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Study of the reaction pn ~m+n n between 1.09 and 1.43 Gev/c
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%e have analyzed the reactionP n~m+m e in a deuterium bubblewhamber experiment for incident

antiproton momenta between 1.09 and 1.43 GeV/c. Data are analyzed in terms of the Veneziano model.
The magnitudes of the spin-parity functions are determined independently in an analysis of the spin-state
composition of the pn system. The amount of each spin-dependent Veneziano amplitude is contrained to these
values in the construction of a Veneziano model. The model is found to be generally in good agreement with
the data. This represents a more rigorous test of the Veneziano model than previously published works.

I. INTRODUCTION

One of the most successful models ever pre-
sented to explain high-energy scattering pheno-
menology is the Regge-pole model. " The model
asserts that at high energies, i.e., when total c.m.
energy is large, the scattering amplitude is domin-
ated by particle exchange in the I, channel. The as-
ymptotic behavior for the Regge-pole amplitude is
given' by

A(s, t)-g(t)s '",
where the Mandelstam variables s and t are de-
fined in the conventional manner. ' On the other
hand (except for K'N interactions), low-energy
meson-baryon scattering processes are dominated
by resonance production. ' These facts lead to en-
tirely different mathematical parametrizations for
low- and high-energy reactions.

An elegant dual model' was proposed by Vene-
ziano which offers a simple description of the scat-
tering data for low energy as well as asymptotic
regions of s. Its original form exhibits Regge be-
havior and is explicitly crossing symmetric:

A(s, t, u) = —' [B(1—a(t), 1 —a(s))8

+B(1—a(t), 1 —a(u))

+B(1 —a (s), 1 —a (u))]

where 8 is the Euler beta function and is defined by

r(x)r(y)
I'(x+ y)

and P is a constant, . The function a(s) is the Regge
trajectory in the s channel and I'(x) is the I' func-
tion. It is evident by examining Eq. (3) that the poles
of the l" function at 0, -1,-2, . . ., -N lie on the real
part of the s axis if a(s) is reaL By allowing a(s)
to be imaginary, not only may one move these
poles to an acceptable unphysical region, but one

will also give appx"opriate widths to the direct-
channel resonances.

The modified trajectory for a 2~ system can be
written as

a(s) =A+Bs+tC(s -4M')'t', (4)

was analyzed using the Veneziano model. It shouM
be noted that without prior knowledge or assump-
tion of the spin structure, one is faced with the
task of choosing from among an enormous number

where 4 and 8 describe a linearly rising trajec-
tory, and C depends on the width of the s-channel
resonances. The quantity M is the mass of the
pion.

Anninos et ul. ' studied the reactions pn-m'm m

at rest in a high-statistics experiment. In addition
to the apparent production of po and f0, the authors
noted the presence of a hole near the center of the
Dalitz plot and the lack of events in the region
where one of the m'm masses is small and the
other is large.

I,ovelace first applied the Veneziano model to
these data' to explain the structures observed in
the Dalitz plot, assuming that the initial spin-par-
ity state is 0 .

Bettini et a1.' examined the reaction pn-m'm g
for laboratory momenta between 1.0 and 1.6 GeV/c
and compared theix data with the predictions of the
Veneziano model. A phenomenological approach
was taken with regard to the spin-parity state of
the Pn system. They found that the Veneziano mo-
del was in good agx cement with their data if the
spin-parity of the pn system ~as assumed to be en-
tirely 2'. However, contributions by other states
couM not be ruled out. An alternative interpre-
tation of the data was proposed by Odorico. " In a
dual model, the structures in the Dalitz plot are
attributed to resonance formation.

In this analysis, the reaction
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of different combinations of states. Without infin-
ite statistics, it may be purely accidental that a
certain combination of states should fit the data
well. In this analysis, the amount of each spin-
parity state is determined by an examination of the
angular distributions of the resonance intermediate
states. The results are then used to constrain the
magnitude of the corresponding Veneziano ampli-
tudes.

