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%e shoe that the cross section for large-transverse-momentum reactions A + 8~C + X can be expanded
in terms of a sum of incoherent hard-scattering reactions ~here groups of interacting constituents have small
transverse momenta relative to A, 8, or C. The effects of large-transverse momentum of the constituents
cannot be represented in terms of simple convolution integrals, but are correctly incorporated in terms of a
sum of subprocesses which, in physical processes, usually correspond to nonleading terms. This hard-

scattering expansion yields a series in inverse powers of PT in the case of $' field theory or the constituent-
interchange model, and a series in inverse powers of log(log pr ) in the case of asymptotically free field theories.

I. INTRODUCTION

The study of high-transverse-momentum pro-
ducts in proton-proton collisions is very impor-
tant to our understanding of the structure and dy-
namics of hadrons. "The most successful mo-
dels' ' separate the scattering into two steps,
first the emission of a constituent from each pro-
ton and then the large-angle scattering of these
constituents as a subprocess. In addition to sing-
le-particle inclusive processes at high transverse
momenta, these hard-scattering models predict
jet processes in which the products of the hard
subprocess each fragment (or decay) into several
particles which amongst themselves have small
relative transverse momenta but which, taken to-
gether„have a large transverse momentum rela-
tive to the incoming beam direction. 'The study of
such jets gives near information on the properties
of the hard-scattering process. The correlations
between single particles"' or jets' on one side
and jets on the other side is particularly sensitive
to the transverse momentum of the subprocess
relative to the collision axis. Anomalously large
transverse momenta have been observed for lep-
ton pairs in the Drell-Yan production of p,'ll (Ref.
9) and this suggests that the transverse momen-

turn of the quark constituents should be included
in the description of such processes. We shall
call the constituent transverse momentum, (trans-
verse) fluctuations.

Constituent fluctuations have generally been neg-
lected in calculations because they have been as-
sumed to be much smaller than the relevant kin-
8111R'tlc PRI'Rllle'tel's of the h1gh-Pr Pl'Geese ('totRl

energy, detected transverse momentum, invariant
masses). Their size was taken to be of the order
of the typical meson transverse momentum in had-
ronic processes, a few hundred MeV, but it has
been noted that the transverse momenta of the
constituents which fragment along the collision
axis could be as large as 1 QeV." This remark
implies a substantial spread in transverse momen-
tum of the constituents within the incident particles
themselves.

It is evident that the effect of constituent fluctua-
tions merits detailed study especially in the light
of striking claims that such fluctuations can
strongly affect the pred1ctlons for the cross sec-
tion""'2 and the power-lair behavior of high-
transvel se-momentum processes. '

Parton models for large-transverse-momentum
processes 2+8 C+X are generally based on the
probablistic expression' corresponding to Fig. 1(a)

d gE,(4+8 0+X)=-Q dx,G,(„(x,) Cx,G,ge(x, ) O2G)O, ( x)c5(s +f +u) — (8+ fI c+—d), -
dp N

where the G(x) Rl 8 'tile pl'obRbllliy dls'tl'lbu'tlons ln

the (light-cone) variable x, and s =x~,s, f = (x,j
xc)f, u =(x,/xc)u are the Mandelstam variables of
the subpxocess, which is effectively on shell. In

general there is an incoherent sum over the con-
tributing hard-scattering reactions a+ b -e+ d.
Equation (1.1) is normaHy derived in model field
theories aftex making a rather long list of approxi-
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FIG. 1. Contributions to the hard-scattering process: (a) Example of hard-scattering subprocess and definition of
momenta. (b) s-pole subprocess in P field theory. (c) t-pole subprocess in P field theory. (d) The subprocess other
than that of Fig. 1(c) contributing in leading order to the t-pole hard-scattering expansion in $ field theory. (e) and (f):
The two subprocesses other than that of Fig. 1(b) contributing in leading order to the s-pole hard-scattering expansion
in fge)3 field theory. g QCD (or QED) analog of the (Irh field theory s-pole scattering process.

mations. In Sec. II we enumerate some approxi-
mations and illustrate their accuracy quantitative-
ly. In fact we show that if all leading subproces-
ses are included in the sum in Eq. (1.1) then Eq.
(1.1) gives the exact large-pr cross section to
leading order.

It is often assumed that Eq. (1.1) can be immed-
iately generalized to include transverse fluctua-

A

tions by using simple convolutions of d&r/dt (taking
s =x~,s —2kr kr, etc. ) with probability distribu-
tions G, &„(x„kr,), G~&s(x~, kr~), and Gc&,(xc, krc).

Although this procedure may have heuristic value
for small transverse fluctuations, it becomes in-
creasingly misleading at large k~. 'The difficul-
ties are related to the following considerations.

(1) The interacting partons a and b are in gen-
eral off shell and spacelike, we can write

kr. '+ m'(x. )
a

since p~ and p„—k, are effectively on the mass
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shell. [The quantity m'(x, ) is a linear combination
of particle masses squared. ] Thus for large kr,
and/or x, —1 the subprocess do/df(a+ k- c+d)
must be evaluated far off shell. In the case of
(massless) gluon-exchange contributions in quan-
tum chromodynamics (QCD) calculations, this fact
ensures that the gluon pole at t =0 never occurs in
the physical region. 'This crucial effect was ne-
glected in the early calculations of Ref. 6 where
artificial cutoffs were needed to ensure finite re-
sults for a gluon-exchange model.

(2) Because of the off-shell nature of the interac-
ting particles, the gauge invariance of subproces-
ses involving gauge fields cannot be maintained in
simple hard-scattering models. Further, it is
clear that the probabilistic interpretation of the
parton models fails; from the perspective of time-
ordered perturbation theory, nonclassical time-
orderings of the interactions must be included
when the intermediate states are far off the energy
shell (large kr or x- 1).

(3) In general there are other processes such as
a+ 5-c+d+ e where three (or more} systems (jets
or clusters) are produced with large transverse
momentum and where the invariant mass of any
pair grows with pz. The contributions from such
subprocesses give additional terms in the summa-
tion [Eq. (1.1)] and represent coherence correc-
tions from a+ b-e+d in the large-k~ region. In
softened field theories, such contributions are
nonleading by powers of p~. In renormalizable
theories, the relative suppression is only logar-
ithmic. %'e discuss this in detail in Secs. II and
III.

(4) The heuristic approach to transverse-momen-
tum fluctuations leads to confusion concerning the
identification of subprocesses. For example, con-
sider the contribution to large-p~ quark-jet pro-
duction in pp collisions arising from qq-qq shown
in Fig. 2(a}. The radiated gluon in the figure is
one source of k~ fluctuations for the interacting
quarks. When such fluctuations are large (of or-
der pr) this contribution to the Feynman diagram
is better represented by Fig. 2(b) which can be
identified with the parton-model subprocess qg
-qg. As another example consider the contribu-
tion to a high-p~ meson-baryon reaction shown in
Fig. 2(c). From one point of view, this is simply
a high-p~ qq-qq scattering reaction where the q
already has a substantial transverse-momentum
fluctuation in the direction of the detector. How-
ever, because of the fact that the interacting q at
large kr ~pr is far off shell (spacelike), the mass
of the qq system in the final state can be very
small. In fact in the case of MB-M'X, i.e. , a
high-p~ single-meson trigger, the qq system can
be identified with the trigger particle. [This is

Gouge- t nvoriont Par tners

(b)

+ Gouge-invoriont Portners

8
g

FIG. 2. (a) quark+quark quark+quark (gluon
brehmsstrahlung contribution). (b) quark+ gluon gluon
+quark. (c) The rearrangement of the qq qq sub-
scatter in M+B scattering to show the contributing sub-
process M+q —M+q.

actually a favored configuration since there is no
suppression factor (typically of order 10 ') from
quark fragmentation q-M'. ]. Thus from this point
of view, the hard-scattering subprocess can be
considered as Mq-M'q' where the interacting con-
stituents have negligible k~ fluctuations. Thus be-
cause of the lack of precision in the definition of
hard-scattering models, hvo seemingly dissimilar
models are actually equivalent.

Although the qq- qq subprocess has canonical
p~

' scaling in a renormalizable theory such as
@CD Born diagrams, one easily finds that the sub-
process Mq-Mq' gives a p~

' contribution to in-
clusive reactions. In fact, the subprocess3
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(which is part of the constituent-interchange mo-
del) is consistent with the scaling behavior and

angular dependence of the subprocess extracted
phenomenologically from Fermilab and CERN ISR
pp-MX data below pT = 8 GeV assuming no kT
fluctuations. '

(5) It is unnatural to consider arbitarily large
kr fluctuations (i.e. , kr ~pr) as arising from an
intrinsic parton-momentum distribution with a
hadron. In order for such fluctuations to occur
there must be an internal hard-scattering proces-
ses (obtained, for example, from the iteration of
the Bethe-Salpeter kernel), where the other con-
stituents or gluons take up the recoil. Thus if we
again consider Fig. 2 from the standpoint of (off-
shell) qq-qq scattering, the production of the
high-pT systems cannot be localized within a sing-
le hard-scattering subprocess.

