (38) and (43), we get

(43)

(d, = (r, ' —q~'+q, ')/q, '+ 2(q~' —q, ')v„'/M'q, ',
3

= (lp'p —qlq~)/q + 2qpq~ 7„/M q)' (44)

(d, = (r~' —q
' —q, ')/q, ' + 2(q~' q+, ')r„'/M'q, '.

The invariant structure functions W„.. ., W4 are
obtained from Eqs. (43) and (44) by taking the con-
volution integral, Eq. (35), on both sides of the
equations. They are, thereby, expressed in terms
of (1), (r„'),(r~'), (r~x~), and (rr'). All these
quantities depend on the form of the parton distri-
bution functions. Without commitment to any par-
ticular set of parton functions, all these quantities
are unrelated and no model-independent predictions
on the structure function can be made. However,
since we are interested in the region where q, '/M'
is small, much simplification can be brought out.
In particular, we show in Appendix A that

r +fq +q~2 2 2 4

rp =qp, 1—
2M2 +qP M' M'

(45)
It is then easy to derive the trace relation

=2. (38)

2 2 2 4+rq~ + q~ q~rq
q' M' M

$ubstjtuting into Eq. (44), and taking the convolu-
tion integral, we obtain

This implies, according to the notation (35),

W~=2(1) . (39)

In order to evaluate the individual „we first de-
compose the vector r" in a way similar to Eq.
(18b),

r"= r~ P"/v s + r~ P "/Ws+ r „q,"/q, +r„n', (40)

where n is the unit vector normal to the hadron re-
action plane. (These kinematic details are sum-
marized in Appendix A. ) In the hadronic c.m.

((' =(() — ((()~ (
" "

))
2 qpqp &eg

1+

2

W, =(1)—~ [(() (", "
)) 2, (~

(46)
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All terms exhibited here are of order unity, those
neglected are of order q, '/M'. To the same ac-
curacy, Eqs. (38) and (43) yield

W, =(1)= ~ W"„. (47)

A little scrutiny of these results will reveal that
they are not all linearly independent; the structure
functions are related by

2

tions we shall derive.
Equation (46), as it stands, cannot be further re-

duced. 'The three structure functions are ex-
pressed in terms of three unknowns (1), (r, ' —r„')/
q„', and (r, )/q, . However, we now argue that the
last two quantities are expected to be zero or, at
least, small as compared to the first. First, in
the hadronic c.m. frame where the parton vari-
ables are most naturally defined,

(48)

This is the first of the several parton-model rela- cf. Appendix A; hence,

~r~I ~~
6
S

~

~
2

~
~

~ I 2
Il

d

~

~ 2 4 4 ~
I
~

2
2

2~ I~
2 ~

2L
2sM'

'VX 1 2

x g Q [u', ($„r„')u',($„r»') u+', ($„r„')'u((„r»')]. (49)

J. 1L 2L (g (50)

Equation (50), when used in conjunction with (46},
implies

(B) q~'W, —qz'W, = (q~'+q~')W, .
Similarly, in terms of hadronic c.m. variables,

(51)

This quantity vanishes if r„is equally likely to be
positive as negative or, mathematically, if the
square bracket containing products of the parton
distribution functions is even under the exchange
r, ' —x,' This is. certainly the case if (i) the
transverse-momentum distribution is the same
for the two factors, and (ii) it is not strongly
coupled to the longitudinal-momentum distribution.
For N Nand N-N s-cattering, condition (ii) is all
that is needed since in these cases either Ql Q2
or D

y Q2 Also, for any initial s tate, near the re-
gion q~ ~ 0(x, =x,), where much data exist, condi-
tion (i) alone is sufficient. In general, even if the
symmetry is not exact, it is reasonable to expect
that

This quantity vanishes if the independent variables
x„2and r ' have the same expection value or,
equivalently, if the square bracket of (49) is even
under the interchange x '—r, '. This is exactly
true, for example, if the transverse momentum
distribution is represented by a Gaussian curve.
For other reasonable choices, one can only say
that one expects

(52)

Equation (52), together with (46), implies

(C) W, -W, =W, .