II. THE DATA SAMPLE

The data for this analysis consist of 1914 events
at 1.09, 1.19, 1.31, and 1.43 GeV/c obtained from
an exposure in the Brookhaven National Laboratory
31-in. deuterium bubble chamber. Details for this
experiment will be published elsewhere. " Figure
1(A) shows the Dalitzplotfor the v'v system. its
projection onto the invariant-mass-squared axis is
given in Fig. 1(B). Here one observes an obvious

abundant production of the p' and f ' states. From
a fit of the data to an incoherent sum of

Ptl P 'tl'

Pn —f m

Pn-v'v v (nonresonant)

(6)

(7)

(6)

states, the fractional amounts of the above reactions
are determined to be 0.290 + 0.026, 0.464 + 0.031,and

0.246 + 0.044, respectively. The masses and widths
are found tobe 761+ 7 and165+ 11MeVfor p' and
1278+7 and 176+13 MeV for f'. The dominance
by resonance production allows one to extract dy-
namic characteristics of either the p'r or f'm in-
termediate states. For p' production, events of
invariant mass from 640 to 880 MeV are consid-
ered to be in the signal region. The control bands
are from 540 to 640 MeV and from 880 to 980 MeV.
Assuming that the angular distribution for the
background events varies smoothly between the
control bands and the signal band, one can obtain
the angular distribution for the signal. This was
done by normalizing the total number of events in
the control bands to the background in the reson-
ance band, and then subtracting the angular distri-
bution of the control bands from the resonance
band. Fig. 2(B) shows the angular distribution
for reaction (6). The angle 8 is defined as the c.m.
scattering angle of the resonance particle with re-
spect to the incident antiproton. For f' production
the resonance produced events were taken from
1160 to 1400 MeV with control band cuts from 940
to 1140 MeV and from 1420 to 1520 MeV. Fig.
2(B) shows the angular distribution for reaction
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FIG. 1. (A) The Dalitz plot of 8 (m m ~ ) vs g (x n 2).
(B) The projection onto the mass-squared axis. The
prediction of the Veneziano model is shown as a smooth
curve.

FIG. 2. Angular distributions for (A) p' production and

(B)f production. Details for background subtraction
are discussed in the text.
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(7), which was obtained using the same procedure
discussed above. The numbers of resonance events
in the signal regions were found to be 346 and 544
for the p' and f meson, respectively. The angu-
lar distribution of the background was fairly flat
and amounted to 0.42 and 0.41 of the events in the
p' and f' signal regions, respectively.

III. SPIN DETERMINATION

OF THE ANTIPROTON-NEUTRON SYSTEM

Consider the reaction A+8-C+D. One can re-
late the helicity amplitudes to the differential cross
section by"

do 1 1
dQ (2S, +1) (2S,+1) ~q,~

where the scattering amplitude is written as

x dl~ (8), (1o)

and T„„1 „(s}is the transition amplitude. The
function dl/, (8) is a. single-variable rotation ma-
trix. "

The variables s and q represent the energy
squared and initial momentum in the c.m. system,

respectively. The symbol J is the total spin of the
Pn system. The helicities of particles C, D, A,
and B are written as A.„X„X„andX„respec-
tively. The relative helicities X and p. are defined
as X, —X, and X, —Xd. Parity conservation requires
that the amplitudes satisfy

T 1,-1),-10,-1) 10 1) c Id( )

xTJ
Xg) Xd) Xf3) Xy &

where g„g„q„gdare the intrinsic parities of the
particles and S„S„S„S,are their spins.

Consider particle C to be either the po or f ' me-
son, and particle D to be the n meson, one knows
that the spin and parities of these particles are 1,
2', and 0, respectively. One further knows that
the antiproton and neutron have spin —,

' and opposite
intrinsic parity. This means )},q)= -1, and Eq. (11}
becomes

TJ
a) Xb Xc)

for both the p' and f' mesons. The helicities which
must be considered for the antiproton and neutron
are +-,'. The p' may be +1,0 and for the f ' one has
+2, +1,0. The factor Z„„lf~„l'for the p' meson
can be explicitly written as follows, where the un-
conventional definition Dl~, = [(2J'+ 1)/q]df „(8)is
utilized:

2 2 2 2 2

lfcca) I ~ 1 1/21-1/2 1 1 ~ 1 1/2 1/2 0 1 1,-1/2 1/2 -1 1 ~ 1,-1/2, -1/2 0 ~ 1J' J J' J'
a bed

2 2 2
J J+ ~ T 0, 1/2, -1/2Dl, o + ~ o, 1/2, 1/2 0, 0 ~ o, -l/2, 1 D/21, 0-

J J

2 2 2
+ ~ To -1/2 1/2DO O

+ T 1)1/2) 1/ 1,-1 + ~ T-1 1/2 1/ 0 -1J' J
2 2

nJ nJ+ ~ + -1)-l/2 1/2 -1,-1 + ~ -1, -1/2) -1/2 0, -1
J'

(12)

The symmetry relations for d~~ (8) are

d~ (8) = d~ „(8)= (-1)" "d~ „(8).
This means

J J' J' J J' J
0, 1 "1,0 0, "1 1 0'