It is clear that as long as one considers small
transverse-momentum fluctuations satisfying

k 2
Tc «p1-x,

k 2
Ta «p 2

1-x
b

the ambiguities and problems discussed above
should give only nonleading corrections. How-

ever, for kr'-O(pr'(I -x)), the parton hard-scat-
tering model becomes ill defined.

The only reliable solution to the above list of
ambiguities resulting from high-transverse -mo-
mentum fluctuations is to carefully follow the guide
of exact Feynman-diagram calculations. Despite
such complexities we have found in some model
field theories that one can still define with some
precision and numerical accuracy a hard-scatter-
ing expansion in which the transverse-momentum
fluctuations are implicitly included. In these mo-
del calculations, we have verified that the com-
plete Feynman-diagram contribution can be ac-
curately expressed at large pT as a sum over dis-
tinguishable on-shell, low-transverse-fluctuation
subprocesses ab- cd, where each of the interact-
ing systems a, b, c,d are in general multipaxticle
systems. The scaling behavior in pT of each con-
tribution can then be determined from the total
number of active particles in the subprocess, us-
ing dimensional-counting rules. " Further, the
contribution from each of the subprocesses is well
approximated by ignoring transverse fluctua-
tions.

In the context of the hard-scattering models""
we have examined the effect of constituent fluctua-
tions on the cross section for detecting a particle
at large transverse momentum in proton-proton col-
lisions. All our calculations are for the cases where
the detected particle is emitted at 90 to the collision
axis, although this is not crucial. The fluctuation-in-
dependent distribution functions for the emission of

a quark from a proton are taken from the SLAC
data on lepton-proton scattering, "and the trans-
verse fluctuations are included by multiplying
these functions by various normalized x-dependent
distributions.

We have paid particular attention to the effects
of some common approximations to the kinematics
and dynamics of such processes in both physical
and model processes. In Sec. II we consider an
exact model Q' field-theory analog of relevant
processes and we use it as a theoretical laboratory
to discuss and illuminate the effects of approxima-
tions and their pitfalls. We contrast subprocesses
which are respectively described by s- and t-
channel poles. The transverse fluctuations have
an effect which can be directly interpreted in terms
of a hard-scattering expansion of the full cross
section discussed in Sec. IIC. Each term con-
forms to the kinematic restrictions of the parton
model in which the constituents have limited trans-
verse momentum; hence the necessity for grafting
transverse fluctuations onto the parton model in
some approximate way is obviated.

In Sec. IV we consider several physically im-
portant subprocesses and discuss the effect of
transverse fluctuations in the context of the ap-
proach developed in Secs. II and III. The single-
lepton spectrum from the Drell-Yan process as
a function of transverse momentum derived from
a rapidly falling distribution is found to be very
nearly independent of the effects of such consti-
tuent fluctuations in agreement with the discussion
in Secs. II and III. Other competing subprocesses
for lepton-pair and single-lepton production are
listed. One model in particular is discussed"
which may be interpreted as the origin of a domi-
nant contribution to the transverse-momentum dis-
tribution of antiquarks in the proton at intermed-
iate values of kT and which explains the experi-
mentally observed transverse-momentum distribu-
tion of p, pairs as a function of their invariant
mass. We find that at high transverse momentum
the single-lepton spectrum predicted by this pro-
cess agrees with that predicted by the naive (qq
—pP) calculation. Prompt meson production in
the constituent-interchange model (CIM) is briefly
considered, and we discuss the quark-scattering
subprocess for quark-jet production. In the latter
case the errors of an on-shell approach are illus-
trated and the effects of quark transverse fluctua-
tions are interpreted in terms of new subprocesses
contributing to quark-jet production at high pT.

In Sec. V we present our conclusions and suggest
a general method for analyzing contributions to
high-momentum -transfer p rocesses involving
bound states which is applicable to renormalizable
and super-renormalizable theories.
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II. STUDY OF AN EXACT MODEL: Q~ THEORY

In order to study the various approximations
usually made in large-transverse-momentum cal-
culations, we shall study in detail the behavior of
the Born-diagram structure of P' field theory
which we can evaluate exactly. The principal fea-
tures of the calculation mimic the phenomenolog-
ical features of most hard-scattering models, in-
cluding the p~

' behavior of the pp —mX data at
fixed xr = 2pr /Ms and 8,

dpP „(— ), (2.1)

where

d =-4(s, m„',ms')

S —m~+ mg S —mg —mp

g is the vertex coupling constant, and

g'[(k, +k,}'-m'] ' for s-pole case

g'[(k, -k,)' —m'] ' for t -pole case.

In the following we consider any collinear frame
where the incident particles define the 2 direction.
Momenta are denoted by k' = (k', k, k'). We anal-
yze the cross section (2.1) in terms of light-cone
variables (16) defined by

x, = (k,'+ k, ')/(p„'+p„'), x, = (k,' —k, ')/(pso -ps') .

[Unless otherwise stated all formulas that are
given. for (a, A) alone are valid for (a,A)- (5,B).]
Then

dl5 "(l, —p,, = dk, (2.2)

'The parton four-momentum k," is determined by
momentum conservation and is not on the mass
shell but satisfies

2+ 2 k 2

k2=x M 2- ~+~~
0 0 A (1 x )

(2.3)

A. Kinematics

In ft)' field theory we consider scattering proces-
ses of the type depicted in Fig. 1(a}with the par-
ticles labeled by their four-momenta. All kine-
matic variables are defined in the usual manner"
and those referring to the hard-scattering sub-
process (k„k,)-(k„k~)are s, t, and u. We sep-
arately discuss the two cases shown in Fig. 1(b)
and Fig. 1(c) in which the subprocess is represent-
ed by an s-channel pole and a t -channel exchange,
respectively. The differential cross section may
be written as"

da=g'ik, ,Mi ~ 5'(P„+Ps—l, —l, -k, -k, )
1 ' (2s)4

k~ —pg lfZ

where we always take M„(p,,+m, . We define the
vertex distribution function

where

rR =- h(s, m„m~)= [s —(m, + m~ } ][s —(m, —m~ }'].
Using (2.2) and (2.4) we can cast (2.1) into the form
of an invariant differential cross section for de-
tecting particle p [=-k„seeFig. 1(a)]

Odg 1p, = — dx,dk, dx~dk~G, t„(x„k,)G~i (sxl, k )

1 ~ dg
dt 5(s+ t +u —k,dt

—k~ —m —m~ }. (2.5)

The function G, i„(x„k,) was defined in such a
way that the form of (2.5) has a simple parton-
model interpretation. G,i„(x„k,}dx,dk, is inter-
preted as the number of partons a emitted by par-
ticle A with longitudinal momentum fraction be-
tween x, and x, +dx, (in the high-energy limit or
in the infinite-momentum frame) and with trans-
verse momentum between k, and k, +dk, . The
partons k, and k, then scatter in an independent
subprocess except that the particle flux is defined
by xp, s and not C. However, even though such an
interpretation of (2.5) is seductive in its simplic-
ity, we must emphasize that (2.5) is an exact rep-
resentation of the process shown in Fig. 1(a) when
interpreted as a Feynman diagram, in which case
the transverse-momentum distribution of the par-
tons is predicted and is given by (2.4). The kine-
matic region over which (2.5) is integrated is de-
termined by solving the following constraints":

0(x,x~ c 1,
s ) (m, + m~)', (2 6)

where

n(s k' k2)

=s-k 2
k~ t —t -k -m

P is the transverse momentum of k, or k~ in the
subprocess center-of-mass frame. The 6 function
in (2.5) must also be solved to yield a relation be-

G, t„(x„k,)

g' x.(1 -x.)
2(2&)' [k, '+ (1 -x,)(m, ' -x~„')+x,g,']' '

The subprocess invariant cross section is given by

da 1 1—x= ~M
dt 16m ~
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tween the integration variables.
In Sec. II B we will compare the exact calcula-

tion (2.5) with various approximations. From the
form of (2.5) it is easy to infer the effective po-
we r -law behavior of the invariant cross sections
for x~-1 or x~-0

(2.7)

where x =2pr/vs, and g'/m' results from the
integration of G(x, k) over k.

