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Low-energy manifestations of heavy particles: Application to the neutral current
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It is argued that in broken-symmetry theories the decoupling of heavy particles is incomplete. Some
possible manifestations of this effect in neutral-current processes and the decay.K; —puu are discussed. In
the case of the neutral current, heavy-particle effects may be calculated accurately including strong-
interaction corrections. A new method of making such calculations is explained and its application to the
neutral-current process discussed in detail. The method is more efficient than previous ones and is especially

useful in calculations involving several mass scales.

I. INTRODUCTION: GENERAL ANALYSIS

In an interesting paper,! Appelquist and Caraz-
zone have argued that one practical advantage of
renormalizable theories in a world with widely
different mass scales is that heavy particles “de-
couple” at low energies. More precisely, it was
argued that all processes involving only light
particles at small energies E <M, where M de-
notes the mass of the heavy particles, can be
summarized in an approximate renormalizable
effective theory involving only light particles, cor-
rect to order E/M.

Roughly speaking, the argument for this goes as
follows. Consider a process involving virtual-
heavy-particle exchange. If all subgraphs con-
taining the heavy particles are convergent, then
the process is suppressed by inverse powers of
M (up to logarithms). If, on the other hand, the
heavy particle occurs in a primitively divergent
subgraph, then its effect can be absorbed in the
counterterm associated with this subgraph. In
this way, all effects of the heavy particle are
either suppressed by its mass or absorbed into
renormalizations of couplings involving only light
particles.

In gauge theories, however, there is an impor-
tant limitation to this reasoning. Gauge invariance
may forbid counterterms corresponding to certain
primitively divergent graphs. The finiteness of the
theory results from delicate cancellations between
different graphs, sometimes between graphs con-
taining heavy virtual particles and graphs con-
taining only light virtual particles. In this situa-
tion the heavy particles certainly do not decouple;
on the contrary we should expect effects which
grow with the heavy-particle mass (since the can-
cellation between light and heavy becomes less
accurate), at least in perturbation theory.

From this analysis, we would expect that heavy-
particle effects might be large in some interac-
tions of dimension 4 or less forbidden by gauge
invariance. As a result, the low-energy effective
theory involving only the light particles need not
look renormalizable; the contraints on vector-
meson couplings required for renormalizability
are in general not satisfied to order (1/M)°.

We expect these effects to occur in general when
the effective gauge group contains multiplets
whose members vary widely is mass (or for axial
couplings if any member of the multiplet is very
massive). Then the cancellations guaranteed by
gauge invariance which make the theory finite
occur only at very large virtual momentum, and °
our effect, although finite, can be large. Simi-
larly, we can expect large effects if anomaly can-
cellationoccursbetween very heavy and light par-
ticles.

Indeed, examples related to this phenomenon,
although not explicitly regarded as such, have been
calculated in the literature. Adler? in his classic
paper on anomalies found effects in ve elastic
scattering of this kind. Veltman® has recently cal-
culated large corrections to the vector-boson mass
matrix due to heavy leptons in gauge theories.
Marciano* calculated one-loop corrections to the
relation My =cos6M, in the Weinberg-Salam model
and showed that it grows with large Higgs-boson
mass.

In Sec. I we will illustrate the preceding re-
marks with some low-energy processes accessible
to experiment. For the sake of simplicity we
specialize to the standard sequential Weinberg-—
Salam-Glashow -Iliopoulos-Maiani® model of weak
interactions and the color gauge theory of strong
interactions®; it will be obvious that our remarks
apply to any renormalizable gauge theory of the
weak interaction. In Sec. II the heavy-quark con-
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tribution to the neutral current is analyzed with
strong-interaction renormalization effects taken
carefully into account, following the method of
Witten.” A formalism is developed to.handle
situations involving more than one large mass
scale.

II. NEUTRAL CURRENTS AND OTHER APPLICATIONS

Consider the class of graphs in Fig. 1(a) de-
picting strong-interaction corrections to the neu-
tral-current vertex. The axial coupling of the
neutral boson is proportional te the weak isospin
Ty. Now note the following:

(i) The value of the graph is essentially indepen-
dent of the external light quark q. This reflects
the fact that the gluon coupling is flavor indepen-
dent. Hence the strong interaction induces an
effective axial-vector baryon-number neutral cur-
rent coupling to neutrinos.

(ii) All quarks in the world, no matter how
heavy, participate in the internal quark loop in
Fig. 1(a).

(iii) Gauge invariance of the weak interaction
forbids any coupling to the axial baryon number

. current at the Lagrangian level (i.e., a local
coupling); indeed, since this current is anoma-
lous,?*® such a coupling would spoil renormaliz-
ability. Because of this, the induced coupling
must be finite. The mechanism ensuring this is,
of course, a cancellation between graphs in-
volving internal quarks of opposite 7.