Using the symmetry relations for Tl~ „„andDl~„,the right-hand side of Eq. (12}becomes

2 2 2V' v J nJ
J J'

~ ~ ~ ~ ~

2 2 2»

1, 1/2, 1/2 0, 1 1,-1/2, -1/2 0, 1 ~ Tp, -l/2, 1/2Dp, l (13)J
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The last three terms of Eq. (13) have the same angular distribution, even though they correspond to differ-
ent helicity amplitudes. Because the interest here is the initial-spin state, and because the unique separ-
ation of the last three terms is impossible, Eq. (13) is rewritten as

where (Z~R~DO~, )' has been written in place of the last three terms O.ne finally obtains the expression for
the angular differential cross section of the po meson as

For the f meson the additional helicity states of +2 must be considered. This leads to an expression in-
volving all the terms above, plus the additional ones

~., &/2, -&/P &, -2 + ~., x/2, x-/Px, . +-~F &0, 2

D02 — TQ~l/2, l/ OZ2 + T2g ~/2, ~/2DOZ2

The distributions mere fitted to angular functions for 4 values up to and including 4. A typical term in the
fit involving the complex transition matrix elements T„~„mould appear as

r' Lt' D'
c &a &y )tc. &a. &y «& )ta) "c «&a-&t) &c

The transition amplitudes mere norma, lized according to

do ~ (2/+ 1) '/' (2d'+ 1)
d(cos8) r ~ 2 2 Act)tat)tb Xcyka1)tb )ill Xt J y

"c

and the usual normalization

mas maintained.
The least-squares method was used to fit Eq (15).

to the po angular distribution for all combinations
of total spin and helicity. The f' angular distri-
bution is fitted independently to a sum of the terms

in Eqs. (15) and (16).. Considering J values greater
than 3 did not improve the y' per degree of freedom.
In the final fit, only those terms with a. contribution
inconsistent with being zero are kept. The result-
ant terms are found to be an incoherent sum of the
helicity amplitudes represented by R and I . The
results are given in Table I and the fitted curves
are shown as solid lines in Figs. 2(A) and 2(B) for
p' and f' production processes, respectively. The
final X' per degree of freedom are 2.0 and 3.4 for
the po and fo angular distributions, respectively.

TABLE I. Spin-state composition of the pN system. IV. THE SPIN-DEPENDENT VENKZIANO MODEL

TotRl spin
Amount of p

(percent)

0.31+ 0.07
0.28 + 0.08
0.33 + 0.07
0.91+ 0.22

Amount of f
(percent)

0.16 +0.05
0.52+ 0.06
0.24 + 0.05
0.92 + 0.16

The problem of constructing an amplitude de-
scribing the decay of a state of given spin, parity,
and isospin into three pions has been investigated
by Zemach'4 and Goebel et al." Qoebel studied the
specific problem of constructing Veneziano ampli-
tudes for definite spin-parity states. In Goebel's
derivation a full amplitude is obtained by multi-
plying a spin factor times a scalar Veneziano am-
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s channel

t channel

u channel satisfy the relationship L+ M = S —1. The contrac-
ted product has vector qualities and the amplitude
is a scalar. The notation (1—3) will mean to sym-
metrize the previous term by interchanging par-
ticles 1 and 3. V(s», s») is the appropriate Venez-
iano scalar amplitude for the particular spin-par-
ity state being considered. The requirement for
A(s», s») to exhibit Regge behavior allows the Ven-
eziano amplitude discussed here to have the form

FIG. 3. Diagram for the scattering process m

7( S

plitude. The spin factor consists of products in-
volving the momenta vectors of the final-state par-
ticles. The scalar Veneziano amplitudes differ for
different spin-parity states because the full ampli-
tude is required to exhibit Regge behavior.

In order to better understand how the Veneziano
model will be related to the reaction pn-n'm m

discussed here, one is led to consider the scatter-
ing process n n'-m's where particles s with spin
S represent the Pn system. This process is shown
in Fig. 3, with all four particles taken as incoming.