In order to estimate which kinematic regions of
the integral (2.5) yield the most important contri-
butions to the cross section at large transverse
momentum we must isolate all important hard-
scattering subprocesses. Following the counting
rules" (which follow from dimensional analysis},
each subprocess at fixed xr behaves like I/(pr')"
where N= X x (no. participating particles -2)
where X = 2 for the Q' theory and A. = 1 for the re-
normalizable theory. The power E of (1 -xr) is
given by [2 x (number of spectator particles)] —1.
In Fig. 1(a)—1(c) the subprocess selected for il-
lustration is the one which leads to the convention-
al parton-model interpretation discussed earlier
where k, recoils against k~. However, in both
cases 1(b) and 1(c), subprocesses other than those
illustrated are equally important and these are
shown ringed by dotted lines in Fig. 1(d) and Figs.
1(c) and 1(f), respectively. These extra sub-
processes all give contributions which behave like
p~

' for fixed x~. The high transverse momentum
generated by the process of Fig. 1(d} is produced
by k, recoiling against /, . In this subprocess k,
is the t-channel exchange particle and hence k, '
must be assigned its exact off-shell spacelike
value of order —kr'/(I -x, ) given by (2.3). [We
ought not to fix k, '= m, ' as an approximation any
more than we would put the exchanged particle
in the original t -channel subprocess (Fig. 1c) on
shell. Indeed, if we did the latter the calculation
would lose all semblance of credibility. ] From
Eq. (2.3) the off-shell value of k, ' depends (apart
from masses) on the value of x, and k, ' which, for
the subprocess of Fig. 1(d), is of the order of the
p~' of the trigger particle k, . Consequently, the
isolation of this subprocess explicitly shows the
contribution that the transverse momentum k, of
the parton (relative to its parent p„)makes to the
total large-p~ scattering cross section.

The process of Fig. 1(e) contributes to the Pr '
behavior of the cross section at fixed x~ and the
high transverse momentum is produced by q re-
coiling against /, . The trigger particle k, is then
produced by fragmentation (or decay) of q as one
member of the low mass pair (k„k~}.As empha-
sized above, k, ' should be assigned its correct

off-shell spacelike value in order for this sub-
process to be correctly included.

In the language used so far the effect of trans-
verse-momentum fluctuations of a given parton is
determined by analyzing all possible hard-scat-
tering subprocesses in which that parton carries
the large-P~ momentum. Counting rules then tell
us whether such processes contribute in the lead-
ing order or not. This procedure treats all kine-
matic regions democratically and never begins by
assuming that transverse-momentum fluctuations
may be ignored as an approximation when calcula-
ting leading-order effects. Thus the production of
a large p~ particle can always be identified with
one or more explicit hard-scattering subprocesses.
Using this enumeration, one need never refer to
parton-model wave functions with large-trans-
verse -momentum fluctuations.

In the phenomenological parton-model picture
which is often used as an approximation the funda-
mental process is defined to be given by Fig. 1(a)
and the parton transverse-momentum distributions
(2.4) are not necessarily determined by the internal
consistency of the model. 'The integral expression
for the invariant cross section (2.5) is then used
with various approximations to the kinematics in
order to predict the large-p~ behavior of the pro-
cess. The fact that this prescription does not ex-
plicitly exhibit the democracy of the Peynamn-dia-
gram approach discussed earlier does not detract
from a given model which might be validated on
physical grounds. However, such an approach may
in some cases obscure the effects that a given ap-
proximation has on the final result. In this context
a common error is to believe that the parton trans-
verse-momentum fluctuations may always be in-
cluded by convoluting the transverse-momentum
distribution of the parton with the cross section
calculated without fluctuations. Clearly the an-
alysis discussed earlier cannot be interpreted in
this way and a detailed inspection of (2.5) con-
firms that the integral cannot be rendered into
the form of a convolution.

In the next subsection we discuss the effects of
various common approximations to the integral
(2.5), especially with regard to the breakdown of
the full processes into the relevant subprocesses
as described in this section. In order to compare
later to the often made parton-model assumption
(i.e. , simple impulse approximations) we intro-
duce an on-shell parametrization for the partons
k, and k~. We define

k,"=([k,'+ (x,p„')'+m']'~', k„x,p„'), (2.8)

where x, is the Feynman longitudinal-momentum
fraction. This leads to a purely ad hoc rnodifica-
tion of the integral (2.5) which is not kinematical-
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ly consistent since it puts k, and kb on the mass-
shell whereas we have already seen that momen-
tum conservation requires k, ' -m, ' to be space-
like. The largest error occurs when k, ' is farthest
off shell which from (2.3) can be seen to be for
large k, ' or x,-1. We will discuss the effects of
putting the partons on mass shell for various large-
p~ proton-proton processes in Sec. IV.

B. Effects of approximations

'The kinematic constraints which determine the
region of integration in (2.5) are given in (2.6).
Other equivalent constraints may be substituted for
those in (2.6) in terms of the external process var-
iables s, t, u. However, in a calculation which ap-
proximates the kinematics there can be a mis-
match between different sets of constraints and
some may allow a region of integration to contri-
bute which would be forbidden in an exact calcula-
tion (e.g. , reaching a pole). As an example con-
sider the process for which the detected particle
is at 90' in the center-of-mass of the incident par-
ticles. In this case the 6 function in (2.5) may be
written, to leading order in s and ignoring masses,
as

p( +t+ —k, ' —k, '}=p(*» s -p Ms}*,~* } p

to the integral is from the (well-understood) region
where x„x,= 2pr/Ms. We should beware of any
approximation which allows the integral to receive
a contribution from physically forbidden regions.
'The relation between integration variables, be-
cause of the 5-function constraint, may also be
altered by the approximations.

The exact expressions for the relevant kinematic
variables are

s = (pA+pB}, t= (pA pc), u = (pB pc)

s = (k, + k~)' = x~~s'+ k, '+ kp' —2k, ' k~+
Pb
2 2

t = (k, —k, )' = x,t '+ k, '+ m, '+ 2k, ' pr+
a

m 2 2

u = (k, -k, )'=x,u'+ k, '+ m, '+ 2k, 'pr+
b

(2.10)

where

PA PB+ [(PA PB) ™A+ B ]

PA Pc [(PA Pc) MA ~c 1

PB Pc l(PB Pc} MB Mc 1 }

where

(1-x,) (1-x~)J '

(2.9}

kq = p~ —k —kb.

For k, ' and k, ' small this gives the usual solu-
tion

x.p, /Ms

x. —pr/Ms

which, in conjunction with the falloff (1 -x)" of the
distribution functions g(x, k), determines the major
contribution to the integral (2.5) to be for x„x~
—Zpr/}}s . For the t-exchange subprocess the pole
would be reached for k, =p» k, =O. Then

~fx.pr pr /
t

'l vg s(1 -x, ) ii ' vs )
which has solutions for x, = 0 and xb =p~v s . How-
ever, for this particular region we find

&eke
2 2

B =xp~s —(k, —k},) + (1' '
)+ (1 )

=-pr

which is spacelike and hence unphysical since it
cannot make two on-shell final-state particles.
Generally the effect of the space-like momenta of
the partons is to ensure that the main contribution

We have calculated the effects of several differ-
ent approximations in the Q' theory for the two
cases where the subprocess in Fig. 1(a) is taken
to be an s-channel pole or a t -channel exchange
pole. The results of this investigation are con-
tained in Figs. 3-5. For the light-cone parame-
trization we have chosen six different approxima-
tions to the exact calculation which are

(1) No approximation —i.e. , exact calculation.
(2) The matrix elements for the subprocess are

simplified to be

g'(x~, s -m') ', s pole

g'(x, t —m') ', t pole.

(3) The correct matrix elements are used but
the transverse-momenta'k, and k, are set equal to
zero when calculating the effect of the 5-function
constraint.

(4) As (3), but the simplified matrix elements
defined in (2) are used; i.e. , (4) = (3) + (2).

(5) The transverse momenta k, and k~ are put
equal to zero everywhere except in the parton
distribution function which is trivially integrated
over k, and kb. The correct subprocess matrix
element;s are used.

(6) As (5), but the simplified matrix elements
defined in (2) are used, i.e. , (6)=(5)+(2). This
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FIG. 3. The ratio of various approximate calculations to the exact calculation versus Pz (s = 800 GeV, m = 1 GeV) for
high-p z scattering in g field theory. The curves are labeled by the number of the particular approximation as given in
Sec. II 8. (a) t-pole subproc ss. (b) s-pole subprocess. (c) t-pole subprocess with (k'z, k z) distribution replaced by
(k z~+ItI(~~} ~. The contribution of the subprocess of Fig. 1(d) is then suppressed, (d) As (c) but for s-pole subprocess.
The contributions of Fig. 1(e) and l(f) are suppressed.

corresponds to the naive impulse approximation.
The difference between (4) and (6) is the kinematic
constraints (2.6) which are correctly included in
(4).