Finally, combining (A}, (B), and (C) we get the

simple relations

2M2 M2
(D) 2W, =—,W, = W,

g Qgp

2M
2 4

Q'p

These relations specify all the structure functions
in terms of the most readily measurable W", cf.
Eq. (7). Utilizing (D), the full differential cross-
section formula, Eq. (20), can be written as

d =
32 ' ' '8/2) dk, dk.d" e,d co e,d32m' S' Sin4 8/2)

,0 g '
g~Q~ cos8, +cose, g~' 1+cose'

&&8'" tan' —— '-, + ' 2~
2 2M' M' 1+cose 2M' 1+cose

where W" itself is determined from Eq. (7).

(53)
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C. Ntemative derivation in terms of helicity structure functions

We derived the parton-model relations (A)-(D) in
terms of invariant functions because they reflect
the full dynamical structure of the system without
any complications from kinematics. Additional in-
sight into the nature of these relations ean be
gained by examining the R1telnative dex'lvRtlon of
these relations in terms of the helieity structure
functloQS. Some cRre 11Rs to be exercised ln this
approach because these structure functions have
kinematic constxaints close to the xegion of inter-
est, q, '/M'«I (cf. Sec. IID).

Let {X,F,Z) be one of the sets of unit vectors
which define the "hellclty" frame, Rnd vx, v„,/g
be the components of r" along these axes (i.e., rx
=r"X„~~ etc.). Then, by contracting W„„,Eq.
{34), with the vectors Z" and (vX"- D"")/&2 on
both sides, we ean get

is therefore the analog of the Callan-Gross rela-
tion in deep-inelastic lepton-hadron scattering.

With regard to the last two equations of (55), one
might be tempted to set the right-hand side equal
to zero in analogy with what was done in the pre-
vious section. But that would be wrong. The rea-
son is the vax'iable xx does not have a direct par-
ton-Dlodel interpretation ln genex'Rl. For eRch
choice of "helicity" frame, one has to reexpress
wx in terms of the hadronie c.m. frame variables
(r, ,r„)before one can proceed any further W.ork-
ing to the leading order in an expansion in q, '/M',
there is a, "preferred" frame fox" which

(56)

This turns out to be the Collins-Soper frame' (as
ean be verified by using the formulas given in Ap-
pendix A and Table I). Denoting the structure func-
tions corresponding to this choice of frame by 8' 8,
arguments of the previous sections lead to the ex-
pectation

0 x F

X j X +
(54)

(sa)

Since the normal to the hadronie x'eaetion plane is
an invax'iant under all coordinate transformations
that we are concerned with, r~ is the same as x„
(the y component of r in the hadron c.m. frame).
On the other hand, rx is, in general, not the same
as r, (the x component of f in the hadron c.m.
frame). Let us now restrict our attention to the

q, '/M' «»egton and consider only those "helici-
ty" frames in which xx is of order q~. These in-
clude all the examples cited in Sec. DD (plus any
others for which the coefficients e, p in Table I do
not contain q~ in the denominator). Recognizing
that 8"~ and 8'» have kinematic zeros of order q~
and q, ' respectively (Sec. IID), one should consid-
er the quantities Wr, W~, {M/q, )W~, and (M'/

q, ')W~~ before dropping small terms. Equation
(54) tllell implies"

(ss)

It ean be shown that the second of these relations
is equivalent to Eq. (A) of Sec. IIIB section. This

Equation {57) is equivalent to Eq. (8) and Eq. (56)
to Eq. (C) of Sec. IIIB, respectively.

The situations in other "helicity" frames are
x'ather diffexent. For instance, in the "t-channel
helicity" frame (Sec. IID and Table I)

+g J (5

+g +2gp 0

Assuming (r, ) =(r, '- r„')=0 as before, we get
fox' the cox'x'espondlng structure functions 8

—W', =(I) = W'„M

—W~1~ = g (I) = ~ W1r . (6l)

Equation (60) is equivalent to Eq. (8), but Eq. {6l)
represents a combination of Eq. (8) and Eq. (C) of
Sec. IIIB.

These results inspire the following obsex'vation:
If the on-shell quark-parton annihilation picture
and the assumed symmetries for the px'oducts of
paxton wave functions are valid, the lepton angular
distribution should be particularly simple (very
close to I +cos'8*) in the Collins-Soper frame„.
conversely, the best &cay to test these features of
the parton model is to eonA'est the angllm dis-
tribution of the IePtons in the Coffins-SoPew frame
udth those in othe~ frames. For this latter pur-



pose, the t-channel helicity frame seems to be a
good choice. (The "s-channel helicity" structure
functions are singular for small q&2+q, ', the "P-
helicity" frame nearly coincides with the Collins-
Soper frame if qp/qp is small as is usually the
case, cf. Fig. 5.) If the basic interaction mech-
anism were different from that of the on-shell
quark-antiquark annihilation, one would not expect
this distinctive role played by the Collins-Soper
frame.