In reference to Fig. 3, the Mandelstam variables
are defined as

s =s„=-(P,+P,)',
t = s» ——-(P, + P,)',

(21)

(22}

u=s„=-(P,+P,)'. (23)

A (s», s,,) = const x [e„B„PzP, P, S,...
x (P,) (P,) V(s», s„)
+ (1—3)l, (24)

where S„... is the polarization tensor of the Pn sys-
tem. E„»=0if any indices are equal, -1 for odd
permutations of the indices, and +1 for even per-
mutations of the indices. The product
S,...(P,)z(P,)" is understood to mean the contrac-
tion of the polarization tensor S„... with L factors
of P, and M f.-actors of P,. The indices L and M

The dual nature of the Veneziano model requires
one to consider known resonances in all three
channels since resonant effects in one channel
must be identical in the duality sense to particle
exchange in the crossed channel. One can see that
both the s and t channels are identical and may have
resonances, while the u channel with isospin ~I, I,)

2, -2) cannot.
If the pn system has the natural spin-parity quan-

tum numbers (S~= 1,2', 3, . . .), one may write the
full amplitude for the above-mentioned scattering
process" as

r(S —I. —n(s„))r(S—Iif —n(s„))
r(S+ 1 —n(s„)-n(s„))

(25)

If the Pn system has unnatural spin-parity quan-
tum numbers (S~=0, 1', 2, . . .) the amplitude may
similarly be written

A(s„,s„)= const x S ...(P,)~(P,)"V(s„,s„)
+ (1 —3),

where now S=L+M is required. The requirement
of Regge behavior dictates that the form of the
Veneziano amplitude be(,.

)
F(m —n(s„})I'(n—n(s„))

I (nz+ n —P —n(s„)-n(s„))' (27)

where m ~M+P, n~ L+p, and P=integer~0. Fur-
ther, one must have rn ~ 1 and n~ 1 to avoid the
poles a.t n(s„.) =0.

All spin-parity states up to a spin of 4 are con-
sidered with the exception of 0', 1, and 3 . For
a three-pion system with arbitrary total angular
momentum J, one may write the parity as
P =z)'(-1)~(-1)' where I is the relative orbital yn-
gular momentum of the n'm system, and L is the
orbital angular momentum of the third pion with
respect to that system. Here q= -1 is the intrinsic
parity of the pion. If J=O, then L=/ and P=q =-1;
therefore 0' is forbidden.

Now consider the natural-parity states J
= 1,2', 3, . . . of a fermion-antifermion system of
total spin angular momentum S and relative orbital
angular momentum f. The parity (P), G parity (G),
and charge-conjugation operator (C) are defined as
-(-1)', (-1)'s'z, and (-1)'s, respectively, where
I is the isotopic spin. Since there are no singlet
states, one has S = 1 and C = P. The isotopic spin of
the Pn system is 1; therefore G=C(-1)'=-P. For
a system of N pions, one has G = (-1)"or here G
= (-1)' = -1. Since G = P, P must be posi-tive;
therefore the states 1,3, . . . are forbidden.

The function n is taken as the p-f exchange-de-
generate trajectory. Only Veneziano terms with
leading asymptotic behavior are used. The ampli-
tude for each spin-parity state is given by
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r(1 —n(s„))I'(1—a(s„))
r(I —n(s„)-n(s„))

1.. 4 P r(1-™(s-})r(2-a(s-)) r(1-a(s-))r(2-n(s-))
I'(2 —n(s„)-n(s„)) ' I'(2 —n(s„)-a(s„))

i j [(P P P P )
1 8 (P P P P )]

( ( j2)) ( ( Q3))
r(2 —n(s„)-n(s„))

(28a)

(28b)

(28c)

2" A~~=[(p, x p,)'P&+(p, x p, )'P,'] I'(3 —n(s„)-n(s„))

(p xp), P, (p xp)„,) F(I a(s„))r(2 a(.„))
I'(3 —n(s„)-n(s„))

3" 1'"=J[P'P'P'+P'P'P'+P'P'P'] —-'8. .( P i'P'+2P"P P )

--,'V, ,[ P, i'P, +2(P, P,)P,'] ——,'V,.„[iP,i'P,'+2(P, .P.,)P,'])
„r(l n(s ))r(2 —a(s )) (1 3)I'(3 —n (s„)-a (s„))

(28d)

(28e)

V. ANALYSIS (31)

The Dalitz plot is especially well suited for com-
parisons with the Veneziano model since the scalar
amplitude has only two independent variables aside
from an overall scale factor. The Dalitz plot is
shown in Fig. 1(A). Each event is plotted twice for
the two m'm combinations. The data sample con-
sists of the 1914 events (3828 points on the Dalitz
plot) with incident momentum from 1.09 to 1.43
GeV/c. Fig. 1(B) shows the Dalitz-plot projec-
tion onto the invariant-mass-squared axis. One
observes strong p' and f ' resonance bands at 0.58
and 1.64 GeV', respectively. The minimum density
areas, in between the resonance bands, on the Dal-
itz plot are also very evident.