The results of these approximations for the sing-
le-particle cross section at 90, s = 800 GeV', with
all particle masses set equal to 1 GeV are shown
in Figs. 3(a) and 3(b) as a, ratio to the exact calcu-
lation (1). For s = 600 GeV' we expect the range
3 GeV~p~ ~ 9 GeV to best illustrate our ideas
since the edge of phase space encroaches above

p~ = 9 GeV, and belo~ p~ = 3 GeV we should not
expect to properly distinguish between leading
and nonleading subprocess contributions. This is
also the region in which parton-model calcula-
tions have been done to study high-transverse-mo-
mentum processes. From Fig. 3(a) in all cases
the contribution from the t -channel exchange
graph is reduced in this range by a factor of about
1.5 because of the approximations made. In the
s-channel pole process from Fig. 3{b) for the
same range of p~ the contribution is decreased by
roughly a factor of 2 for all approximations ex-
cept one. In all cases where a reduction occurs
the reason for the decrease can be shown to be
due to the elimination {by the pertinent approxi-
mation) of one of the extra subprocesses discussed
in Sec. IIA. For an example we consider approxi-

mation (2) in the t -channel exchange process in
which the simplified subprocess matrix element
M=g'(x, t —m') ' is used. For the subprocess of
Fig. 1(d) to contribute in leading order we require
t =q'=0( m'-), 0,2=- —pr' and —the exact matrix
element then behaves like M,„=0( —g'/2m'). How-
ever, since x, =Pr/vs and t =-Prus we find that
the szmpfifi, ed matrix element behaves like -g'/pr'
which consequently suppresses the contribution
of the subprocess [1(d)] by a factor -4m'/pr' with
respect to its contribution in the exact calculation.
From (2.9) we can see explicitly that in the region
discussed above t can indeed have a small abso-
lute value since the terms depending on k, cancel
the large negative contribution from x,t'+ k, ' when

k, =pr(-=k, ) which is the case under consideration.
The result of approximation (5) may be similarly

explained for this t -pole process. Even when the
integrand of (2.5) is being evaluated for large k„
the matrix element is approximated by its value
at k, = 0. This is very similar to the case just
discussed and because of the approximation the
matrix element again behaves like -g'/p ' in a
region where in the exact calculation it behaves
like -g'/4m'. Consequently, the subprocess of
Fig. 1{d) makes a negligible contribution. The ef-
fects of approximations (2) and (5) on the s-channel
pole process of Fig. 1(b) are analyzed in a manner
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identical to that above where the processes of
Figs. 1(e) and 1(f) become artificially suppressed.

It is interesting that the effect of approximation
(3) suppresses the result in the t -exchange case
but not in the s-pole case. In this approximation
the 5-function constraint is calculated with k, =k,
=0. The constraint then becomes

3.0

2.0

I.O — (ii

I
I

I
I

I
I

I
I

I

x+ps —(x~+ x~)Pr Ms —0 . (2.11)

This overestimates x, for a given x„and for k,
=p~, k, =0 compared to the exact calculation in
the same region, which requires

p'
x~~s —(x, +x~)prvs +2pr' — r -—0. (2.12)

O
O

0
0)
tI)

0
O

1.2
O

I ( I ( I } I

Whichever of Eqs. (2.11) and (2.1'2) pertains, s is
able to assume the small values [see (2.10)] (of
order of the quark mass) required for the subpro-
cesses of Fig. 1(e) and 1(f) to contribute. For the
s-pole process both x, and x, are calculated to be
larger in the approximate situation [Eq. (2.11)]
than in the exact calculation [Eq. (2.12)], but there
iS no suppression from the structure functions
since G(x)-x(1 -x) and the product G(x, )G(x~) as-
sumes roughly equal values in the two cases [for
G(x)-(1-x}the approximate case would be sup-

A

pressed]. For the t -exchange process no values
for x„x,(0-x„x,~ 1) are compatible with (2.11)
and t -0(-m') [see (2.10)] which is the require-
ment for the process shown in Fig. 1(d) to contri-

A

bute in the approximate situation. t is forced to
be O(pr'} and the result is therefore diminished
because the contribution of the subprocess of Fig.
1(d) is suppressed by O((m'p ')'). The remaining
approximations are superpositions of those al-
ready discussed and so their effects are easily
deduced.

In order to test the subprocess interpretation in
a different way we modified the structure functions
(2.4) so that the parton fluctuation distributions
were

G(x, k) = G(x, k)3M'(x) [k'+ M'(x)]

where M(x}'=m'(1 -x+x') and G(x, k) is defined
in (2.4) (equal-mass case). Because of the faster
falloff in k, only those subprocesses shown in Fig.
1(b) and 1(c) now contribute in the leading order.
The effects of approximations (1)-(6) are shown for
the t -exchange pole and s-channel pole processes
in Figs. 3(c) and 3(d), respectively. As is expected
there is no significant suppression in any of the
cases [note the change of scale relative to Fig.
3(a) and 3(b}]since there are now no leading pr '
subprocesses to be eliminated. This model is
akin to usual models of physical processes where
it is assumed that the parton transverse fluctua-
tions fall off much faster than the transverse mo-

0.8

0.4 — (ii)

—0.4 I } I & I

5 7 9
PT (GeV)

FIG. 4. Ratio of on-shell kinematics calculation to
exact calculation versus p z (s = 800 GeV, m = 1 GeV)
for (i) no transverse fluctuations, (ii) [kz ~+ M(x) j
transverse-momentum distribution (logarithmic scale)
(a) t-pole subprocess. (b) g-pole subprocess.

to the calculated invariant cross section over the
range 3.5 GeV- pr - 8 GeV (0.25- xr - 0.55,xr

mentum in the central subprocess.
We have studied the effects of the on-shell para-

metrization (2.8) of the parton momenta in which
the intermediate-state partons are on the mass
shell (k,' = k~'= m'} and the results obtained for
t -exchange and s-channel pole processes, respec-
tively, are compared in Figs. 4(a) and 4(b) with
the equivalent calculations using the light-cone
par ametriz ation.

There are several relevant experimental quanti-
ties which we can study in the Q' model in order
to estimate how accurately they can be predicted
for the more complex physical processes. The
effective-power analysis suggests that a good
representation for the invariant cross section js

,d'(r Ax~'(1 -x~)' A(1 -xr}'
dp' (pr'+ m')' (pr'+ m')'

for a fixed energy. For s = 800 GeV' we fitted the
form

1 Od'o A(1 -xr)
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= 2prlV s ). All masses were set equal to m = 1

GeV, and then the scale of the transverse fluctua-
tions is of order 1 GeV'. The fitted values of N
and F were

p.„,=[p ~ (k„xp")]$„xP..

Theaverage valueof this variable is a measure of
the scale of the transverse fluctuations of the in-
termediate constituents; (p, '} is calculated in
the exact Feynman-graph calculation and is plot-
ted as a function of p~ in Fig. 5 for both subpro-
cesses discussed above. The fact that p „with
M, = 1 GeV is consistent with measured values in-
dicates that the mass parameters which govern
the magnitude of scale-breaking are set correctly
in this model. It should be emphasized that even
though the k~ fluctuations may give a small correc-
tion to the inclusive cross section, they still may
contribute significantly to the physical values of
quantities such as p,„,.

I
l

f
l

I
l

1
l

I
l

I

s-pole process

l.2

cu 08
~O~ 0.4

-pole process

s = 800 GeV2

0 i I ( I i I ) I ( l

0 2 4 6 8 10 l 2

PT (GeV)

FIG. 5. (~P«& ~ ) distribution versus pz (a=800
GeV2, m =1 GeV) for (a) t-pole subprocess (b) g-pole
subprocess.

s-channel subprocess

N = 1.66 + 0.14, E = 4.63+ 0.41,
A
t -exchange subprocess

N = 1.75 + 0.16, F = 4.63 + 0.49 .

The errors quoted are the square roots of the dia-
gonal covariance matrix elements for the linear
least-squares fit to In[p'(d'o/dp')]. The analytic
value for N at p~'» m' is N= 2, and for x~- 1 one
predicts F- 3. Deviations for N and F are expect-
ed because of the mass corrections and the limited
range of x~.

In general the other final-state particles do not
lie in the plane defined by the incoming particles
(k„,ks) and the detected particle p, . The three-
momentum out of this plane is

C. Discussion

In order to understand the role of parton mo-
mentum we must consider the Feynman-graph in-
terpretation of Fig. 1(a). The regions of integra-
tion from which the cross section receives its
major power-law-behaved contributions must be
analyzed by examining all the possible hard-scat-
tering subprocesses. All leading-order subproc-
esses in pz are a Priori equally important to the inte-
gral. For a given leading subprocess the large trans-
verse momentum is by definition generated by
scattering within the subprocess and hence only
particles internal to the subprocess carry large
transverse momenta of order p~. 'The initial con-
stituents in the subscattering have only small k~
(i.e. , much less than pr) since otherwise they
would constitute the high-p~ exchange particle of
a different subprocess which has already been
counted or which does not contribute in the leading
order.

