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Through use of PCAC (partially conserved axial-vector current) we calculate the amplitude for the
emission of a single soft pion in the process K “p—K “p. The ratio of cross sections
o(K p—K "pn®/a(K “p— K ~p) is computed for various incoming kaon momenta. The agreement between

theoretical and experimental results is reasonably good.

I. INTRODUCTION

In 1965, Adler! developed a formalism for cal-
culating the matrix element of any hadronic pro-
cess of the type

i~f+m, (1.1)

in terms of the process i =~f, where 7 and f are
the initial and final hadronic states and 7 is an
emitted soft pion. In recent years, this formalism
has been applied by the present authors to proton-
antiproton annihilation processes.?® In these ap-
plications, as in most of the low-energy theorems,
current algebra is employed along with the PCAC
(partially conserved axial-vector current) hypoth-
esis. PCAC has its origin in weak interactions,
and its main usefulness here is in extrapolating
the matrix elements of 8,A, off the pion mass
shell over a distance of m,%. The error involved
in extrapolating from zero to m,,2 is approximately
10%.

In the following, we apply Adler’s formalism to
the interaction

K“p~K~pn°. (1.2)
We relate the amplitude for this process to that of
K p=~K=p (1.3)
and find the ratio of the cross sections,
oAK"p—~ K pr°)
ok el ALY A 1.4
oK p=~K~p) (1.4)

Since the emission of only one soft pion is in-
volved in the process, only PCAC comes into the
picture. In Sec. II we arrive at the matrix ele-
ment for the process (1.2) and compute its abso-
lute square, averaged over initial and summed
over final spin states. The cross section for the
single soft-pion emission process (1.2) is ex-
pressed as a differential in four kinematic vari-
ables. This cross section is normalized to the

K~p—~K~p cross section, also expressed as a dif-
ferential. In Sec. II the ratio (1.4), obtained after
numerical integration over the kinematic vari-
ables, is compared with experimental results.

II. THEKp - K-pr® AMPLITUDE AND DIFFERENTIAL
CROSS SECTION

The matrix element for process (1.2) appears in
the well-known reduction formula

ik, (K p|AL|K py= K p|o,AL|K D), (2.1)

where i=1,2,3 are the isospin indices of the axial-
vector current operator. According to PCAC,

8,AL =(1/V2)C,0!, (2.2)
with
C,.= ‘/EGAMNm,Z/g,(O) 5 (2.3)

G,=1.18, g, is the rationalized, renormalized
pion-nucleon coupling constant (g,z/ 47=14.6), ¢!
is the renormalized pion field, and M, m, are
the nucleon and pion masses.

If we introduce the Klein-Gordon operator in
Eq. (2.1), there results

MG m 2
g(mz2 - F?)

XK p|(m? -D)p}|K p).  (2.4)

One has to investigate this equation in the limit
k=0. As k-0, the right-hand side approaches
MG A/g, times the matrix element for emission

of a zero four-momentum pion and the left-hand
side vanishes unless it has pole terms. Pole
terms that go as k2™ arise when the axial-vector
current is attached to the external line that does
not terminate. Insertion of A% into a pseudoscalar
meson line is forbidden by parity. Therefore for
the reaction K“p~ K~p one has to consider only the
two diagrams shown in Fig. 1. The contribution of
the insertion of A3 into the initial baryon line [Fig.

ik, (K p|AL|K p)=

2387
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FIG. 1. Diagrams of order %! in the axial-vector
current matrix elements.

1(a)] is
1
ive(py—k)+ My

where 7 and s indicate the spin states and M is the

,(p,)M G (v BT, (py), (2.5)

My —gye
(lMﬂ|2>°C%Tr [(AFA+BFB)_—E'2W1":'—&74(AFA+BFB)TY4

operator that takes the initial state i into the final
state f. Interms of relativistic invariants,

M=A+By-Q, (2.6)
where @=g¢, +¢q,. The contribution of the insertion
of A} into the final baryon line [Fig. 1(b)] is

Ug(ps)G oV R)Y,T? Mu,(p,). (2.7)

1
iy (p,+k)+M,

Taking a sum of these contributions and retaining
only the zeroth-order terms in pion momenta, we
have

MCa Mr= G p)AF, + BF up),  (2.8)

a,
where
Fo=vMy(y+k) (-—1— - L) + 20, (2.9)
Pirk Pk
and
Fp= My, (’——-;)?7,; Ll - (2.10)

The absolute square of the matrix element summed
over final and averaged over initial spin states is
given by the usual expression,

My—iyp
—W] . (2.11)

N

In Eq. (2.8) A and B (scalar functions of @*, K2, and Q@-K, where K=p, +p,) are unknown constants. To
facilitate computation, we neglect terms proportional to A? assuming that they are small compared to

the B? terms.? This leads to

(T

(2Mp)* L (p,R)?