(iv) Considering for a moment the strong inter-
actions perturbatively, we may simply compute
the lowest-order graph, shown in Fig. 1(b). At
small momentum transfer the axial neutral current
is modified to read® (for notational simplicity we
write only the part involving # and d quarks)

J5 =3 @y, vsu ~dy,vsd)
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FIG. 1. Virtual-quark loop inducing an axial-vector -
baryon-number neutral-current coupling.
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where I1,m,, denotes the product of the masses of
all the heavy charge +% quarks, similarly H,m_,
denotes the product of the masses of all the heavy
charge —5 quarks. (“Heavy” means “heavy on the
scale of the momentum transfer considered.”)
This result illustrates our analysis in Sec. I
Evidently heavy quarks play a role in determining
the coupling; indeed in perturbation theory their
effect increases with their mass. There is a
similar contribution to the axial-vector lepton-
number neutral current, in which the gluons of
Fig. 1 are replaced by photons. This effect is of
order (a/7)* and negligibly small, but is interesting
that the logarithm in the analog of Eq. (2.1) now
involves ratios of quark to lepton masses. Taking
the known fermions one obtains a large numerical
value for the logarithm.

(v) A more realistic evaluation of the strong-in-
teraction effects is attempted in Sec. III. Roughly
speaking, the outcome of this analysis is that for
each doublet g¢,, q_ of charge %, -3 heavy quarks
there is a contribution to the axial baryon number °
current

_ - 1|g2%m ,)
AT =@y,yu+ dvavsdig [g4—(,,2“—

-2 2
x[g 4(:’?-)] In :Z:*z . (2.2)
where g is the running strong-interaction coupling.
For a numerical example, if we take m,, = 1500
MeV, m, =300 MeV, g2/47°=} to estimate the
contribution of the charmed and strange quarks,
we get .

J5 = 3@y, v - dv,vsd) + 0.05@@y, vsu + dv,vsd) .
(2.3)

It is certainly very questionable whether the
strange quark is heavy enough for the analysis of
Sec. III to apply; furthermore, we have ignored
renormalization effects due to chiral-symmetry
breaking and confinement which are certainly sig-
nificant. Nevertheless, we consider Eq. (2.3) as an
indication that a very substantial axial-vector
baryon-number piece of the neutral current is
induced, with the indicated sign. Note that the
matrix element of the axial-vector baryon-number
neutral current may be determined from spin-
dependent electroproduction.’® Two further qual-
itative features of this result are worthy of note.
The first is that the induced axial baryon number
current is strongly momentum dependent; roughly
speaking for momentum transfers of order @ the
quark masses squared m,? in Egs. (2.1) and (2.2)
get replaced by m;” ~m,>+Q*. Second, no similar-
1y large effect occurs for the vector piece of the
neutral current. All these features can be com-
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pared with experiment when low-energy neutral-
current data become more precise.'!

(vi) When @*= 0, one should not expect to apply
our argument to the # and d quarks. First of all,
there are no lighter quarks to provide an effective
axial-vector baryon current. Second, one cannot
apply the perturbative argument of Sec. III when
the effective coupling constant g(m,) is large.
Nevertheless one might still ask whether diagrams
such as Fig. 1 give a substantial violation of iso-
spin symmetry, since md/mu is probably 1.8 or 1
larger.? This problem is common to all of low-
energy hadron physics, and the natural way out is
to say that confinement is the dominant infrared
effect. In particular one might expect from this an
isospin-conserving cutoff at hundreds of MeV com-
pared to an infrared cutoff coming from quark
masses'? of a few MeV.

(vii) Another way of looking at the effect above
is to note that the axial-vector part of the neutral
current looks like (schematically)

Tu~dd+ (Tc~Ss+1t—Db)++++ . (2.4)

In most phenomenological analyses one discards
the terms in parentheses on the grounds that their
matrix élement between nucleons is small.

Our discussion indicates that the application of
Zweig’s rule® in this case is vindicated in prin-
ciple: As m, and m, ~°, the matrix element of
tt — bb between nucleon states indeed vanishes,
albeit logarithmically slowly. In practice, how-
ever, Zweig’'s rule may be violated substantially;
witness the ~10% correction in Eq. (2.3).

We note that our discussion points up another
feature of asymptotically free gauge theory of
strong interaction. In a non-asymptotically-free
world experiments at low energy would in general
be strongly affected by arbitrarily heavy particles.

(viii) In an interesting application of Zweig’s
rule Cheng'* determined the nucleonic ¢ term by
arguing that the scalar density $s should have
small nucleon matrix elements (compared to 7,
dd). Our considerations do not affect his work,
since the graph analogous to Fig. 1 with a scalar
density replacing the axial current will be propor-
tional to the light-quark mass by a chirality ar-
gument. More precisely, one finds that to lowest
nontrivial order in the strong interaction.