A
As an example consider the t -channel pole which

has two contributing subprocesses shown in Fig.
1(c) and 1(d). In Fig. 1(c), k, and k, are the inci-
dent constituents and q carries the large trans-
verse momentum. In Fig. 1(d), p„and q are the
incident constituents and k, carries the large trans-
verse momentum. 'The latter subprocess isolates
the contribution in which the erstwhile constituent
k, has large k~. However, this particle is no long-
er interpreted as a constituent of the incident par-
ticle but as a participant created in the subprocess.

It is now clear that constituents can be defined
consistently to have only small transverse momen-
ta. This is, of course, necessary for the parton-
model interpretation since it is required that the
intermediate constituent state be close to the en-
ergy shell in old-fashioned perturbation theory, "
which in turn demands that the constituents have
small transverse momenta. The x distributions
of each constituent differ with each choice of high-

p~ subprocess. In our example of the subprocess
in Fig. 1(c) we have, for both constituents, G(x)
~x(l -x). For the subprocess of Fig. 1(d) we have
for constituent p„,G(x)=5(x —1}and for q, G(x}
~x(1 -x)'. In this subprocess, q is a constituent
from the three-body wave function of p~, the other
two constituents k~ and l, have zero transverse
momenta and are absorbed into a low-mass core.
We thus recover the simple parton-model interpre-
tation of the high-P~ scattering process where all
constituents have small transverse momenta. We
must sum over all possible subprocesses with the
relevant constituent x distributions in order to ob-
tain all the leading-order contributions of the ex-
act approach. We refer to this summation as the
hard-se atte ring expansion.
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The results of the preceding analysis enable the
following prescription to be formulated for calcu-
lationg all leading-order pr "f(xr, 8, ) contribu-
tions to the cross section for high-p~ inclusive
processes. This pxescription includes all effects
which mere hitherto known as parton transverse
fluctuations but which are now sublated to nem

subprocesses.
(i) Respective constituent members (a, b) of the

incident hadrons (A, B) are chosen. (These con-
stituents may be elementary fields such as quarks
or gluons or may be composites of these fields. )
All remaining constituents of A. and B are integrat-
ed into the respective cores (AiK, Bb) of these par-
ticles. These spectator systems have essentially
fixed masses and have no transverse momentum,

(ii) The transverse momentum of the constituents
is neglected and the x distributions G,/„(x,) and

G~/z(x~) are determined either by analysis or by
experiment (a more detailed discussion, including
hadronjc constituents can be found in Refs. 1, 3,
and 18).

(iii) The high-pr trigger particle C is produced
in the subprocess a+ b-c+ as a fragment of
the constituent c mith fragmentation function

Ge/, (xe). The differential cross section for the
subprocess do(s)/df is calculated with the incident
constituents a and b with zero mass. This is a
good approximation as long as x, or x~ are not
close to 1. The correct value at zero transverse
momentum, from (2.3), is

2
M~a

k, =x, M~ —
)

(iv} The inclusive cross section A+ 8-C+X is
given by the incohexent sum ovex all relevant sub-
processes and constituents (a, b)

d'0 1
&

Ga/A(xc)G5/B(x5)Gc/c(xc) 2
8ubgx'OC88808 C

gyp~ C4.~ ~ ~

x — 5(s+ t + u)dx, dx,dxe . (2.13)
s da(s)
m dt

(v) The structure functions to be used are defined

by

OPp

G, /„(x,}= dk, G,/„(x„k,), (see Sec. III)
0

2 2m 2 nl
4(1 -z)p,*, I z(1-z) ' (2.14)

Pr= [Pr+ 4(Pr&+m')]/ z2.

Ignoring mass effects yields qr =pr/z but near z
= 1 this is a bad approximation and in oux calcula-
tion the exact expressions (2.14) were used. The
calculation mas done for s™=640000 QeV' and 800
QeV', 0.2 ~ x~ ~ 0.8. All masses mere set equal to
1 QeV. In both cases the agreement between the
exact Feynman-graph calculation and the result
of summing all leading terms in the hard-scatter-
ing expansion was accurate to -10'Pt}.

The results of this section indicate that the sim-
ple parton model may be successfully employed to
calculate inclusive cross sections as long as we
xecognize that the high transverse momentum is
always produced in a constituent subscatter and
not in the wave function of the incident hadrons.
The sum over such subscatters then accounts for
all the leading contributions from the exact Feyn-

process a+ b- e+ (d ' 'j must all share in the
high-pr recoil of the trigger particle (i.e. , carry
transverse momentum greater than apr). This
means that the leading subprocesses will produce
only two final-state low-mass systems in general,
otherwise the cross section is suppressed by ex-
tra powers of pr. Equation (2.13}is represented
pictorially in Fig. 6.

We have tested the validity of the hard-scatter-
ing expansion (2.13) for the differential cross sec-
tion and the consequent approximations by con-
sidering the s-channel process in «t)' field theory
[Fig. 1(b)]. We compared the exact Feynman graph
calculation for the differential cross section with
an explicit calculation (subject to the prescription
stated above) of the sum of all terms contributed
by leading-order subprocesses [shown in Figs.
1(b), 1(e), and 1(f)] to (2.13). The contributions
of the subprocesses shown in Figs. 1(e) and 1(f)
involve the fragmentation of the particle carrying
momentum q into the high-p~ trigger particle 0, .
If z is the light-cone variable describing the frag-
mentation then (br=0, e, =90')

where a(1, opr»O(m). In super-renormalizable
theories (see Sec. III the integral is insensitive to
the upper limit which may be replaced by ~. This
is compatible with the results of approximations
(5) and (6) studied earlier since the expansion
(2.13) automatically selects kinematics with k,
=k~=0.

In order to avoid double counting in (2.13) the
undetected particles in the final state of the sub-

A

subprocesses,
a szxjirza Irij0+b ~ C+. ..

FIG. 6. Bepresentation of hard-scattering expansion.
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man-graph calculation while at no stage violating
any of the conditions for applicablility of the par-
ton model. . In the next section the validity of these
results is discussed in the context of renormaliz-
able field theories.

III. VALIDITY OF THE HARD4CATTERING EXPANSION IN

RENORMALIZABLE AND SUPER-RENORMALIZABLE
FIELD THEORIES

0
kT

apT

In the preceding section the hard-scattering ex-
pansion was developed by considering explicit ex-
amples in P' field theory. Because of the super-
renormalizability of the interaction, or alterna-
tively because of a dimensionful coupling constant,
processes calculated in P' field theory exhibit the
features of the parton model when they are consid-
ered in the appropriate kinematic limit. 'The sit-
uation in renormalizable field theories is more
complex and the validity of the hard-scattering
expansion and its parton-model nature must be re-
examined in the context of these theories and spec-
ifically for QED and QCD. We consider the rep-
resentation for the single-particle inclusive differ-
ential cross section given in (2.5). The 5 function
is accounted for by integrating over x, and the ex-
act result may be written as

3E, = dx~dk, dk~G(x„k,)G(x~, k~)dp'

xf(xr, pr, k„k~rxb) .

(3.1)

All unnecessary notation has been suppressed and
the dependence on quark masses and on coupling
constants is implicit. The function f(xr, pr, k„k~,
x~) includes all factors resulting from the x, in-
tegration as well as the differential cross section
do/dt and the sundry factors which accompany it.
Equation (3.1) is still an exact representation of
the Feynman integral under consideration and for
concreteness we shall consider it in the context
either of the P' theory s-pole process of Fig. 1(b)
or the QED (QCD) process of Fig. 1(g). We con-
sider the various regions of the k, and k, integra-
tions in (3.1) for fixed xr(= 2pr/v s ) in order to
define the hard-scattering expansion and to isolate
the power dependence of each term in (1/pr'). For
this purpose the functions G(x, k) are parametrized
by [see Eq. (2.4)]

G,(x)
G(x r k) =

(k2+ m2P+s r (3.2)

where & is the dimension of the coupling constant
g. The mass scale m is generally x dependent but
this makes no difference to the conclusions follow-
ing. We discuss the situation in which the function
do/dt contains four powers of the coupling constant

aPT p PT PT

b
kT

FIG. 7. A, B, C are the main areas of (k, , k~) space
contributing to the p field theory inclusive high-p z
scattering . n, p, y «1, apz, pp@, yp~»m, . These
regions correspond to the different subprocesses shown
in Fig. l.

(Born terms) and hence (I/g')f(xr, p„,k„k,, x, ) has
dimension (mass) """.We isolate terms in the
hard-scattering expansion by considering three
integration regions 0 ~ k, ~ np~; op~& k, & Pp~;
Pp~ &4, &p~, and similarly for k, ; these regions
are shown in Figure 7. [The division of the inte-
gration regions can also be made in a covariant
manner by using 0- ~k, '~ - o('pr', etc. , where k, '
is given in (2.3).] In order to isolate the leading
and nonleading contributions we expand the expres-
sion (3.1) about m =0. However, in order for each
term to be well defined at the lower end of the k,
and k~ integrations a simple inspection of (3.1)
shows that we should consider the expansion of

d'o „(G,(x,) G,(x,)

x f(xr, pr, k„k~,x~)dx~d k,d'k~ .