D. Summary

(i}We presented the derivation of the parton-
model relations in terms of the invariant structure
functions first, because it is free from possible
ambiguities caused by kinematic constraints.

(ii) The restatement of these results in terms of
helicity-structure functions brings out more clear-
ly the physical meaning of these relations and sin-
gles out the Collins-Soper frame as the most "na-
tural" one for these parton-model considerations
(provided q, '/M' is sma. ll}.

(iii} The best way to check these parton-model
relations is to determine it the lepton angular dis-
tribution is closer to 1~eos'8~ in the Collins-So-
per frame than any others.

(iv) Deviations of this angular distribution from
1+cos'8* in other frames are expected to show up
most prominently in the Q~ distribution (W~ term)
rather than in the 8~ distribution integrated over

the former is of order q, /M, the latter of or-
der q, '/M' (counting theoretical factors only).

IV. CONCLUDING REMARKS

(i) The structure-function language presented in
some detail in Sec. II should be useful as the com-
mon meeting ground of theory and experiment be-
cause it is model independent and because it clear-
ly separates dynamics and kinematics.

{ii) The invariant structure functions W„.. . , W4
are unique in being almost totally free from kine-
matic constraints; their behavior reflects the dy-
namics of the hadron system in unadorned form.

(iii) There are a large number of possible
choices of "helieity" structure functions; one may
be more suitable than the others in considering a
particular dynamical model, and all have some
well defined kinematic singularities and zeros
which should be taken explicitly into account in
these considerations.

(iv) The quark-parton picture is the "zeroth-or-
der" interaction mechanism for a large class of
dynamical models. Its usual domain of applicabili-
ty is where M is large and q, '/M' is small. The
parton-model relations (A)-(D) derived in Sec.
IIIB for this region serve as the starting point of

a systematic approach to the lepton pair production
process in a way which is familiar in lepton-had-
ron scattering.

(v) Important virtues of this approach over con-
ventional parton-model calculations are the follow-
ing: (a) The explicit form for the pa. rton distribu-
tions (of which there is considerable uncertainty)
is never needed; the main results reflect charac-
teristics of the basic on-shell quark-antiquark an-
nihilation mechanism. (b) This approach is flex-
ible; each of the parton-model relations can be in-
dividually withdrawn when not needed. (c) As these
relations are tested by improved data, they help to
define quant;itatively the region of validity of the
Drell- Van mechanism.

(vi) More sophisticated models can be studied in
the same way as done in Sec. III for the "minimal"
model. The characteristics of the former can then
be clearly contrasted with those of the latter.
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APPENMX A

where v~ P =v~. P =0, then

v =-v P/Ws,

v, =v p/vs,

(A2)

(AS)

V = -Vp, +Vp +Vg ~
2 2 2 (A4)

(c) If we pick the x-e plane to be that of the ha-
dronic reaction plane, the x axis is along the vec-
tor q,'. Hence for an arbitrary vector (e.g. ,
h, r»r„r)we can further decompose v~~ into

V =V —+V PSq q
tt

J.
(A5)

where n" is the unit vector normal to the hadronic
reaction plane. It is easy to see that

This appendix consists of a collection of notations
and kinematic details.

(1) The metric is given by -g" g" = 1.
(2) Hadronic c.m. frame variables:
(a) The vectors P =p, +p, and p =p, -p, satisfy

-P2=P2=s and P ~ P =0. In the hadronie e.m. frame
P~/u s =(1,0, 0, 0) and p~/v s =(0, 0, 0, 1). They de-
fine the t and z axes for this frame.