2grsz [MNZQ' QkE N 4MN2Q. EQ-F _ 2MN2Q'Qk'k +MN2Q'Qk' kB
(bat B)(py k) — (P, R)(pye )

(P R)?

G (19" kb By @+ Q- QE Rty by = 1y Qb Q= 2, iy Q- Q)
1

1
+m2,—k)(41>1 kpy* kQ* Q + 4k kp,* @b, Q — 2k kQ* Qp,* p,

—4Q kp,* kp,* Q +4Q* Q- kpy b, —4Q kp,* kp,* Q)

1 .
+ (P, k)2 (4Q kpy  kpy Q - 2D, kpy RQ* Q = 2D, Qp, QR b+ Q+ Qk> kp,_‘i)z):l . (2.12)
2
The differential cross section is given by the expression
(2m)%p%?° M 1 dp,dy,dk
do"= [(pl.ql)z —m;g]:l]vz]"ﬂ zp;)gg <|M'I2)(21T)9 —W 5(p, +q, —-P2—q;-Fk). (2.13)

Out of the nine variables, five can be integrated trivially. The remaining four variables are chosen to be

the following:

2
My, coso,, cos9p2, b,

(2.14)

where my,?= -R,? is the invariant mass of the (KP) g1na1 SYstem (R, =g, + p.); 6, is the angle between the
pion and the incoming proton in the R (= D, +p,) rest frame; 9,2 is the angle between the final proton and
the pion in the R, rest frame; ¢ is the relative azimuthal angle between the p,q, plane and the R, decay
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plane. The variables are restricted as follows:

M+ My Smp,? <Mg?, 0<6,<m, 0<8, <m, 0<¢p<2m,

IN K p INTERACTIONS 2389

(2.15)

where R?= -M,,?. The Appendix tabulates the conversion formulas to the desired kinematic variables.
The expression for the differential cross section is then

do = M2 (IM7I12y 1
byt a)? -MPm PR 8 (2m)°
Q‘nTl—z [(mxpz*'mxz -M?)? .-4m,“2m,(2]1/2
Kp

The matrix element for the reaction K“p—~K~p is
M= ﬁs(i’z)B'}" Qur(Px) .
This leads to

BZ
|4]%= - 5572 (M4*Q Q+Q* Q" - 2Q°1,Q"p7) -

2 (M g2+ mgy? —m 2)? —dm g, M 21V 2.

dm ,*d(cosb, )d(cosb,)dp

(2.16)

(2.17)

(2.18)

The corresponding expression for the differential cross section (see Appendix) is

M2 M2

do= [(pyq,)? _mK2MN2]1/2 4(2m)?

2
pr

The ratio of Eq. (2.16) to Eq. (2.19) gives the dif-
ferential cross section for the process K~p

- K~pn°, normalized to the differential cross sec-
tion for the same process without the soft pion.

III. COMPARISON OF THEORETICAL AND EXPERIMENTAL
RESULTS

Expressions (2.16) and (2.19) are integrated® to
obtain cross sections. The incoming kaon mo-
mentum in the laboratory system is varied from
0.55 GeV/c (the threshold momentum for the soft-
pion emission process being 0.51 GeV/c) to 1.2
GeV/c. Although the expression (2.16) is valid
only for soft pions, in the process of integration
no restriction is applied to the pion momenta. The

TABLE 1. Calculated ratios o(K ~p — K ~pn®)/
o(K~p— K™p) for various incoming kaon momenta.

K~ momentum in lab

(MeV/c) o(K~p—K~p1°) /o(K~p—Kp)
550 0.0003
600 0.0010
700 0.0070
800 0.0170
900 0.0330
950 0.0430

1000 0.0540
1050 0.0670
1100 0.0820
1150 0.0980
1200 0.1160

1
d(cosb, ) — [ 4,2 + M ? = P)2 = 4M Pm o, 2] 2.

(2.19)

r

calculated ratios of cross sections are presented
in Table I. These are compared with the experi-
mental results of Conforto ef al.° The agreement
between experimental and theoretical results is
reasonably good, as indicated by the plot in Fig. 2.

Since only PCAC is used in the derivation of our
theoretical expressions, the results appear to be
a corroboration of the validity of PCAC. The re-
sults also seem to indicate that the terms propor-
tional to A% are indeed small compared with the
B? terms as was assumed initially. However, one
must be cautious about asserting these conclu-
sions as matters of fact. Indeed the spirit of the
calculation has rather been one that has avoided
such commitments.

It is well known, for example, that the pres-
ence of resonance pole diagrams can complicate
soft-pion calculations. Their effect on pion pro-
duction in 7N scattering was noted some time ago
by Chang,” in NN scattering by Schillaci and
Silbar,? and in pp~ KK by Greenhut and Intemann.®
In the present reaction there are possibilities for
resonance poles also (K*,A). As was the case in
our earlier calculations of pp annihilation,?? our
approach here also is not to take into account res-
onant intermediate states explicitly.