First consider e& 0. For 0~ (k, [, [k~ [

& opr, the
integral is dominated by 1/m" from the lower end
of the k„k,integration and then, since the only
parameter with dimensions is p~, we find that the
expression (3.3) behaves like 1/(pr')""". In the
limit m- 0 in (3.1) this is the only term that sur-
vives for this region and represents a leading
term in the hard-scattering expansion. In Q' field
theory for which e =1, this pr 'f(xr) term was ex-
haustively analyzed in the previous section, and
for the s-pole process corresponds to the sub-
process of Fig. 1(b). In QED (or QCD) in the tree
approximation (no vacuum polarization), e = 0, and
the integral is only logarithmically divergent in
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m. For 0 ~
I
k, I, I

k,
I

~ npr we then easily find that
the leading contribution behaves like (InP r'/m')'/
p~'. This corresponds to the subprocess explictly
illustrated in Fig. 1(g). (An axial or Coulomb

gauge is assumed here. )

For npr ~
I
k, I

~ ppr and no restriction on k~

from (3.3) for z & 0 we find that the integrand be-
haves like (Pr') '(m') '(pr'}"'. In the limit of m- 0 this contribution to (3.3) vanishes like m" and

hence the leading contribution in this region is sup-
pressed by (m'/pr')' relative to the leading terms.
Referring to Figs. 1(b) and 1(g}, this corresponds
to the 2- 3 subprocess P„+k, - I, + k,(+)+k„
where k, and q share in carrying the large-p~ mo-
mentum. In fIJ)' field theory this is a nonleading
contribution since & = 1 and is suppressed by (m'/
pr') factors. In the tree approximation this con-
tribution is however suppressed in QED (QCD)
only by In(pr'/m'). The region ppr ~ Ik. I

~ pr/xz, ,
0~ Ik, I

& npr is similarly analyzed, but it is best
first to rearrange the representation (3.3) to»gh-
light a new subprocess, namely, that in which k,
is the internal exchange particle. For the s-pole
process in P theory this is illustrated in Fig. 1(e}.
The k, integration may then be converted to an in-
tegration over the low-momentum region of a
transverse-momentum variable of a new structure
(or fragmentation) function. In the case of Fig.
1(e) this variable is the transverse momentum

k~ characteristic of the fragmentation q- k, + k~.
In Fig. 7 the main regions of contribution A, B,C

are illustrated. A corresponds to the subprocess
of Figure 1(b) or 1(c}. B corresponds to Figs.
1(d} or 1(e), and C corresponds to Fig. 1(f) (this
is a leading contribution only in the case of the

s-pole process). The same analysis of course ap-
plies to any graphs with the same topology as Figs.
1(c}-1(f)[e.g. , Fig. 1(g)).

For e& 0 the upper limit on k' is not important,
but for e = 0, In(pra/m2) factors modified by func-
tions of xz occur. For both cases in the examples
cited we retrieve leading contributions to the Feyn-
man integrals. If we include the effects of vacuum

polarization in the QCD calculation then the effec-
tive structure function behaves like I/[k'ln(k'/A')]
in transverse momentum and for the region 0 ~

I
k,

I

& npr the enhancement is only a factor In[In(pr'/
A')/ln(m'/A')] and not In(pr'/m') as it was in the

tree approximation. For QED, the exact incorp-
oration of the vacuum polarization is not under-
stood because of the problems inherent in the
Landau singularity.

It is clear that the hard-scattering expansion
is most useful in soft field theories with (fixed
point) e & 0, such as Q' theory. In the case of
subprocesses which involve hadronic constituents,
as in the constituent-interchange model, ' the ef-

IV. PROTON-PROTON REACTIONS
WITH TRANSVERSE FLUCTUATIONS

A. The origin of k& fluctuations

A very general description of the quark distri-
bution functions G(x, kr) can be based on the de-
composition of the hadronic wave function shown
in Fig. 8, corresponding to the different constitu-
ents which balance the quarks transverse momen-
turn. 'This series generates an effective k~ dis-
tribution at large k~

dn n, (kr) c,m' c,m'
(4 1)

where the power of k~
' increases with the number

of constituents sharing the recoil. 'The first term
from QCD gluon recoil holds for kr'&O(pr2). The

k~
' from quark or antiquark recoil is a standard

CIM contribution. The general form for the G

~-x +

(b)

~ ~ ~Vr A'M + ~ ~ ~ +

q
q low mass

core

(c)

FIG. 8. The origin of quark transverse momentum
in the hadron wave function showing the various recoil
constituents and the remaining low-mass, low-k z core
X. See Eq. (4.1).

fective theory has E = 1 or 2 (for mesons and bary-
ons, respectively) if the underlying quark-field
theory is renormalizable. In such models, the
transverse-momentum fluctuations are incorrectly
represented by the hard-scattering expansion. In
the case of renormalizable theories the enhance-
ment of leading terms is only logarithmic. In

QED, the ln(s/m, ') enhancement is responsible
for the equivalent-photon approximation. " In

QCD, the lnln factors often exponentiate to a pow-
er of logarithms in infinite order. The nonleading
terms are then only suppressed by a power of log-
arithms.

Examples of relevant physical processes are ex-
amined in the next section in the context of the
hard -scattering expansion.
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P ( rmfi jifiarrrir
A

B ~ gvaiiiiirfiliiii g ~ kd

FIG. 9. Generic hadron+ hadron- (high-p z trigger)
+X.

function in the case of Fig. 8(d), where the recoil
system contains n constituents, is"

(1 x)&" &

dxdk ' '
[k '+M ii(x)]" (4 2)

These rules follow from the power-law behavior
of the minimally connected Bethe-Salpeter wave
function from the @CD tree graphs. Here

M,qi (x)=xM„„'+(1 -x)M, ' -x(1 -x)Mq' .

This describes the emission of a quark of mass
M, recoiling against a system of mass M„„.The
core mass is a parameter of the model and in or-
der to fit the Regge behavior of the cross section,
the core mass must behave" as M„„,'-(M,')'/x.
The form of Eq. (4.2) ensures the covariance of the
final results. In the case where there are specta-
tors X at low kr, e.g. , Fig. 8(a)-8(c), the distri-
bution functions can be obtained from a two-step
process where p-II+X, and the system H pro-
duces the quark at large k~ with no low-k~ spec-
tators. This is consistent with the hard-scatter-
ing expansion since the system H is at low k~.

We can now consider the effect on various phys-
ical pp large-P~ processes which follow from
fluctuations of the general form (4.2). In each
case we have calculated the differential cross
section in the framework of the hard-scattering
~odel shown diagramatically in Fig. 9 for which
the notation of Fig. 1(a) is retained. Where ap-
propriate the distributions G(x) for q and q were
taken from fits to the SLAC deep-inelastic lepton-
hadron scattering data. '4

B. Drell-Yan process

The simplest process to consider for illustra-
tion of the effects of k~ fluctuations is the Drell-
Yan process pp- p.+p. X in which the subprocess
is qq - p' p . Let us first consider the case in
which the distribution is given by Eq. (4.2) with
~~ 2. This corresponds to the situation in which
all the spectator quarks recoil as a low-mass sys-
tem as shown in Fig. 8(d). In Fig. 10 the single-
@. invariant cross section derived from this proc-
ess as defined by (2.5) with exact kinematics is
plotted against p~ for s = 600 GeV', (9, =90'. The

(b)

FIG. 10. Examples of subprocesses contributing to
the hard-scattering expansion contained in the qq —

qq
subscattering process for proton-proton scattering. (a)
quark+ quark- quark+ quark (quark recoil contribution).
(b) diquark+ gluon —quark+ quark.

approximate calculation ignoring the transverse-
momentum fluctuations (i.e. , the standard parton
model) is not shown since it is negligibly different
from the exact calculation. This is expected since
there are no other leading subprocesses in this
particular model of single-muon production when
n ~ 2 in (4.2}. This feature wiil hold true in any
model where the k~ fall off is sufficiently fast.
At pr = 5 GeV/c, this single-muon production (in-
cluding color) is a factor of about 3 below the
data" which is also shown in Fig. 10. The anoma-
lously large average transverse-momentum dis-
tribution of dileptons, '4 which grows with the pair
mass, has prompted some authors to suggest that
the parton transverse-momentum fluctuations are
quite large. "" These fluctuations might then be
expected to give a boost to the single-lepton cross
section. Such an effect can only occur if there are
new hard-scattering subprocesses (e.g. , involving
quark or gluon recoil) which can compete with the
qq- p'p (lepton recoil) subprocess at moderate
values of pz& &. Suchprocesses canbe qq-~*,"
[which is implicit in Fig. 8(a)], qg-y*q, qq-qqy*,
Mq -y*q. The last subprocess [shown in Fig.
11(b})is that considered by Duong-van, Vasavada,
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and Blankenbecler" and by Fontannaz. " This mo-
del fits the lepton-pair transverse-momentum dis-
tribution as a function of pair mass, and the nor-
malization" of the subprocess Mq-y*q is com-
patible with the normalization' of pp -mX at large
P~ from the CIM subprocess Mq-Mq.