(b) For any vector v (e.g. , q, h, r„r„r)define

P"
v =vp —+'vp +vga
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v, =(v, q,)/q, =(v q,)/q„
v„=v, n=v n, (A6)

tion

q"=r"+r"
1 2 (A18)

and

v = -vja +vp +v +Vga ~
2 2 2 2 2

a~ (A7)

V = (V~~ Vq, V~, V~) ~

(3) The lepton pair c.m-frame. :
(a) The time axis is specified by q'. The three-

space consists of vectors orthogonal to q". 'The

hadronic vectors which serve to define the spatial
coordinate axes are linear combinations of

(A8)

These covariant definitions are convenient for the-
oretical calculations. In practical terms, the four
Cartesian components of v" in the hadronic c.m.
frame are s imply

r 2 r 2

t —t +

2 2 2 2«+ 1L 2Lqp-qp M +qp M
r 2 r 2

r~= ,'Ws 5-, +$, —

(A»)

yields four constraints among the six parton pa-
rameters ($„r»,$„r»).Since the parton wave
functions depend on r«' and r„',let us express all
other parameters in terms of these two. It suffices
to specify the components of r =r, —r„sincer,
= —,'(q+r) and r, =-,'(q —r) T.o order q, '/M', the
various components of r can be calculated. The
results are

and

P =g„„P"/vs

p, =g,„p"/Ws,

(A9)

(A10)

2 2 2 2+r2 r]J.=q~ —q~, +q&

r = r ~ —r,„=(r»' —r»')/q„

(A20)

(A21)
where

g„„=g„„—qg„/q' =g„„+qg„/M'. (A11)
One can also see that

(A22)

g has the property that, when contracted with any
four-vector v, it yields another vector v" (the
projection of v) which is orthogonal to q".

(b) P and P has the following properties:

r 2
2l

$ =x, —
X2S

r 2

—x—
X S

1

(A23}

P2 = -1+qp'/M' = (qq2+q~2)/M2,

p' = 1+q~'/M' = (q~' —q, ')/M',

p P = -qqq~/M'.

A very useful identity is

P2P2 (P P)2 —q 2/M2

(A12)

(A»)

(A14)

(A15)

(4}Parton model kinemat-ics:
(a) In the hadronic c.m. frame, one can pa, rame-

trize the parton momenta as follows:

1
2 1 2S+-„,r, , 2 g,v S ——r«

(A16)

where x, and x2 are the conventional longitudinal
fractional momenta in the absence of transverse
momentum:

x, =(q~+q~)/v s . (A24)

(c) Since the components of the elementary had-
ron tensor &""are expressed in terms of compo-
nents of r", it is also useful to use as independent
variables r, and r„(instead of r„'and r„').From
r, , = (q~sr }one directly derives

r„'=,'[(q, +r, )'-pr„'],
(A25)

r,„'=-,' [(q, —r, )'+r„'],
or

which satisfy

r '=0
Q

0 srl +rl
P~+P~

@=1,2. (Al'I)

1r„'+r„'=,(q, '+r, '+r„'), -
(A26)r„'—r„'=qp', -

These results can be substituted into Eqs. (A19 and
A20) to obtain Eq. (45) of the text.

APPENDIX B

Here $ is the "longitudinal fraction momentum"
of the parton with respect to the parent particle.
[See Eqs. (A23 and A24) below. ]

(b) The energy-momentum-conservation condi-

For various theoretical and practical consider-
ations, one may want to transform from the invar-
iant structure functions to the various "helicity"
structure functions and vice versa. It is therefore
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useful to have ready at hand the transformation
formulas. One set of such formulas, for the s-
channel helicity, is already given in the text [Eq.
(26)]. Here we give the results for the other sets
of "helicity" structure functions listed in Table I.

Using the definition of Z" and X"vectors given in
Table I and comparing the two equivalent expan-
sions Eq. (16) and Eq. (22), one can obtain by
straightforward calculations the following results:

(i) for the P-helicity structure functions,

1 q'
W'~-W, +„,, W, ,

qp —q

2 2 2
cs q& qp W +qeqzW +qe W

2M2 M' q'
cs qa W2+qpqpW3+qp W4
L M +q J.

q, q q (W, + W, ) + —,
' (q~'+ q ') W,

4 M'+q '

cs qf qp W2 +q~q~W, +q~ W
2M' M +q'

(iii) For the t-channel helicity structure func-
tions,

2

2 ~q~ —q~~

w'=w q'q~ w q'q~ wz 1 M2( 2 2) 2 M2 3
q~ —q,

w,'=w, . ~q-
M q —q

2

W2

q~ —q,

p qj. qpq~ 1W~= —,2 W, +pW,
q, -q,

p 1
2 2 2

p q

(ii) For the structure functions in the Collins-So-
per frame,

W,'= q' ~~ — (W, +-,' W, )
M M q~ —qp

M qp —qp

2

2 (q~ —qp)
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