A similar point of view extends to the matter of
the neglect of A with respect to B terms. The
threshold argument® for the plausibility of this can
well be supported by information on elastic K™p
phase shifts. Even so, the principal outcome
rather is that the initial assumptions, in both
areas, lead to results that appear to justify these
assumptions.!® The results then, in a strictly
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FIG. 2. Experimental and theoretical values of the

ratio o(Kp ~K p)/0(K p —K ) as a function of kaon
laboratory momentum ¢q. The experimental values have

us (P.N.) is grateful to Purna Nuthakki for useful
discussions. We are also indebted to Professor
S. B. Treiman, who initially suggested a detailed
study of soft-pion emission processes. This work
was supported in part by the Council for Scientific
and Industrial Research, New Delhi, India.

APPENDIX

The terms appearing in Eq. (2.12) must be ex-
pressed in terms of the kinematic variables m ,’,
cosb,, cos@,z, and ¢. For this purpose we first
define

R=p,+q,, R,=p,+4q,,
R,=k, A=p, -q,,

and (A1)

S=p,-q,-

From these variables one can form the following
invariants:

R,, R?, R}, A% S* R'R,, R'R,, R*A, R-S,
R,* Ry, R;*A, R*S, R0, R, S,
(A2)
and
A-S.
In terms of these invariants the variables in Eq.
(2.12) are given as follows:

a typical error of about 10%; see Ref. 6. Px'P2=%(R'Rl+ A*R,+S5°R+A-S), (A3)
4:'q=4(R*R, —~A*R, —S*R+4-S), (A4)

logical sense, are less a verification of any fund- a4 p2=%(R'R1 +S*R—-A*R, -A-S), (A5)

amental facts, and more of a phenomenological 1

presentation of a successful, consistent calcula- p1'q:=3(R*R,+ 2R, -S'R -A*9), (A8)

tional scheme!! for obtaining the ratio of cross poqy = %(R2+MN2+mK2) s (A7)

sections of K"p—K~pn® and K~p— K ~p. F ) .

A similar procedure involving both PCAC and P2 @2= 2R+ My" +my?) (A8)
current algebra is being applied to K~p inter- Py k= 3(R®+A*R - R,+A*R)), (A9)
actions with the emission of two soft pions.!?

! P ppk=3(R*R,+S*R-R*-R,*S), (A10)
. . . .
ACKNOWLEDGMENTS 9" k=z(R*-AR-R'R,+A'R,)), (A11)
b=i(R. . 2 .

We are grateful to M. Lakshmipathy Rao for his 9 k=2(R*R, -S'R-R,*+R,*S), (A12)

help in running the computer programs. One of where
R*= -M,?, R?=-my?, R'R=3(m2-Myg?_-my?, &R=-M>?+mg*=R,"S, (A13)
A= My —my® =2pyqy, S°=-My*—mg®-2p,q,, (A14)
AR, = -[(A? - R*-1.8533)/2]*/?{[R?R,® - (R* R,)*]/R*}/2 cos6, + (A* RR*R,)/R?, (A15)
S‘R= —[(52 —sz - 1.8533)/2]1/2{ [R2R12 - (R Rl)]/RIZ}J./"’ cosepzq. (R]..SR.RI)/RIZ , (A16)

A-S=(D)*D,)* 2cos¢ + R,2A*R,R*S+R,* SA*R,R*R, —-R,*SA*R,R*R, ~R,*R,A*R,S*R

R,2R*R, - R,*R,R*R,. (A17)
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Also,

R,*R,=R*R, -R;?*, R*R,=R®*-R*R,, A'R,=A*R-A*R,, R,*S=R-S-R;S,
D,=R,?A’R? _R,2A*RA*R — A*R,A*R,R*+ A+ R,A+RR*R,+ R*R,A*R,A*R ~R*R,A°R*R,,
D,=R,2S?R,? —R,2S*R,S* R, + R, SS*R,R,* R, — R,* SR,* SR,*+ R,* R,S* R,S* R, —R,*R,S°R,"R,.

Similarly the terms in Eq. (2.18) must be related
to the variables in Eq. (2.19). With R, R, A, and
S defined as before,

P1°‘h=%("MK92+MN2+mK2)=p2'qz’ (A21)
pl-p2=§(_MKP2+A'R+S'R+A‘S), (A22)
Dot dy= =My + by 4y =Dy D= P, G5, (A23)

IN K p INTERACTIONS 2391

(A18)

(A19)

(A20)

q;“lﬁ‘h‘l’l-m;{z—q;'i)z, (A24)

where

A*R=m,*-M?=S*R=S'R,, (A25)
A+S=[(A%-R?_-1.8533)/2] cosb,,

+(A°R)(S*R)/R2. (A26)
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FIG. 2. Experimental and theoretical values of the
ratio o(Kp —~K p)/0(K P —K ) as a function of kaon
laboratory momentum ¢. The experimental values have
a typical error of about 10%; see Ref. 6.