In principle, the effect of these subprocesses is
included in the exact Feynman-diagram calculation
of the pp- pX cross section using the first two
terms of Eq. (4.1).

The subprocess Mq-y*q subsumes the Drell-
Yan subprocess [which corresponds to the first
(crossed) graph of Fig. 11(b)]when the final-state
quark has small transverse momentum and hence
may be counted as part of the low-mass core.
From the discussion of IIC the crossed graph in-
cludes the effect of transverse fluctuations of the
antiquark constituent in the Drell-Yan process
which arise by recoil against a single quark in the
proton wave function. The second (uncrossed)
graph of Fig. 11(b) which is negligible in the Drell-
Yan limit (i.e. , zero transverse momentum of the
muon pair) is necessary for preserving @CD gauge
invariance. Hence this reaction contains extxa
contributions which represent the effect of trans-
verse fluctuations in the Drell-Yan process as well
as containing the Drell-Yan process itself. As we
cautioned in IIC we should not double count by in-
cluding the qq -y* subprocess indpendently. We
remark that the uncrossed graph of Fig. 11(b) is

a new hard-scattering contribution which does
not contain qq annihilation and whose contribution
would be ignored in a naive approach to the effect
of transverse fluctuations which assigns a trans-
verse-momentum distribution to the antiquark in
the structure function. The single-lepton trans-
verse-momentum distribution for this model is
plotted in Fig. 10 and the results reflect the extra
p~

' contribution included in the Mq y q subpro-
cess. At large p~ this extra effect vanishes and
the results for single-p, production from qq-y*.

The contributions from the (Pr ~) @CD subpro-
cess qg-z*q, qq-gy*, etc. , will also increase
the single-p yield. Using the hard-scattering ex-
pansion, those will yield further P~

' contribu-
tions at fixed x~ and 8, and will renormalize
the qq —p,'p contribution to single muons. How-
ever, because of the trigger bias effect" (from
y*- p'p fragmentation) these contributions are
relatively suppressed. These events are interest-
ing and can be distinguished because they contain
a recoil quark or gluon jet" rather than a recoil
muon (as is the case for qq- p' p ).

C. Single-pion production

We have analyzed the leading constituent-inter-
change process for the production of prompt pions
pp-mX in a way similar to the analysis of the pre-
vious subsection. The subprocess under consider-
ation, meson+ q-wq, is shown in Fig. 11(c)and the
quark is given a mass of 1 GeV. The full distribu-
tion function (i.e. , including transverse momen-
tum) of the meson in the proton is taken from Ref.
3.

The inclusion of transverse fluctuations with
rapidly falling distributions [N ~ 2 in (4.2)] makes
a negligible contribution to the differential cross
section as we should expect in the light of the pre-
vious discussion. To discuss the effect of con-
stituent transverse fluctuations in general, we
need to discuss subprocesses such as meson+mes-
on-mqq. A simple power analysis shows that the
contribution falls like P~ "compared to the lead-
ing p~

' CIM contribution. Thus the effect is more
rapidly damped than the corresponding modifica-
tion by nonleading subprocesses (e.g. , Mq-y*q)
in direct p, production. "

D. Quark-quark scattering subprocesses

We can also investigate the effects of transverse
fluctuations with respect to the QCD scattering
processes, qq-qq, qg-qg, gg-gg, which are ex-
pected to be particularly relevant to high -p~ jet pro-
duction in hadron collisions.

As we emphasized in the introduction, the use
of on-shell constituent kinematics cannot be justi-
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FIG. 12. Ed g/dp for single-p production at highp&
for g= 600 GeV (a) Drell- Yan, qq- p p . (b) CIM,
Mq —(p' p )q. (c) Data (Ref. 23).

fied and requires arbitrary cutoffs in the calcula-
tions. In order to see explicitly the source of dif-
ficulties in this procedure we have calculated the
@CD qq-qq subprocess contributions using the
on-shell parameterization (2.8).

If transverse fluctuations are now introduced,
A,

the regions of integrations surrounding the t and

u poles contribute. 'This singular enhancement
must be regulated; e.g. , by a fictitious gluon
mass or a linear cutoff in the integration region.
The consequent result is thus not only regulator
dependent but is dominated by a region of integra-
tion, which in fact does not actually contribute in
the exact calculations.

'The features of such calculations are exempli-
fied in Figs. 12 and 13, the effects of various on-
shell qq- qq models are compared with the calcu-
lations with exact off -shell kinematics. Four
cases are considered: (1) no transverse momen-
tum; (2) a rapidly falling distribution -kr ' derived
from Eq. (4.2) with 2n=4; (3) a normalized
exp(-3kr) distribution where (kT) = —, GeV; (4) a
normalized exp(-3kr') distribution with (kr) = 0.51
GeV. The gluon mass was set to M, or v 10M„
with M, = 300 MeV.

In Fig. 12 we plot the contributions to the inclus-
ive cross section Ed'a/d'pdx, at s = 800 GeV ', pr
=4 GeV/c, 8, =90 as a function of x, where all
other variables have been integrated over. The
results for cases (1), (2) with either off-shell or
on-shell kinematics all coincide at the scale used
in the figure and are shown as curve (a). Curve
(b) represents case (3) with off-shell kinematics
and curves (c) and (d) represent case (3) with on-

6
Edg4

d~pdx'
4

SS

eV

0
0 O. I 0.2 0.3 0.4 0.5

FIG. 13. E(d4o. /dp~dx) versus x for quark-jet produc-
tion (qq —qq) for a=800 GeV and p z -—4 GeV where x
is the light-cone variable of one constituent. The nor-
malization is arbitrary. The curves shown are (a)
Cases (1) and (2) (given in Sec. IVD) for either on-shell
or off-shell kinematics (these all coincide at this scale).
(b) Off-shell kinematics with normalized e & distri-
bution (case 3). (c) On-shell kinematics with normalized
e +r distribution (case 3) for M~=M, . (d) As (c) but for
M~= v10 M

shell kinematics for M =M„v10M„respectively.
The exact kinematics calculation shown as curve
(a) shows that the region of x, ( 0.08 (which is the
kinematic boundary) does not contribute to the
cross section for any choice of transverse fluctua-
tions. However, for case (3) which has a moderat-
ely falling exp(-3kr) distribution, the on-shell
calculation receives large contributions from the

A

x, -0 region which is sensitive to the t ' pole. The
effect of this region is governed strongly by the
gluon mass as illustrated in cruves (c) and (d) of
Fig. 13 which correspond to the two cited choices
of M, . Near x, = 0 the ratio of the two curves is
1:100, reflecting the M 4 dominance of the cross
section. In case (2), for on-shell kinematics, the

x,- 0 region contributes but is numerically sup-
pressed for these values of M by the strongly
damped distribution.

'The corresponding inclusive cross sections for
pp-q+X are shown in Fig. 13. The on-shell cal-
culation with e ~r is anomalously high [curve (d)]
compared to the off-shell kinematics calculation
with e '~r [curve (b)]. Curve (a) represents cases
(1) and (2) and cruve (c) represents case (4) with
either off-shell or on-shell kinematics. It is
clear that the spurious on-shell contribution is
not physical but is a result of the breakdown of the
on-shell approximation when including transverse
fluctuations. The method of regulating the pole is
arbitrary and tantamount to choosing the final re-
sult at will.

As we have discussed in Secs. II and III, the true



CONS TITUKN T TRANSVERSE-MOMENTUM FLUCTUATIONS AND. . .

effect of transverse-momentum fluctuations can
be determined by the hard-scattering expansion.
From this point of view, it is clear why the in-
clusion of transverse-momentum fluctuations with
exponential or power-law kr " (n & 4) distributions
causes negligible change in the differential cross
sections. These contributions can be identified
with nonleading processes in the hard-scattering
expansion relative to the leading p~

' terms. As
discussed in the introduction to this section with
reference to Fig. 8 and Eq. (4.1) it is possible to
generate less steeply falling distributions by re-
coiling the active constituent against other consti-
tuents in the incoming hadrons. The leading terms
correspond to simply gluon recoil which can be
analyzed from the Feynman graphs by considering
all 2 - 3 subprocesses in @CD, e.g. , qq-qqg. To
leading logarithmic order, the 2- 3 contributions
can be represented by all possible 2-2 @CD hard-
scattering subprocesses. As shown in Fig. 2(a)
and 2(b) the effects of gluon bremsstrahlung in qq
scattering can be reinterpreted in terms of the
hard-scattering subprocess qq- qq with gluon
emission along the initial and final quark lines,
plus the subprocess qg-qg. Figure 2(a} can be
identified with the jet topology of standard qq qq
scattering. Figure 2(b) is distinguished by the ap-
pearance of the gluon jet in place of a quark jet.
The remainder of the 2- 3 qq-qqg subprocess
corresponds to three-jet production processes and

is a logarithmically nonleading term in the hard-
scattering expansion. These contributions include
the effects associated with the first term of Eq.
(4.1}and thereby treat the transverse-momentum
distribution of quarks in a consistent gauge-invar-
iant way.