(N |5s|N) ~( gz)zﬁ"-ln%‘-(l\l Hu|Ny.  (2.5)

z
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(ix) There is a contribution to the real part of the
K, -~ uu amplitude proportional to Inm,, from the
graph depicted in Fig. 2. In contrast, the contri-
bution of the charmed quark to the imaginary part
of the amplitude (i.e., to K —7y¥) vanishes as 1/
m.

u,c

Yy K

FIG. 2. Contribution to Re(Kj— uu) proportional to
Inm,.

HI. EXPANSION OF THE AXIAL-VECTOR CURRENT
A. Strategy

In this section we set ourselves the problem of
expanding the axial-vector current, which includes
heavy-quark contributions, in a sum of operators
for which the heavy-quark contributions are ex-
pected to be small. To be precise, consider the
case of two heavy quarks, ¢ and b, with masses
m, and m,, m,>m,. Our results will be an exact
expansion of the operator

H=1y, 7 - by,vsd (3.1)
of the form
H=) AT,+ 2 BH,, (3.2)
i i )

where -I:, and fl, are respectively light- and heavy-
particle operators renormalized in such a way as
to exhibit decoupling: As the heavy-quark masses
grow the light-particle Green’s functions of H :

go to zero as a power of the heavy-quark masses,
while those of f, have their values in the theory
with heavy quarks removed up to power-law cor-
rections.

Our work here owes much to that of Witten” and
of Georgi and Politzer,'® who addressed some re-
lated problems. We have organized the calculation
in a different way which seems to have important
technical advantages. Since we believe our method
of calculation will be useful in other problems in-
volving more than one large mass scale or non-
asymptotic masses, we will give a detailed de-
scription.

Our main technical innovation is the use of a
set of renormalization conditions, each of which
is used in a different region of the subtraction
point p. Our procedure has the advantages that
no large logarithms of mass ratios ever appear
in our perturbation theory, that the renormaliza-
tion group is particularly simple, that we always
work from formally exact equations so that sub-
sequent approximations can be systematically im-
proved, and that the partially conserved currents
are appropriately renormalized at all stages (i.e.,
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symmetries broken only softly by generalized mass

terms with scale m < | are respected by the re-
normalization procedure).

The procedure is, heuristically, to subtract at
zero mass for light particles but at zero momen-
tum for heavy particles. A particle is defined as
light or heavy according to whether its mass is
less than or greater than the subtraction point
mass (.

More precisely, we define a heavy graph re-
cursively as one that contains a heavy-quark line
or a counterterm to a heavy graph. Subtractions
to a heavy graph are made at zero momentum with
the heavy masses at their actual values and light-
quark masses set equal to zero.

Subtractions to light graphs (i.e., graphs that
are not heavy graphs) can be made by a zero-
mass scheme.!® The scheme of 't Hooft'® is most
convenient because it automatically preserves
gauge invariance.

In our present problem we are interested in re-
lating the axial current H, which is the heavy-
quark part of the coupling to the Z boson, to axial
currents renormalized at u*=|q*|, the momentum
transfer typical of the physical process under con-
sideration. Finally we will want to work with u?
much less than m,” and m,’, so that we can elim-
inate the heavy quarks. Then we can compare the
currents at different ¢°> and perhaps join on to
some quark-model prediction or relate one pro-
cess to another.

As we vary the subtraction point through a quark
mass the definition of “light” and “heavy” will
switch and some simple calculations must be done
to join one region to the other. No large logar-
ithms occur in this joining, so it can be done per-
turbatively. In the regions between masses we
can use the renormalization group to trace the
evolution of operators as u varies. Note that

since heavy graphs are subtracted at zero momen- .

tum, the renormalization-group coefficients are
mass independent and heavy operators are re-
normalization-group independent. This makes

our renormalization-group calculations particularly

simple.

In our case we need three renormalization pre-
scriptions:

(a) When u.>m,, we renormalize everything
using a zero-mass method.’® Chiral symmetries
are respected (e.g., H is not renormalized). We
denote renormalized quantities in this scheme by
unadorned symbols g, H, etc.

(b) When m,> p>m,, the t quark is treated as
heavy but the b quark as light. We use a caret to
indicate renormalized quantities: g, H, etc. De-
coupling of £ and of b as-m; -, m,—° is mani-
fest.

(c) When u<m,, both ¢ and b quarks are consid-
ered heavy. We use an overbar to indicate re-

normalized quantities: g, H, etc. Decoupling of
t and b as m, =~ ©, m,~ < is manifest.