The values of A and B in Eq. (4) were obtained by
simultaneously solving

n(s =M,2) = 1 =A+B(M, ) (29)

n(s = M&') = 2=A+B(M&'), (30)

where M, and M& are taken to be 761 and 1278 MeV
and were obtained by fitting the m'm invariant-mass
distribution to Breit-Wigner resonance forms as
discussed before. The parameter C in Eq. (4) was
determined by requiring that the Veneziano model
give the correct width to the observed p' meson.
Table II lists A, 8, and C. The values obtained
here are comparable to those used by Lovelace,
Bettini, and the normally accepted values" for the
p trajectory.

The total transition matrix element squared,
i
Ti', is expressed in terms of the Dalitz-plot

parameters as

TABLE II. A comparison of the p trajectory para-
meters.

Th ls
experiment I ovelace

Bettini Accepted
et al. value

0.46 + 0.03
9 0.94 +0.01
C 0.250 d- 0.003

0.483
0.885
0.28

0.65
0.84
0.26

0.48
0.90

where
i

T~ (s„,s„)i' is the square of the transition
matrix elements given in Eq. (28). No interference
terms are necessary since decay amplitudes from
states of definite spin and parity are considered
here. The variable a J is the percentage of each
contributing spin-parity state.

The overall normalization to the data is the only
free parameter in this fit. The other four para-
meters, involving the relative amounts of the spin-
dependent Venezigno amplitudes for the 1', 2, 2',
and 3' states were constrained to be within 2

standard deviations of the values given in Table I.
The fit was performed by comparing the Dalitz-

plot density in grid sizes of 0.5 x 0.5 GeV'. Ap-
proximately 60000 events were generated by a
Monte Car1o routine. " These events were further
weighted according to the actual number of events
present at each momentum and to the magnitude of
the square of the transition matrix element. Since
the parity of the spin-2 state could not be deter-
mined in Sec. III, contributions from both the 2'
and 2 states were assumed possible. Fitted re-
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FIG. 4. The comparison of the Veneziano-model fit
to the data for specific ~'x mass-squared slices. (A)
0.0 to 0.2 GeV, (B) 0.2 to 0.8 GeV, (C) 0.8 to 1.4 GeV',
(D) 1.4 to 1.9 GeV, (E) 1.9 to 2.5 GeV, (F) 2.5 to 3.0
GeV , (G) 3.0 to 3.6 GeV , (H) 3.6 to 5.0 GeV .

0 2

s~+~-(GeV )

FIG. 5. Dalitz plot of the Veneziano-model fit. (A)
The absolute deviation bebveen the model and the data.
(B) The model prediction.

suits are given in Fig. 1 as a smooth curve. The
final values for the percent of each spin-parity
used in the construction of the total Veneziano am-
plitude were 0.16, 0.001, 0.68, and 0.16 for the
1', 2, 2', and 3' states, respectively. Fig. 4
shows comparisons with the data for specific
slices of the m'm mass squared. Overall, one ob-
serves agreement between the data and the model.
The quality of the agreement between the data and
the model here is comparable to that obtained by
Bettini et al. The absolute magnitude of the differ-
ence between the data and the model prediction on
the Dalitz plot is shown in Fig. 5(A). The areas
where agreement is somewhat poor are at places
where s» is large and s» is small and vice versa.
This is similar to that observed by Bettini et al.
Fig. 5(B) shows a Dalitz plot predicted by the
model.

VI. SUMMARY AND CONCLUSIONS

The Dalitz plot for the invariant ma, ss squared
of the m'm system shows strong p' and f' bands.

The minimum-density areas between the bands are
also observed. The predictions of the Veneziano
model were compared to data, for incident momenta
1.09, 1.19, 1.31, and 1.43 GeV/c.

In this analysis, the scattering amplitudes are
constructed specifically as products of the tensor
spin-parity functions times the respective scalar
Veneziano amplitudes. The magnitudes of the spin-
parity functions are determined independently in
an analysis of the spin-state composition of the pn
system. The predictions of the Veneziano model
are found to be in agreement with the data. The
ability of the model to follow the relative magni-
tudes of the p', f', and g' resonances in Figs.
4(B)-4(F) should be noted. The relative strength
of the m'm resonance bands depends critically on
the spin-parity of the amplitudes. Since the Pn
spin-state composition is determined independently
in this analysis, this analysis represents a more
rigorous test of the Veneziano model.
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