Al. l of the above @CD Born contributions generate
only p~ contributions to the inclusive cross-sec-
tions modulo logarithms. Contributions with higher

p~
' are generated by diagrams such as those

shown in Fig. 14 where a quark recoils in the
wavefunctions via the exchange of internal gluons.
One of these contributions [Fig. 10(b)] can be iden-
tified with diquark+ glue - qq subprocesses which

are suppressed modulo logarithms by a factor of

f '/pr' in QCD where f is a dimensional constant
which arises from the integration over the relative
momentum of the diquark system.

In a similar manner one can generate higher-po-
wer fall-off contributions corresponding to the
other terms in Eci. (4.1), Fig. 8. These corres-
pond to subprocesses based on hadron-quark inter-
actions, such as Mq Mq [see Fig. 2(c)]. Although

such contributions have nominal p~
' fall off, they

can temporarily dominate the @CDpz
' terms at

moderate p~ in single-particle production because
of (a) the trigger-bias effect" [pr' or pr~) pr

PP —qx, qq —qq sobprocess

0
50

E

6
(GeV)

FIG. 14. E(de�/dp ) for production of a quark jet at
90 versus p z for g =800 GeV . The curves shown are
(a) As (a) in Fig. 13. (b) As (b) in Fig. 13. (c) Normal-
ized e ~' distribution [case (4) Sec. 1VD] for either
on-shell or off-shell kinematics. (d) As (d) in Fig. l3.

(trigger)] and (b) possible enhancements due to the
binding of color singlets.

V. CONCLUSIONS

As we have shown in this paper, the effects of
constituent transverse -momentum fluctuations are
in general very complex. The exact treatment re-
quires consideration of off-shell and coherence ef-
fects and ultimately subprocesses involving multi-
jet final states. 'The hard-scattering expansion,
however, can be used to theoretically isolate the
origin of all large transverse-momentum exchanges
within a set of hard-scattering subprocesses,
yielding a tractable, systematic expansion of the
inclusive cross section at high p~. In the case of
P' field theory or the constituent-interchange mo-
del (which focuses on quark-hadron scattering sub-
processes), the hard-scattering expansion yields
a series in inverse powers of p~' at fixed x~.
Within the expected numerical accuracy, the sum
of the leading parton-model terms in the hard-
scattering expansion for Q' theory was shown to
repxoduce the cross section obtained from an ex-
act calculation of the Feynman amplitudes. The
indication from perturbation theory is that in the
case of asymptotically free theories such as @CD,
the enhancement of leading terms is only logarith-
mic.

We have also shown that the effect of transverse-
momentum fluctuations in qq -scattering calcula-
tions are of minor importance in inclusive cross
sections if (1}the correct off-shell kinematics
are used, and (2) the kr distribution functions
reflect nonleading subprocesses. " We emphasize
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for the cases (a)—(d) given in Fig. 14.

that the neglect of the essential off-she11 nature of
the constituents when considering the transverse-
moraentum distribution violates momentum con-
servation and allows otherwise forbidden kinema-
tic regions such as t =0 or small x, and x, to
contribute. These pathologies in turn lead to div-
ergencies which must be arbitrarily regulated.

Of course for fast-falling distributions such as
exp(-3kr'), it can be seen from Fig. 13 that for
on-shell kinematics the contributions from small
x, and x~ are negligible although nonzero. The
consequence of this fact is, however, that only
small values of k~ are relevant and as shown in
Fig. 14, curve (c), the correction at moderate
p (-3-4 GeV} is less than the order of 30%. This
result can be easily verified by using the mean-
value theorem for integrals which dictates the re-
placement (pr'+ m'}- (pr —kr)'+ m' in the final
answer where kr-(kr).

Alternatively, for slowly falling distributions
with on-shell kinematics spurious contributions
are picked up from singular regions as seen from
Figs. 13 and 14. This is clearly incorrect. A
comparison with the canonical form for the differ-
ential cross section

d3E,~p '(r1-xr)'
dp

at 8„=90' for qq qq is shown in Fig. 15. For
the exp(-3kr') distribution, even though (kr)
—0.51 GeV, the deviation from the curve with no
smearing [curve (a)) is of the same order of mag-
nitude as the deviations induced by mass effects
and rapidly disappear with increasing p~. For the
exp(-3kr) distribution, which falls off much more
slowly, the off-shell curve (b) in Fig. 15 does ex-
hibit an increase from the canonical form at low

p~. As we have already argued the contributions
associated with increases of this kind should be
identified with other, nonleading, subprocesses
in the systematic way described in Sec. III.

It should be emphasized that it is in principle
impossible to treat constituent transverse-momen-
tum fluctuations as a phenomenon distinct from the
hard -scattering subprocess; the same basic inte r-
actions must account for both. For example, as
has been discussed in Refs. 15 and 29 and in Sec.
IV, the p~ distribution of high-mass lepton pairs
in pp- l'/-X which is often ascribed to the intrin-
sic quark and antiquark distributions in the proton
is, from a different perspective, the distribution
for high-p~ massive-photon reactions which is
usually considered as arising from a standard
hard-scattering subprocess. 'Thus theoretically it
is most advantageous to localize all the large-
transverse-momentum exchanges explicitly within
hard-scattering subprocesses.

From another perspective, the central difficulty
of large-k~ fluctuations is the fact that they cannot
be treated as a classical effect. This can be seen
in the framework of the Drell-Yan time-ordered
perturbation-theory analysis. " The lifetime of
a constituent is of the order r, «, =x(1 x)P/kr-'
and the time of interaction is of order r„,=P/
(pr -kg. Thus for large kr, r,«, can be less than
7'f t just the reverse of what is assumed for the
validity of the parton-model expansion. In covar-
iant language a far off-shell line cannot be con-
sidered as a classical particle, but must be con-
sidered as part of a larger process.

Finally, our considerations in this paper suggest
a computational procedure which in principle
yields the correct asymptotic form for cross sec-
tions at large pT and takes into account the comp-
lications of the hadronic wave functions:

(1) Starting from a given field theory, one con-
structs the coupled set of multiparticle wave func-
tions" 4' (kr, ,x, ) in time-ordered perturbation
theory using the standard light-cone variables. "
The effective potential is covariantly cut off so
that intermediate states which are far off shell
are excluded"

[M' -Ho]4'= 8(M Ho+ a Pr-')V4, (5.1)

where HZ, ( ,
'mkr+, ')/x, . As in Sec. III, we de-

fine the quantity a'«1 in order to separate explic-
it hard-scattering processes from the implicit soft
processes already contained in the wave function
via (5.1). Given these wave functions, one can un-
ambiguously compute the structure functions spec-
ific to the constituents of each interacting hadron.

(2} All relevant hard-scattering contributions to
the large-p~ process are now computed using Eq.
(2.13). A given hard-scattering subprocess is in-
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FIG. 16. Contributions to ep scattering from (a)
~ qqqg} wave functions and (b) ~ qqqqq) wave functions.

parametrization. This, however, is only a cor-
rection of order o. .

An example of this procedure applied to deep-
inelastic eP scattering is illustrated in Fig. 16. If
the energy denominator for the indicated intermed-
iate state in Fig. 16(a) or 16(b) satisfies the criter-
ia (5.2}withu'pr'- n'Q', then these diagrams rep-
resent the hard-scattering contributions (a) eq
—eqg and (b) eg- eqq. Otherwise these contribu-
tions are automatically included in the eq -eq
subprocess with the respective lqqqg) and

lqqqqq) wave functions satisfying Etl. (5.1). Of
course, when one builds phenomenological models,
the sum of contributions from all subprocesses to-
gether with the assumed form of the wave functions
and resulting distributions G, &„(x,kr, Q'} must
match the observed deep-inelastic lepton-scatter-
ing cross sections.

The above procedure, specialized to electron
scattering on a quark target, reproduces the Al-
tarelli-Parisi" equations for leading logarithms
in QCD. More generally this procedure allows
one to sort out the contributions which can be as-
sociated with the bound-state wave functions (in-
cluding scaling violations} from those which can
be associated with large momentum transfer, and
in principle accounts for all nonleading terms.

eluded in the perturbation expansion only if

(5 2)

where the sum is over the constituents of the
bound state of mass M; i.e. , all large energy de-
nominators are isolated in subprocess. For an
exact calculation the subprocess cross section it-
self must be computed with the correct off-shell
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