B. Computation

Let H,=Ty,vst, Hy=bv,7sb, and L=23137,74,
where the ¢’s are the light quarks. These axial-
vector operators, which are singlets under the
color group and under the chiral SU(n) X SU(x)
of light quarks, form a closed set under renor-
malization.

Following the strategy outlined above, we will ex-
press H=H, - H,, which gets no renormalization.
in terms of H,, H,, and L renormalized at some
Ko <my, my. This will require shifts in the de-
finitions of operators at u=m, and u=m,, and

‘renormalization-group (RG) transformations in

the regions m,< u < m,. (There is no renormaliza-
tion of the current H in the region m,<u, since

in this region we renormalize in the massless the-
ory where H is conserved.) So we have four steps:

(a) At u =m,, express H in terms of careted
operators I-?,, I?,,, and i, whose renormalizations
treat ¢ as a heavy particle.

(b) Transform from p =m, to u =m, using the
renormalization group.

(c) At u =m, express the careted operators in
terms of the barred operators I?,,Eb, L.

(d) Use the renormalization group to transform
from p =m, to u=pu, At this stage we will have
the desired result, Eq. (3.2)."

To carry out step (a), it is sufficient to order
g*(m,)=g,* to calculate the Feynman diagram of
Fig. 1(b). Let this diagram, as a function of
(common) momentum squared of the external
quarks, the mass of the loop quark, and the mass
of the line quark be g*T'(p%, m, 0,7 My ). Tracing
through the definitions, we find

H, a,
H, =an,| A, , (3.3)
L) o, L)y,
« Where ;
Lign g gfx
M=\ gv 1 0|, (3.4)
nglv 0 1 ,
k=T(0,m?, m?) -T(-mg?,0,0), (3.5)
A=T(0,m2,0)~T(=m2,0,0), (3.6)
v=TI(0, 0, m,?) - T'(-m,?0,0) (3.7)

(recall that n is the number of light quarks).'s
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For step (b) notice that I?, and nﬁ,, -1 are RG in-

variant (in the sense that they have no anomalous
dimension). This happens for A, because its re-
normahzatmn conditions nowhere involve u, and
for nH - £ because of chirality conservation (re-
spected by our renormahzatlon procedure). Owing
to the anomaly, H +L is multiplicatively renor-
malized; its anomalous dimension is of order g%,
arising from (what else?) the diagram in Fig. 1(b).
Using standard methods!® we find the multiplica-
tive renormalization factor

2 cg® Az A
ﬁexpfg Tcgga——dg=1+%c(g,2—g,,2)+0(g4) (3.8)
b

with ﬁ the B function appropriate to our renormal-
ization prescription (i.e., with »+ 1 massless
quarks) and ¢ a computable constant.

Steps (c) and (d) are similar to steps (a) and
(b), respectively. The final result is

Hy) H,
H, =M INININ,| H, , (3.9)
L_a bamy L b=

* where I, is defined by Eq. (3.4), and

—

1 0 0
M={0 E+n)/e+l) (E-1)/(m+1) |,
n@-1)/+1) W2+1)/+1)

1 Bolm,/m,) 0
M= |g'Tlm/my)  1+8%  B'A|
0 ngy'v 1
100
M,= |0 10|,
007z

o(my/my) =T (0,m,%, m,?) - T(0,m;%,0),
T(mt/mb)s F(O: 0, mgz) - r(o, mbzr th) ,

and

g M
Fo) B(g)
We have ignored corrections of order g°.

We are interested in the corrections appearing
with the smallest power of the coupling constant,
and these appear in the multiplicative renormal-
ization factor (3.8). Matching the form of this
correction to the perturbation theory expression
Eq. (2.1), we arrive at the expression Eq. (2.2).
The next term in the expansion has a much more
complicated appearance, since order g* correc-
tions appear at each stage (a)-(d), but it is in
principle computable.

When we consider u, near typical light-hadron
scales, there are important renormalization ef-
fects due to purely light-quark effects—chiral
symmetry breaking, instantons, confinement,
etc. Obviously our method sheds little on these
questions; it merely allows a clean separation of
those effects intrinsic to heavy quarks.

Z=exp dag.

C. Gauge invariance and proof

It can be proved from the Ward-Takahashi iden-
tities that our subtraction of certain graphs at
zero momentum preserves gauge invariance: The
Ward identities relate graphs with the same num-
ber of heavy-quark loops. Zero-mass subtractions
using 't Hooft’s method'® automatically preserve
gauge invariance.

The proof of infrared finiteness and our decoup-
ling statements can be carried out inductively,
very similarly to Witten’s paper.” We will only
remark that zero-momentum subtraction improves
the infrared behavior of higher-order corrections to
heavy-quark graphs; this improvement renders
the zero-momentum subtraction scheme self-con-
sistent (i.e., infrared finite).
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